The Good, the Bad, and the Ugly: What the Future Could Hold for Bs2 Tomatoes
Bacterial spot resistance in tomato conferred by the pepper  Bs2 gene. On the left are symptomless Bs2 transgenic plants of the  hybrid, Fla. 8314; on the right are severely infected non-transgenic  plants of the cultivar VF36. The picture was taken from a trial  conducted in Florida in spring 2012, for which all plants in the trial  were inoculated with the bacterial spot pathogen.
view on EDIS
PDF-2015

Keywords

Tomato Varieties
Genetic Engineering
HS1259

Categories

How to Cite

Hutton, Samuel F., John W. Scott, Jeffrey B. Jones, Robert E. Stall, Gary E. Vallad, B. J. Staskawicz, and D. M. Horvath. 2015. “The Good, the Bad, and the Ugly: What the Future Could Hold for Bs2 Tomatoes: HS1259/HS1259, 4/2015”. EDIS 2015 (4). Gainesville, FL:4. https://doi.org/10.32473/edis-hs1259-2015.

Abstract

Bs2 tomatoes are transgenic tomatoes that have been engineered to contain the Bs2 gene from pepper. As such, they are considered a genetically modified (GM) food, or a genetically modified organism (GMO). Numerous trials conducted by University of Florida researchers have shown the benefits of these cultivars for bacterial spot disease management, and growers and industry members recognize the potential for Bs2 tomatoes to make Florida tomato production more sustainable. This 4-page fact sheet discusses the benefits that might be realized by the adoption of Bs2 tomato varieties, and the challenges standing in the way of their commercial production. Written by S. F. Hutton, J. W. Scott, J. B. Jones, R. E. Stall, G. E. Vallad, B. J. Staskawicz, and D. M. Horvath , and published by the UF Department of Horticultural Sciences, April 2015. 

HS1259/HS1259: The Good, the Bad, and the Ugly: What the Future Could Hold for Bs2 Tomatoes (ufl.edu)

https://doi.org/10.32473/edis-hs1259-2015
view on EDIS
PDF-2015

References

Cook, A.A. 1984. "Florida XVR 3-25 bell pepper." HortScience 19:735.

Ejeta, G. 2007. "Breeding for resistance in sorghum: exploitation of an intricate host-parasite biology." Crop Sci. 47:S216-S227. https://doi.org/10.2135/cropsci2007.04.0011IPBS

Flor, H.H. 1955. "Host-parasite interactions in flax rust-its genetics and other implications." Phytopathology 45:680-685.

Horvath, D.M., M.H. Pauly, S.F. Hutton, G.E. Vallad, J.W. Scott, J.B. Jones, R.E. Stall, D. Dahlbeck, B.J. Staskawicz, D. Tricoli, A.V. Deynze. 2015. "The pepper Bs2 gene confers effective field resistance to bacterial leaf spot and yield enhancement in Florida tomatoes." Acta Hortic. 1069:47-51. https://doi.org/10.17660/ActaHortic.2015.1069.5

Horvath, D.M., R.E. Stall, J.B. Jones, M.H. Pauly, G.E. Vallad, D. Dahlbeck, B.J. Staskawicz, and J.W. Scott. 2012. "Transgenic resistance confers effective field level control of bacterial spot disease in tomato." PLoS ONE 7(8):e42036. https://doi.org/10.1371/journal.pone.0042036

Hutton, S.F., J.W. Scott, W. Yang, S.C. Sim, D.M. Francis, and J.B. Jones. 2010. "Identification of QTL associated with resistance to bacterial spot race T4 in tomato." Theor. Appl. Genet. 121(7):1275-1287. https://doi.org/10.1007/s00122-010-1387-5

Kearney, B. and B.J. Staskawicz. 1990. "Widespread distribution and fitness contribution of Xanthomonas campestris pv. Vesicatoria avirulence gene avrBs2." Nature 346:385-386. https://doi.org/10.1038/346385a0

Kunwar, S., F. Iriarte, Q. Fan, E. Evaristo da Silva, L. Ritchie, N.S. Nguyen, J.H. Freeman, R.E. Stall, J.B. Jones, G.V. Minsavage, and J. Colee. 2018. "Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato." Phytopathology 108(12):1402-1411. https://doi.org/10.1094/PHYTO-12-17-0424-R

Li, L., Y. Zhu, S. Jin, and X. Zhang. 2014. "Pyramiding Bt genes for increasing resistance of cotton to two major lepidopteran pests: Spodoptera litura and Heliothis armigera." Acta Physiol. Plant 36:2717-2727. https://doi.org/10.1007/s11738-014-1642-5

Pernezny, K., and J. Collins. 1999. "A serious outbreak of race 6 of Xanthomonas campestris pv. Vesicatoria on pepper in southern Florida." Plant Dis. 83:79. https://doi.org/10.1094/PDIS.1999.83.1.79C

Potnis, N., G. Minsavage, J.K. Smith, J.C. Hurlbert, D. Norman, R. Rodrigues, R.E. Stall, and J.B. Jones. 2012. "Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper." Mol. Plant Microbe Interact. 25:307-320. https://doi.org/10.1094/MPMI-08-11-0205

Schneider, K.R., R.G. Schneider, and S. Richardson. 2002. Genetically Modified Food. FSHN02-2. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://edis.ifas.ufl.edu/fs084

Schultink, A., T. Qi, A. Lee, A.D. Steinbrenner, and B. Staskawicz. 2017. "Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1." The Plant J. 92(5):787-795. https://doi.org/10.1111/tpj.13715

Stall, R.E., J.B. Jones, and G.V. Minsavage. 2009. "Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot." Annu. Rev. Phytopathol. 47:265-284. https://doi.org/10.1146/annurev-phyto-080508-081752

Tai, T.H., D. Dahlbeck, E.T. Clark, P. Gajiwala, R. Pasion, M.C. Whalen, R.E. Stall, and B.J. Staskawicz. 1999. "Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato." Proc. Natl. Acad. Sci. USA 96:14153-14158. https://doi.org/10.1073/pnas.96.24.14153

Wichmann, G., D. Ritchie, C.S. Kousik, and J. Bergelson. 2005. "Reduced genetic variation occurs among genes of the highly clonal plant pathogen Xanthomonas axonopodis pv. Vesicatoria, including the effector gene avrBs2." Appl. Envir. Microb. 71:2418-2432. https://doi.org/10.1128/AEM.71.5.2418-2432.2005
License