The Redbay Ambrosia Beetle and Laurel Wilt
EDIS Cover Volume 2024 Number 3 aquifer source image
View on Ask IFAS
PDF 2024

Keywords

laurel wilt
Harringtonia lauricola
ambrosia beetles
Xyleborus glabratus
Raffaelea lauricola
Harringtonia lauricola
avocados

Categories

How to Cite

Dong, Yiyi, Jiri Hulcr, Daniel Carrillo, and Xavier Martini. 2024. “The Redbay Ambrosia Beetle and Laurel Wilt: FOR404/FR475, 5/2024”. EDIS 2024 (3). Gainesville, FL. https://doi.org/10.32473/edis-fr475-2024.

Abstract

The redbay ambrosia beetle, harmless in its native Asia, has become a formidable pest since its introduction to the United States in 2002. The beetle spreads the fungus Harringtonia lauricola, a lethal pathogen of North American Lauraceae trees, including avocados. The fungus infection triggers a rapid onset of laurel wilt disease, which has nearly eliminated laurel trees across the southeastern United States within a few years. The beetle has spread across nearly 300 counties in the Southeast, facilitated by trade in wood products. Effective control in natural environments remains an unresolved challenge; in avocado groves, infected trees must be removed and destroyed. Introduction of X. glabratus into Mexico, California, Central America, or South America, regions with substantial avocado industries and diverse native Lauraceae species, would be disastrous. International cooperation is necessary to address this threat.

https://doi.org/10.32473/edis-fr475-2024
View on Ask IFAS
PDF 2024

References

Brar, G. S. 2012. Ecology and biology of redbay ambrosia beetle (Xyleborus glabratus Eichhoff). PhD dissertation, University of Florida. https://ufdc.ufl.edu/ufe0044906/00001

Brar, G. S., Capinera, J. L., Kendra, P. E., McLean, S., and Peña, J. E. 2013. Life cycle, development, and culture of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 96:1158–1167. https://doi.org/10.1653/024.096.0357

Brar, G. S., Capinera, J. L., Kendra, P. E., Smith, J. A., and Peña, J. E. 2015. Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist:856–864. https://doi.org/10.1653/024.098.0307

Carrillo, D., Duncan, R. E., Ploetz, J. N., Campbell, A. F., Ploetz, R. C., and Peña, J. E. 2014. Lateral transfer of a phytopathogeneic symbiont among native and exotic ambrosia beetles. Plant Pathology 63:54–62. https://doi.org/10.1111/ppa.12073

Coffey, M. D. 1987. Phytophthora root rot of avocado: an integrated approach to control in California. Plant Disease 71:1046–1053. http://avocadosource.com/CAS_Yearbooks/CAS_71_1987/CAS_1987_PG_121-137.pdf

Cognato, A. I., Smith, S. M., Li, Y., Pham, T. H., and Hulcr, J. 2019. Genetic variability among Xyleborus glabratus populations native to Southeast Asia (Coleoptera: Curculionidae: Scolytinae: Xyleborini) and the description of two related species. Journal of Economic Entomology 112:1274–1284. https://doi.org/10.1093/jee/toz026

Conover, D., Paris, T., and Martini, X. 2024. Ecological dynamics of ambrosia beetle species in laurel wilt infected trees. Biological Invasions 26: 583–590. https://doi.org/10.1007/s10530-023-03194-1

Crane, J. H., Evans, E., Carrillo, D., Ploetz, R., and Palmateer, A. 2015. The potential for laurel wilt to threaten avocado production is real. Pages 9–16 in ACTAS: Proc. VIII Congreso Mundial de la Palta, Lima, Perú. Avocadosource. com, Hofshi Foundation, Fallbrook, CA. https://www.avocadosource.com/WAC8/Section_01/CraneJonathan2015b.pdf

Crane, J. H., Gazis, R., Wasielewski, J., Carrillo, D., Schaffer, B., Ballen, F., and Evans, E. A. 2020. Sampling guidelines and recommendations for submitting samples for diagnosing laurel wilt in avocado trees (Persea americana L.). EDIS, 2020. https://doi.org/10.32473/edis-hs1394-2020

Crane, J. H., Wasielewski, J., Carrillo, D., Gazis, R., Schaffer, B., Ballen, F., and Evans, E. 2020. Recommendations for the Detection and Mitigation of Laurel Wilt Disease in Avocado and Related Tree Species in the Home Landscape1. Horticultural Sciences Department, Universitty of Florida, IFAS Extension. https://doi.org/10.32473/edis-hs1358-2020

De Beer, Z. W., Procter, M., Wingfield, M. J., Marincowitz, S., and Duong, T. A. 2022. Generic boundaries in the Ophiostomatales reconsidered and revised. Studies in Mycology 101:57–120. https://doi.org/10.3114/sim.2022.101.02

Dixon, W., Woodruff, R., and Foltz, J. 2003. Black twig borer, Xylosandrus compactus (Eichhoff)(Insecta: Coleoptera: Curculionidae: Scolytinae). https://edis.ifas.ufl.edu/in577

Douce, G., and Johnson, J. 2005. Xyleborus glabratus in Georgia’s costal forests. Georgia Forestry Commission Pest Alert, October 31:2005.

Fraedrich, S., Harrington, T., and Best, G. 2015. Xyleborus glabratus attacks and systemic colonization by Raffaelea lauricola associated with dieback of Cinnamomum camphora in the southeastern United States. Forest pathology 45:60–70. https://doi.org/10.1111/efp.12124

Fraedrich, S., Harrington, T., Rabaglia, R., Ulyshen, M., Mayfield Iii, A., Hanula, J., Eickwort, J., and Miller, D. 2008. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Disease 92:215–224. https://doi.org/10.1094/PDIS-92-2-0215

Francke-Grosmann, H. 1967. Ectosymbiosis in wood-inhabiting insects. Symbiosis:141–205. https://doi.org/10.1016/B978-1-4832-2758-0.50010-2

Haack, R. A. 2003. Intercepted Scolytidae (Coleoptera) at US ports of entry: 1985–2000. Integrated Pest Management Reviews 6:253–282. https://doi.org/10.1023/A:1025715200538

Haack, R. A., and Rabaglia, R. J. 2013. Exotic bark and ambrosia beetles in the USA: potential and current invaders. Pages 48–74 Potential invasive pests of agricultural crops. CABI Wallingford UK. https://doi.org/10.1079/9781845938291.0048

Hanula, J. L., Mayfield III, A. E., Fraedrich, S. W., and Rabaglia, R. J. 2008. Biology and host associations of redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae), exotic vector of laurel wilt killing redbay trees in the southeastern United States. Journal of Economic Entomology 101:1276–1286. https://doi.org/10.1093/jee/101.4.1276

Hanula, J. L., Ulyshen, M. D., and Horn, S. 2011. Effect of trap type, trap position, time of year, and beetle density on captures of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Journal of Economic Entomology 104:501–508. https://doi.org/10.1603/EC10263

Harrington, T., Fraedrich, S., and Aghayeva, D. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404.

Huang, Y. T., Skelton, J., and Hulcr, J. 2019. Multiple evolutionary origins lead to diversity in the metabolic profiles of ambrosia fungi. Fungal Ecology 38:80–88. https://doi.org/10.1016/j.funeco.2018.03.006

Hughes, M., Riggins, J., Koch, F., Cognato, A., Anderson, C., Formby, J., Dreaden, T., Ploetz, R., and Smith, J. 2017a. No rest for the laurels: symbiotic invaders cause unprecedented damage to southern USA forests. Biological Invasions 19:2143–2157. https://doi.org/10.1007/s10530-017-1427-z

Hughes, M., Smith, J., Ploetz, R., Kendra, P., Mayfield, A., Hanula, J., Hulcr, J., Stelinski, L., Cameron, S., and Riggins, J. 2015. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Progress 16:173–210. https://doi.org/10.1094/PHP-RP-15-0017

Hughes, M. A., Martini, X., Kuhns, E., Colee, J., Mafra‐Neto, A., Stelinski, L., and Smith, J. 2017b. Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. Journal of Applied Entomology 141:653–664. https://doi.org/10.1111/jen.12387

Hulcr, J., Black, A., Prior, K., Chen, C.-Y., and Li, H.-F. 2017. Studies of Ambrosia Beetles (Coleoptera: Curculionidae) in Their Native Ranges Help Predict Invasion Impact. Florida Entomologist 100:257–261, 255. https://doi.org/10.1653/024.100.0219

Hulcr, J., and Lou, Q. Z. 2013. The redbay ambrosia beetle (Coleoptera: Curculionidae) prefers Lauraceae in its native range: records from the Chinese National Insect Collection. Florida Entomologist 96:1595–1596. https://doi.org/10.1653/024.096.0444

Inch, S., and Ploetz, R. 2012. Impact of laurel wilt, caused by Raffaelea lauricola, on xylem function in avocado, Persea americana. Forest pathology 42:239–245. https://doi.org/10.1111/j.1439-0329.2011.00749.x

Inch, S., Ploetz, R., Held, B., and Blanchette, R. 2012. Histological and anatomical responses in avocado, Persea americana, induced by the vascular wilt pathogen, Raffaelea lauricola. Botany 90:627–635. https://doi.org/10.1139/b2012-015

IPSM15. 2019. International Standards for Phytosanitary Measures No.15: Regulation of wood packaging material in international trade.

Jordal, B. H., Beaver, R. A., and Kirkendall, L. R. 2001. Breaking taboos in the tropics: incest promotes colonization by wood‐boring beetles. Global Ecology and Biogeography 10:345–357. https://doi.org/10.1046/j.1466-822X.2001.00242.x

Joseph, R., Bansal, K., and Keyhani, N. O. 2023. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Environmental Microbiology. https://doi.org/10.1111/1462-2920.16401

Kendra, P. E., Montgomery, W. S., Niogret, J., Pruett, G. E., Mayfield III, A. E., MacKenzie, M., Deyrup, M. A., Bauchan, G. R., Ploetz, R. C., and Epsky, N. D. 2014. North American Lauraceae: Terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLoS ONE 9:e102086. https://doi.org/10.1371/journal.pone.0102086

Laurel Wilt Public Dashboard at ArcGIS Online, accessed on November 2, 2023: https://www.arcgis.com/apps/dashboards/d43391c8fdb741b597e6ccf1236d2a02

Martini, X., Hughes, M. A., Killiny, N., George, J., Lapointe, S. L., Smith, J. A., and Stelinski, L. L. 2017. The fungus Raffaelea lauricola modifies behavior of its symbiont and vector, the redbay ambrosia beetle (Xyleborus glabratus), by altering host plant volatile production. J Chem Ecol 43:519–531. https://doi.org/10.1007/s10886-017-0843-y

Martini, X., Hughes, M. A., Smith, J. A., and Stelinski, L. L. 2015. Attraction of redbay ambrosia beetle, Xyleborus glabratus, to leaf volatiles of its host plants in North America. J Chem Ecol 41:613–621. https://doi.org/10.1007/s10886-015-0595-5

Martini, X., Sobel, L., Conover, D., Mafra‐Neto, A., and Smith, J. 2020. Verbenone reduces landing of the redbay ambrosia beetle, vector of the laurel wilt pathogen, on live standing redbay trees. Agricultural and Forest Entomology 22:83–91. https://doi.org/10.1111/afe.12364

Mayfield III, A. E., Barnard, E. L., Smith, J. A., Bernick, S. C., Eickwort, J. M., and Dreaden, T. J. 2008b. Effect of propiconazole on laurel wilt disease development in redbay trees and on the pathogen in vitro. Arboric. Urban For 34:317–324. https://doi.org/10.48044/jauf.2008.043

Mayfield, A. E., Peña, J. E., Crane, J. H., Smith, J. A., Branch, C. L., Ottoson, E. D., and Hughes, M. 2008a. Ability of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) to bore into young avocado (Lauraceae) plants and transmit the laurel wilt pathogen (Raffaelea sp.). The Florida Entomologist 91:485–487. https://doi.org/10.1653/0015-4040(2008)91[485:AOTRAB]2.0.CO;2

Mayfield III, A. E., and Thomas, M. C. 2006. The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Scolytinae: Curculionidae). Pest Alert. Florida Department of Agriculture and Consumer Services.

Menocal, O., Kendra, P. E., Padilla, A., Chagas, P. C., Chagas, E. A., Crane, J. H., and Carrillo, D. 2022. Influence of canopy cover and meteorological factors on the abundance of bark and ambrosia beetles (Coleoptera: Curculionidae) in avocado orchards affected by laurel wilt. Agronomy 12, 547. https://doi.org/10.3390/agronomy12030547

Navia-Urrutia, M., Sánchez-Pinzón, L., Parra, P. P., and Gazis, R. 2022. A diagnostic guide for laurel wilt disease in avocado. Plant Health Progress 23:345–354. https://doi.org/10.1094/PHP-12-21-0149-DG

Navia-Urrutia, M., Sendoya-Corrales, C. A., Crane, J. H., and Gaizs, R. 2023. Reevaluation of the application method and efficacy of propiconazole in controlling laurel wilt in avocado orchards in south Florida. HortTechnology 33:425–436. https://doi.org/10.21273/HORTTECH05232-23

Peña, J. E., Crane, J. H., Capinera, J. L., Duncan, R. E., Kendra, P. E., Ploetz, R. C., McLean, S., Brar, G., Thomas, M. C., and Cave, R. D. 2011. Chemical control of the redbay ambrosia beetle, Xyleborus glabratus, and other Scolytinae (Coleoptera: Curculionidae). Florida Entomologist 94:882–896. https://doi.org/10.1653/024.094.0424

Ploetz, R. C., Konkol, J. L., Narvaez, T., Duncan, R. E., Saucedo, R. J., Campbell, A., Mantilla, J., Carrillo, D., and Kendra, P. E. 2017a. Presence and prevalence of Raffaelea lauricola, cause of laurel wilt, in different species of ambrosia beetle in Florida, USA. Journal of Economic Entomology 110:347–354. https://doi.org/10.1093/jee/tow292

Ploetz, R.C., Kendra, P. E., Choudhury, R. A., Rollins, J. A., Campbell, A., Garrett, K., Hughes, M., and Dreaden, T. 2017b. Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests 8:48. https://doi.org/10.3390/f8020048

Ploetz, R. C., Konkol, J. L., Pérez-Martínez, J. M., and Fernandez, R. 2017c. Management of laurel wilt of avocado, caused by Raffaelea lauricola. European Journal of Plant Pathology 149:133–143. https://doi.org/10.1007/s10658-017-1173-1

Ploetz, R. C., and Schaffer, B. 1987. Effects of flooding and Phytophthora root rot on photosynthetic characteristics of avocado. In: Proceedings of the Florida State Horticultural Society 100:290–294.

Ranger, C. M., Biedermann, P. H., Phuntumart, V., Beligala, G. U., Ghosh, S., Palmquist, D. E., Mueller, R., Barnett, J., Schultz, P. B., and Reding, M. E. 2018. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles. Proceedings of the National Academy of Sciences 115:4447–4452. https://doi.org/10.1073/pnas.1716852115

Salgadoe, A. S. A., Robson, A. J., Lamb, D. W., Dann, E. K., and Searle, C. 2018. Quantifying the severity of phytophthora root rot disease in avocado trees using image analysis. Remote Sensing 10(2):226. https://doi.org/10.3390/rs10020226

Schaffer, B., Andersen, P. C., and Ploetz, R. C. 1992. “Responses of fruit crops to flooding” in Horticultural Reviews. John Wiley and Sons, New York. (p.257–314) https://doi.org/10.1002/9780470650509.ch7

Seo, M., Martini, X., Rivera, M.J. and Stelinski, L.L., 2017. Flight capacities and diurnal flight patterns of the ambrosia beetles, Xyleborus glabratus and Monarthrum mali (Coleoptera: Curculionidae). Environmental Entomology, 46(3): 729–734. https://doi.org/10.1093/ee/nvx085

Skelton, J., Jusino, M. A., Carlson, P. S., Smith, K., Banik, M. T., Lindner, D. L., Palmer, J. M., and Hulcr, J. 2019. Relationships among wood‐boring beetles, fungi, and the decomposition of forest biomass. Molecular Ecology 28:4971–4986. https://doi.org/10.1111/mec.15263

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 UF/IFAS