Nutrient Management Recommendations Based on Mehlich-3 Extractant for Calcareous Soils in Miami-Dade County
A fertilizer field trial for tomato grown on a calcareous soil in Homestead, FL from 2014 to 2016.
View on EDIS
PDF 2023


soil nutrients
calcareous soils
vegetable fertilization


How to Cite

Li, Yuncong, Qiang Zhu, Rao Mylavarapu, Kelly Morgan, Guodong Liu, Jonathan Crane, Qingren Wang, Henry Mayer, Jeff Wasielewski, Laura Vasquez, Qingchun Liu, and Teresa Olczyk. 2023. “Nutrient Management Recommendations Based on Mehlich-3 Extractant for Calcareous Soils in Miami-Dade County”. EDIS 2023 (4). Gainesville, FL.


This factsheet provides information about the history of soil testing calibrations and justification for recommending extraction of soil nutrients using Mehlich-3 for calcareous soils in Miami-Dade County. The dominant soils from this County have an extraordinarily high concentration of calcium resulting in high pH. This document also includes UF/IFAS approved Mehlich-3 extractant-based testing interpretations and recommendations for these soils. The purpose of this publication is to elucidate an appropriate approach for analyzing the unique calcareous soils from Miami-Dade County for plant available nutrients. The target audiences are Extension agents, agronomists at soil testing laboratories, crop advisors, growers, representatives of the state and local agencies, and others concerned about soil testing and plant analysis in Miami-Dade County.
View on EDIS
PDF 2023


Colburn, B., and S. Goldweber. 1961. “Preparation of Oolitic Limestone Soil for Agricultural Use.” Proceedings of the Florida State Horticultural Society 74: 343–345.

Florida Department of Agriculture and Consumer Services & University of Florida. Calibration of Soil Test Interpretations and Nutrient Recommendations for Major Commodities Grown across Florida as Best Management Practice for Sustainable Agriculture. Mylavarapu, R., G. Hochmuth, V. Nair, A. Wright, J. McCray, and Y. C. Li. Final Report, Grant Contract # 024018. 2018.

Hanlon, E. A., B. Schaffer, M. Ozores‐Hampton, and H. H. Bryan. 1996. “Ammonium Bicarbonate‐DTPA Extraction of Elements from Waste‐Amended Calcareous Soil.” Communications in Soil Science and Plant Analysis, 27(9-10): 2321–2335.

Hanlon, E. A., G. J. Hochmuth, S. O’Hair, Y. C. Li, H. Bryan, M. Lamberts, T. Olczyk, and J. Crane. 1999. “Development of Calcareous Soil Testing and Recommendation System.” Calcareous Soils Position Paper, University of Florida, Gainesville, FL.

J. R. Heckman. 1997. Soil Fertility Test Interpretation: Phosphorous, Potassium, Magnesium, and Calcium. Rutgers Cooperative Extension: FS 719.

Li, Y. 2001. “Calcareous Soils in Miami-Dade County: SL 183/TR004, Rev. 10/2018.” Ask IFAS 2018 (5).

Mylavarapu, R., Y. Li, M. Silveira, C. Mackowiak, and J. M. McCray. 2021. Soil-Test-Based Phosphorus Recommendations for Commercial Agricultural Production in Florida: SS699/SL 486, 2/2021.” EDIS 2021 (1).

Pizzeghello, D., A. Berti, S. Nardi, and F. Morari. 2016. “Relationship Between Soil Test Phosphorus and Phosphorus Release to Solution in Three Soils after Long-Term Mineral and Manure Application.” Agriculture, Ecosystems, & Environment 233 (3):214–223.

Sims J. T., R. O. Maguire, A. B. Leytem, K. L. Gartley, and M. C. Paulter. 2002. Evaluation of Mehlich-3 as an Agri-Environmental Soil Phosphorus Test for the Mid-Atlantic United States of America. Soil Science Society of America Journal 66: 2016–2032.

Soil Science Society of America (SSSA). 2021. Glossary of Soil Science Terms.

Soltanpour, P. N. 1991. “Determination of Nutrient Availability and Elemental Toxicity by AB-DTPA Soil Test and ICPS.” In Advances in Soil Science, edited by B. A. Stewart, 165–190. Vol. 16. New York: Springer-Verlag.

University of Florida. Crop Nutrient Requirements for Vegetable Crops on Limestone Soils of South Florida. Lamberts, M., S. O’Hair, G. Hochmuth, E. Hanlon, and H. Bryan. Final Report, Grant Contract # C-4225. UF/IFAS Tropical Research and Education Center, 1997.

Zhang, H., S. Kaiuki, J. L. Schroder, M. E. Payton, and C. Focht. 2009. “Interlaboratory Validation of the Mehlich-3 Method for Extraction of Plant-Available Phosphorus.” Journal of AOAC International 92 (1): 91–102.

Zhou, M., and Y. Li. 2001. “Phosphorus-Sorption Characteristics of Calcareous Soils and Limestone from the Southern Everglades and Adjacent Farmlands.” Soil Science Society of America Journal 65 (5): 1404–1412.

Zhu, Q., M. Ozores-Hampton, and Y. Li. 2016. “Comparison of Mehlich-3 and Ammonium Bicarbonate-DTPA for Extraction of Phosphorus and Potassium in Calcareous Soils from Florida.” Communications in Soil Science and Plant Analysis 47 (20): 2315–2324.

Zhu, Q., M. Ozores-Hampton, Y. C. Li, and R.S. Mylavarapu. 2017a. “Comparing Extractants for Calibrating Potassium Rates for Tomato Grown on a Calcareous Soil.” Soil Science Society of America Journal 81 (6):1621–1628.

Zhu, Q., M. Ozores-Hampton, Y. C. Li, K. Morgan, G. Liu, and R. S. Mylavarapu. 2017b. “Effect of Phosphorus Rates on Growth, Yield, and Postharvest Quality of Tomato in a Calcareous Soil.” HortScience 52 (10):1406–1412.

Zhu, Q., M. Ozores-Hampton, Y. C. Li, K. T. Morgan, and Y. Lu. 2017c. “Potassium Rates Affected Potassium Uptake and Use Efficiency in Drip-Irrigated Tomato.” Agronomy Journal 109 (1): 2945–2956.

Zhu, Q., M. Ozores-Hampton, Y. C. Li, K. Morgan, G. Liu, and R. S. Mylavarapu. 2017d. “Responses of Tomato to Potassium Rates in a Calcareous Soil.” HortScience 52 (5): 764–769.

Zhu, Q., Y. C. Li, R. S. Mylavarapu, K. Morgan, and M. Geng. 2019. “Comparison of Extractants for Calibrating Phosphorus Application Rates in a Calcareous Soil.” HortScience 54 (8): 1391–1396.

Copyright (c) 2023 UF/IFAS