Ocean Acidification: Effects on Sponges
EDIS Cover Volume 2024 Number 3 aquifer source image
View on Ask IFAS
PDF 2024

Keywords

Porifera
marine sponges
ocean acidification
marine ecosystems

Categories

How to Cite

Donnarumma, Lena A., Joseph Henry, Joshua Patterson, Shelly Krueger, Lisa Krimsky, and Shirley Baker. 2024. “Ocean Acidification: Effects on Sponges: FA263, 6/2024”. EDIS 2024 (3). Gainesville, FL. https://doi.org/10.32473/edis-fa263-2024.

Abstract

Approximately 30% of the carbon dioxide (CO2) released into the atmosphere has been absorbed by the world’s oceans. As CO2 emissions increase due to human activities so does the amount of CO2 absorbed by the oceans. Carbon dioxide lowers the pH of the ocean system, causing ocean acidification (OA). The effects of OA on economically and ecologically important aquatic species is a subject of interest. Sponges are important reef-associated species that provide shelter for fish and crustaceans in reef habitats and can also structure ecosystems through bioerosion, water filtration, and colonization of coral reef areas. This publication considers the effects of OA on marine sponges, with a focus on Florida’s coral reef.  

https://doi.org/10.32473/edis-fa263-2024
View on Ask IFAS
PDF 2024

References

Achlatis, M., R. M. van der Zande, C. H. L. Schönberg, J. K. H. Fang, O. Hoegh-Guldberg, and S. Dove. 2017. “Sponge Bioerosion on Changing Reefs: Ocean Warming Poses Physiological Constraints to the Photosymbiotic Excavating Sponge.” Scientific Reports 7:10705. https://doi.org/10.1038/s41598-017-10947-1 Bell, J. J., S. K. Davy, T. Jones, M. W. Taylor, and N. S. Webster,. 2013. “Could some coral reefs become sponge reefs as our climate changes?” Global Change Biology 19:2613–2624. https://doi.org/10.1111/gcb.12212

Biggs, B. C. 2013. “Harnessing Natural Recovery Processes to Improve Restoration Outcomes: An Experimental Assessment of Sponge-Mediated Coral Reef Restoration.” PLoS ONE 8 (6): e64945. https://doi.org/10.1371/journal.pone.0064945

Butler, J., W. C. Sharp, J. H. Hunt, and M. J. Butler IV. 2021. “Setting the Foundation for Renewal: Restoring Sponge Communities Aids the Ecological Recovery of Florida Bay.” Ecosphere 12 (12): e03876. https://doi.org/10.1002/ecs2.3876

Goodwin, C., R. Rodolfo-Metalpa, B. Picton, and J. M. Hall-Spencer. 2014. “Effects of Ocean Acidification on Sponge Communities.” Marine Ecology 35:41–49. https://doi.org/10.1111/maec.12093

Florida Keys National Marine Sanctuary. “The Coral Reef Economy” Accessed May 23, 2023. https://oceanservice.noaa.gov/news/oct17/coral-economy.html

Florida Museum. “Importance of Coral Reefs.” Accessed May 23, 2023. https://www.floridamuseum.ufl.edu/southflorida/habitats/corals/importance/

Page, H. N., C. Hewett, H. Tompkins, and E. R. Hall. 2021. “Ocean Acidification and Direct Interactions Affect Coral, Macroalga, and Sponge Growth in the Florida Keys.” Journal of Marine Science and Engineering 9:739. https://doi.org/10.3390/jmse9070739

Patterson, J., and L. Krimsky. 2018. “Ocean Acidification: An Introduction: FA206, 7/2018”. EDIS 2018 (4). Gainesville, FL. https://doi.org/10.32473/edis-fa206-2018

Peck, L. S., M. S. Clark, D. Power, J. Reis, F. M. Batista, and E. M. Harper. 2015. “Acidification Effects on Biofouling Communities: Winners and Losers.” Global Change Biology 21:1907–1913. https://doi.org/10.1111/gcb.12841

Ramsby, B. D., M. O. Hoogenboom, H. A. Smith, S. Whalan, and N. S. Webster. 2018. “The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming.” Scientific Reports 8:8302. https://doi.org/10.1038/s41598-018-26535-w

Ribeiro, B., A. Padua, A. Barno, H. Villela, G. Duarte, A. Rossi, F. da Costa Fernandes, R. Peixoto, and M. Klautau. 2020. “Assessing Skeleton and Microbiome Responses of a Calcareous Sponge under Thermal and pH Stresses.” ICES Journal of Marine Science 78 (3): 855–866. https://doi.org/10.1093/icesjms/fsaa231

Schönberg, C. H. L., and R. Suwa. 2007. “Why Bioeroding Sponges May Be Better Hosts for Symbiotic Dinoflagellates Than Many Corals.” In Porifera Research: Biodiversity, Innovation and Sustainability, edited by M. R. Custo′dio, E. Hajdu, G. Loˆbo-Hajdu, and G. Muricy, 569–580. Rio de Janeiro: Publication Museum Nactional.

Smith, A. M., J. Berman, M. M. Key Jr., and D. J. Winter. 2013. “Not all sponges will thrive in a high-CO2 ocean: review of mineralogy of calcifying sponges.” Palaeogeography, Palaeoclimatology, Palaeoecology, 392:463–472. https://doi.org/10.1016/j.palaeo.2013.10.004 Stubler, A. D., B. T. Furman, and B. J. Peterson. 2014. “Effects of pCO2 on the Interaction between an Excavating Sponge, Cliona varians, and A Hermatypic Coral, Porites furcata.” Marine Biology 161:1851–1859. https://doi.org/10.1007/s00227-014-2466-y

Vincente, J., N. J. Silbiger, B. A. Beckley, C. W. Raczkowski, and R. T. Hill. 2016. “Impact of High pCO2 and Warmer Temperatures on the Process of Silica Biomineralization in the Sponge Mycale grandis.” ICES Journal of Marine Science 73 (3): 704–714. https://doi.org/10.1093/icesjms/fsv235

Wisshak, M., C. H. L. Schönberg, A. Form, and A. Freiwald. 2012. “Ocean Acidification Accelerates Reef Bioerosion.” PLoS ONE 7 (9): e45124. https://doi.org/10.1371/journal.pone.0045124

Wisshak, M., C. H. L. Schönberg., A. Form, and A. Freiwald. 2013. “Effects of Ocean Acidification and Global Warming on Reef Bioerosion—Lessons from a Clionaid Sponge.” Aquatic Biology 19:111–127. https://doi.org/10.3354/ab00527

Wolfe, K., T. M. Kenyon, and P. J. Mumby. 2021. “The Biology and Ecology of Coral Rubble and Implications for the Future of Coral Reefs.” Coral Reefs 40:1769–1806. https://doi.org/10.1007/s00338-021-02185-9

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 UF/IFAS