Cluster Analysis for Extension and Other Behavior Change Practitioners: Introduction
view on EDIS
PDF-2021

Keywords

Cluster analysis
audience segmentation
formative research
audience analysis

Categories

How to Cite

Warner, Laura A. Sanagorski. 2021. “Cluster Analysis for Extension and Other Behavior Change Practitioners: Introduction: WC399/AEC738, 11/2021”. EDIS 2021 (6). https://doi.org/10.32473/edis-wc399-2021.

Abstract

Helping people adopt behaviors to improve social, economic, and environmental conditions is central to Extension’s mission. This new publication describes cluster analysis, a quantitative technique that can be used to identify audience subgroups so that tailored education and communications can be designed, and conveys its value in supporting behavior change to help readers understand how this technique is applied and encourage others to consider using it. Written by Laura A. Warner; 5 pp.
https://edis.ifas.ufl.edu/wc399

https://doi.org/10.32473/edis-wc399-2021
view on EDIS
PDF-2021

References

Ali, A. D., Warner, L. A., & Kumar Chaudhary, A. (2018). Using perceived landscape benefits to subgroup Extension clients to promote urban landscape water conservation. EDIS, 2018(4). https://doi.org/10.32473/edis-wc291-2018

Andreasen, A. R. (2006). Social marketing in the 21st century. Thousand Oaks, California: Sage Publications.

Burns, R. B., & Burns, R. A. (2008). Cluster analysis. In R. B. Burns & R. A. Burns (Eds.), Business research methods and statistics using SPSS (pp. 552–567). London: Sage.

Gibson, K. E., Fortner, A. R., Lamm, A. J., & Warner, L. A. (2021). Managing demand-side water conservation in the United States: An audience segmentation approach. Water, 13(21), 2992. https://doi.org/10.3390/w13212992

Gibson, K. E., Lamm, A. J., & Lamm, K. W. (2020). Identifying audience needs to effectively communicate about the cost of implementing sustainable farming practices. Journal of Applied Communications, 104(3). https://doi.org/10.4148/1051-0834.2334

IBM Corporation. (2021a). Hierarchical cluster analysis. https://www.ibm.com/docs/en/spss-statistics/28.0.0?topic=features-hierarchical-cluster-analysis

IBM Corporation. (2021b). K-means cluster analysis. https://www.ibm.com/docs/en/spss-statistics/28.0.0?topic=features-k-means-cluster-analysis

IBM Corporation. (2021c). Two step cluster analysis. https://www.ibm.com/docs/en/spss-statistics/23.0.0?topic=option-twostep-cluster-analysis

Khachatryan, H., Rihn, A., Warwick, C. R., & Dukes, M. (2019). Who is interested in purchasing smart irrigation systems? EDIS, 2019(5), 7. https://doi.org/10.32473/edis-fe1069-2019

King, R. S. (2015). Cluster analysis and data mining. Dulles, VA: Mercury Learning and Information.

Kumar Chaudhary, A., & Warner, L. A. (2018). Understanding good irrigation and fertilization behaviors among households using landscape design features. EDIS, 2018(1), 4. https://doi.org/10.32473/edis-wc292-2018

Monaghan, P., Warner, L., Telg, R., & Irani, T. (2014). Improving Extension program development using audience segmentation. EDIS, 2014(6). http://edis.ifas.ufl.edu/wc188

Shaw, B. R. (2009). Using temporally oriented social science models and audience segmentation to influence environmental behaviors. In L. Kahlor & P. Stout (Eds.), Communicating Science (pp. 109–130). https://doi.org/10.4324/9780203867631

Warner, L., Galindo-Gonzalez, S., & Gutter, M. S. (2014). Building impactful Extension programs by understanding how people change. EDIS, 2014(6). http://edis.ifas.ufl.edu/wc189

Warner, L. A., Israel, G. D., & Diaz, J. M. (2019). Identifying and meeting the needs of Extension’s target audiences. EDIS, 2019(3). https://doi.org/10.32473/edis-wc336-2019

Warner, L. A., Kumar Chaudhary, A., Rumble, J. N., Lamm, A. J., & Momol, E. (2017). Using audience segmentation to tailor residential irrigation water conservation programs. Journal of Agricultural Education, 58(1), 313–333. https://doi.org/10.5032/jae.2017.01313

Warner, L. A., Lamm, A. J., Rumble, J. N., Martin, E., & Cantrell, R. (2016). Classifying residents who use landscape irrigation: Implications for encouraging water conservation behavior. Environmental Management, 58(2), 238–253. https://doi.org/10.1007/s00267-016-0706-2

Yim, O., & Ramdeen, K. T. (2015). Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. The Quantitative Methods for Psychology, 11(1), 8–21. https://doi.org/10.20982/tqmp.11.1.p008

Copyright (c) 2021 UF/IFAS