Effect of Fertilizer Phosphorus Rate on Tomato and Green Bean Yield and Growth in High pH Sandy Soils of South Florida
Someone reaching into crates full of a tomato harvest.
PDF-2013

Keywords

SS611

Categories

How to Cite

Morgan, Kelly T., and Kamal Mahmoud. 2014. “Effect of Fertilizer Phosphorus Rate on Tomato and Green Bean Yield and Growth in High PH Sandy Soils of South Florida: SL398/SS611, 12/2013”. EDIS 2014 (3). Gainesville, FL. https://doi.org/10.32473/edis-ss611-2013.

Abstract

This 4-page fact sheet addresses the effect of phosphorus rate on tomato and green bean yield and growth in high pH soils and discusses their relationship to both nutrition and fertilizer management. Written by Kelly T. Morgan and Kamal Mahmoud, and published by the UF Department of Soil and Water Science, December 2013.

https://doi.org/10.32473/edis-ss611-2013
PDF-2013

References

Bieleski, R.L. 1973. "Phosphate Pools, Phosphate Transport, and Phosphate Availability." Ann. Rev. Plant Physiol. 24: 225-52. https://doi.org/10.1146/annurev.pp.24.060173.001301

Graetz, D.A. and V.D. Nair. 1995. "Fate of Phosphorus in Florida Spodosols Contaminated with Cattle Manure." Ecol. Eng. 5: 163-81. https://doi.org/10.1016/0925-8574(95)00023-2

Morgan, K.T., S. Sato, and E. McAvoy. 2009. "Preliminary Data on Phosphorus Soil Test Index Validation in Southwest Florida." Proc. Fla. State. Hort. Soc. 122: 233-39.

Morgan, K.T., S. Sato, and E. McAvoy. 2010. "Effect of Added Elemental Sulfur on Soil pH and Phosphorus Availability in Sandy Soils." Proc. Fla. State. Hort. Soc. 123: 183-87.

Nair, V.D. and W.G. Harris. 2004. "A Capacity Factor as an Alternative to Soil Test Phosphorus in Phosphorus Risk Assessment." New Zealand J. Agr. Res. 47:491-97. https://doi.org/10.1080/00288233.2004.9513616

Rhue, R.D. and P.H. Everett. 1987. "Response of Tomatoes to Lime and Phosphorus on a Sandy Soil." Agron. J. 79: 71-77. https://doi.org/10.2134/agronj1987.00021962007900010015x

License