Abstract
This new 5-page publication of the UF/IFAS Department of Agricultural Education and Communication presents research assessing how nursery growers perceive automated and mechanized nursery technologies (ANTs) and determine how these perceptions relate to adoption. This information could guide the development of Extension programs that help nursery operations make informed decisions about ANT adoption and identify ANT characteristics that are positively correlated with ANT adoption. This document was designed for Extension professionals and other practitioners who serve nursery grower clientele across the United States, including companies developing and marketing ANTs to nursery operations. Written by Laura A. Warner, Alicia L. Rihn, Amy Fulcher, Susan Schexnayder, Anthony V. LeBude, Lloyd Nackley, Margarita Velandia, and James Altland.
https://edis.ifas.ufl.edu/wc425
References
Adegbola, Y. U., Fisher, P. R., & Hodges, A. W. (2019). Economic evaluation of transplant robots for plant cuttings. Scientia Horticulturae, 246(27), 237–243. https://doi.org/10.1016/j.scienta.2018.10.070
American Association for Public Opinion Research (AAPOR). (2020). Survey Outcome Rate Calculator 4.1. https://www.aapor.org/Education-Resources/For-Researchers/Poll-Survey-FAQ/Response-Rates-An-Overview.aspx
Cypher, Q., Wright, W. C., Sun, X., Fessler, L., & Fulcher, A. (2022). Automated leaching fraction-based system reduces leaching, conserves water, and supports crop growth in a commercial nursery. Applied Engineering in Agriculture 38(5), 807–816. https://doi.org/10.13031/aea.15082
Grift, T., Zhang, Q., Kondo, N., & Ting, K.C. (2008). A review of automation and robotics for the bio-industry. Journal of Biomechatronics Engineering, 1(1), 37–54. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.9292&rep=rep1&type=pdf
Hall, C., & Knuth, M. (2019). An update of the literature supporting the well-being benefits of plants: A review of the emotional and mental health benefits of plants. Journal of Environmental Horticulture, 37(1), 30–38. https://doi.org/10.24266/0738-2898-37.1.30
HindSite Software. (2019). Green industry benchmark report. (2019 ed). Saint Paul, Minnesota: HindSite Software.
Hyatt Presley, B. (2019). NALP hosts workforce summit, addresses labor crisis. Total Landscape Care. https://www.totallandscapecare.com/business/article/15041951/nalp-discusses-solutions-for-green-industry-labor-shortage
Incrocci, L., Marzialetti, P., Incrocci, G., Di Vita, A., Balendonck, J., Bibbiani, C., Spagnol, S., & Pardossi, A. (2014). Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops. Agricultural Water Management, 131, 30–40. https://doi.org/10.1016/j.agwat.2013.09.004
Manandhar, A., Zhu, H., Ozkan, E., & Shah, A. (2020). Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers. Precision Agriculture, 21(5), 1156–1171. https://doi.org/10.1007/s11119-020-09712-8
Posadas, B. C. (2012). Economic impacts of mechanization or automation on horticulture production firms sales, employment, and workers’ earnings, safety, and retention. HortTechnology, 22(3), 388–401. https://doi.org/10.21273/HORTTECH.22.3.388
Posadas, B. C. (2018). Socioeconomic determinants of the level of mechanization of nurseries and greenhouses in the southern United States. AIMS Agriculture and Food, 3(3), 229–245. https://doi.org/10.3934/agrfood.2018.3.229
Rihn, A. L., Velandia, M., Warner, L. A., Fulcher, A., Schexnayder, S., & LeBude, A. V. (2022). Factors correlated with the propensity to use automation and mechanization by the U.S. nursery industry. Agribusiness. https://doi.org/10.1002/agr.21763
Rogers, E. M. (2003). Diffusion of innovations (3rd ed.). New York: Simon and Schuster.
United States Department of Agriculture [USDA]. (2019). 2017 Census of Agriculture. https://www.nass.usda.gov/Publications/AgCensus/2017/#full_report
van Iersel, M., Seymour, R. M., Chappell, M., Watson, F., & Dove, S. (2009). Soil moisture sensor-based irrigation reduces water use and nutrient leaching in a commercial nursery. Proceedings of the Southern Nursery Association Research Conference, 54, 17–21. https://sna1.wildapricot.org/Resources/Documents/09resprocsec01.pdf
Warner, L. A., Rihn, A. L., Fulcher, A., Schexnayder, S., & LeBude, A. V. (2022). Relating grower perceptions and adoption of automated nursery technologies to address labor needs. Journal of Agricultural Education, 63(2), 146–164. https://doi.org/10.5032/jae.2022.02146
Warner, L. A., Rihn, A. L., Fulcher, A., Schexnayder, S., LeBude, A. V., & Joshi, A. (2022). A theory of planned behavior evaluation of growers’ intent to use automated nursery technologies. Horticulturae, 8(11), 1028. https://doi.org/10.3390/horticulturae8111028