Artificial Intelligence (AI) for Crop Yield Forecasting
Triticale (FL 08128) variety.
view on EDIS


yield prediction


How to Cite

Fraisse, Clyde, Yiannis Ampatzidis, Sandra Guzmán, Wonsuk Lee, Christopher Martinez, Sanjay Shukla, Aditya Singh, and Ziwen Yu. 2022. “Artificial Intelligence (AI) for Crop Yield Forecasting: AE571/AE571, 4/2022”. EDIS 2022 (2). Gainesville, FL.


This publication aims to introduce readers to recent crop yield forecasting approaches based on artificial intelligence (AI) and to provide examples of how AI can potentially improve yield forecasting at the field and regional levels. Written by Clyde Fraisse, Yiannis Ampatzidis, Sandra Guzmán, Wonsuk Lee, Christopher Martinez, Sanjay Shukla, Aditya Singh, and Ziwen Yu, and published by the UF/IFAS Department of Agricultural and Biological Engineering, April 2022.
view on EDIS


Cai, Y., K. Guan, D. Lobell, A. B. Potgieter, S. Wang, J. Peng, T. Xu, S. Asseng, Y. Zhang, L. You, and B. Peng. 2019. “Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches.” Agric. and Forest Met. 274:144–159.

Chen, Y., W. S. Lee, H. Gan, N. Peres, C. Fraisse, Y. Zhang, and Y. He. 2019. “Strawberry Yield Prediction Based on a Deep Neural Network Using High-Resolution Aerial Orthoimages.” Remote Sensing 11:1584.

Costa, L., J. McBreen, Y. Ampatzidis, J. Guo, M. Reisi Gahrooei, and A. Babar. 2021. “Using UAV-Based Hyperspectral Imaging and Functional Regression to Assist in Predicting Grain Yield and Related Traits in Wheat under Heat-Related Stress Environments for the Purpose of Stable Yielding Genotypes.” Precision Agriculture.

de Wit, A. J. W., and C. A. van Diepen. 2007. “Crop Model Data Assimilation with the Ensemble Kalman Filter for Improving Regional Crop Yield Forecasts.” Agric. and Forest Met. 146(1-2): 38–56.

Guan, K., J. Wu, J. S. Kimball, M. C. Anderson, S. Frolking, B. Li, C. R. Hain, and D. B. Lobell. 2017. “The Shared and Unique Values of Optical, Fluorescence, Thermal and Microwave Satellite Data for Estimating Large-Scale Crop Yields.” Remote Sens. Environ. 199:333–349.

Hansen, J. W., and M. Indeje. 2004. “Linking Dynamic Seasonal Climate Forecasts with Crop Simulation for Maize Yield Prediction in Semi-Arid Kenya.” Agricultural and Forest Meteorology 125:143–157.

Hansen, J. W., A. Potgieter, and M. Tippett. 2004. “Using a General Circulation Model to Forecast Regional Wheat Yields in Northeast Australia.” Agric. For. Meteorol. 127:77–92.

Jagtap, S., and J. W. Jones. 2002. “Adaptation and Evaluation of the CROPGRO-Soybean Model to Predict Regional Yield and Production.” Agric., Ecosystems & Env. 93(1-3): 73–85.

Lee, W. S., F. Wu, A. Abd-Elrahman, N. Peres, and S. Agehara. 2020. “Strawberry Yield Prediction Models Based on Imagery Information.” FSREF Research Report 2019–20.

Lizumi, T., Y. Shin, W. Kima, M. Kim, and J. Choi. 2018. “Global Crop Yield Forecasting Using Seasonal Climate Information from a Multi-Model Ensemble.” Climate Services 11:13–23.

Newlands, N. K., D. S. Zamar, L. A. Kouadio, Y. Zhang, A. Chipanshi, A. Potgieter, S. Toure, and H. S. J. Hill. 2014. “An Integrated, Probabilistic Model for Improved Seasonal Forecasting of Agricultural Crop Yield under Environmental Uncertainty.” Front. Environ. Sci. 2:17.

Shahhosseini, M., H. Guiping, I. Huber, and S. V. Archontoulis. 2021. “Coupling Machine Learning and Crop Modeling Improves Crop Yield Prediction in the US Corn Belt.” Scientific Reports 11:1606.

Vijayakumar, V., L. Costa, and Y. Ampatzidis. 2021. “Prediction of Citrus Yield with AI Using Ground-Based Fruit Detection and UAV Imagery.” ASABE Paper No. 2100493.

Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal. 2016. Data Mining: Practical Machine Learning Tools and Techniques. 4th Edition. San Francisco, CA: Morgan Kaufmann.

Copyright (c) 2022 UF/IFAS