Abstract
With the increasing use of unmanned aerial systems (UASs) in the agricultural domain, ensuring the consistency and completeness of aerial surveys is critical in order to establish repeatability and consistency in data collection activities. This publication covers five main steps to ensure that aerial data collections are repeatable and consistent among missions. It is one of a three-part series focusing on the applications, configuration, and best practices for using UASs in agricultural operations management. Written by Aditya Singh and James Fletcher, and published by the UF/IFAS Department of Agricultural and Biological Engineering, February 2021.
References
Atkins, E. 2014. “Autonomy as an Enabler of Economically-Viable, beyond-Line-of-Sight, Low-Altitude UAS Applications with Acceptable Risk.” AUVSI Unmanned Systems. http://www.academia.edu/download/44178531/AUTONOMY_AS_AN_ENABLER_OF_ECONOMICALLY-V20160328-1056-1o8hp8h.pdf
Geipel, J., J. Link, and W. Claupein. 2014. “Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System.” Remote Sensing 6 (11): 10335–55. https://doi.org/10.3390/rs61110335
Gracia-Romero, A., S. C. Kefauver, J. A. Fernandez-Gallego, O. Vergara-Díaz, M. T. Nieto-Taladriz, and J. L. Araus. 2019. “UAV and Ground Image-Based Phenotyping: A Proof of Concept with Durum Wheat.” Remote Sensing 11 (10): 1244. https://doi.org/10.3390/rs11101244
Jiang, H., S. Wang, X. Cao, C. Yang, Z. Zhang, and X. Wang. 2019. “A Shadow-Eliminated Vegetation Index (SEVI) for Removal of Self and Cast Shadow Effects on Vegetation in Rugged Terrains.” International Journal of Digital Earth 12 (9): 1013–29. https://doi.org/10.1080/17538947.2018.1495770
Kakarla, S. C., and Y. Ampatzidis. 2018. Instructions on the Use of Unmanned Aerial Vehicles (UAVs). AE527. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-ae527-2018
Kakarla, S. C., and Y. Ampatzidis. 2019. Postflight Data Processing Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. AE533. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-ae533-2019
Kerkech, M., A. Hafiane, and R. Canals. 2020. “Vine Disease Detection in UAV Multispectral Images Using Optimized Image Registration and Deep Learning Segmentation Approach.” Computers and Electronics in Agriculture 174 (July): 105446. https://doi.org/10.1016/j.compag.2020.105446
Ladd, G., and G. Bland. 2009. “Non-Military Applications for Small UAS Platforms.” In AIAA Infotech@Aerospace Conference. Infotech@Aerospace Conferences. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-2046
Laliberte, A. S., C. Winters, and A. Rango. 2011. “UAS Remote Sensing Missions for Rangeland Applications.” Geocarto International 26 (2): 141–56. https://doi.org/10.1080/10106049.2010.534557
Mahlein, A.-K. 2016. “Plant Disease Detection by Imaging Sensors—Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.” Plant Disease 100 (2): 241–51. https://doi.org/10.1094/PDIS-03-15-0340-FE
Rasmussen, J., J. Nielsen, F. Garcia-Ruiz, S. Christensen, and J. C. Streibig. 2013. “Potential Uses of Small Unmanned Aircraft Systems (UAS) in Weed Research.” Weed Research 53 (4): 242–48. https://doi.org/10.1111/wre.12026
Rouse, J. W., Jr., R. H. Haas, J. A. Schell, and D. W. Deering. 1974. “Monitoring Vegetation Systems in the Great Plains with ERTS.” https://ntrs.nasa.gov/search.jsp?R=19740022614
van der Wal, T., B. Abma, A. Viguria, E. Prévinaire, P. J. Zarco-Tejada, P. Serruys, E. van Valkengoed, and P. van der Voet. 2013. “Fieldcopter: Unmanned Aerial Systems for Crop Monitoring Services.” In Precision Agriculture ’13. 169–75. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-778-3_19
Verger, A., N. Vigneau, C. Chéron, J.-M. Gilliot, A. Comar, and F. Baret. 2014. “Green Area Index from an Unmanned Aerial System over Wheat and Rapeseed Crops.” Remote Sensing of Environment 152 (September): 654–64. https://doi.org/10.1016/j.rse.2014.06.006