Biological Control of Weeds: Is it Safe?
view on EDIS


Classical Biological Control
Invasive Plants


How to Cite

Minteer, Carey, Eutychus Kariuki, and James P. Cuda. 2021. “Biological Control of Weeds: Is It Safe? ENY2072/IN1342, 12/2021”. EDIS 2021 (6).


Invasive plants are non-native plant species that cause harm in their introduced range. Classical biological control of invasive plants is the use of natural enemies, imported insects and mites or pathogens, to control the target plants. This publication explains the strategies and rules in place to ensure that organisms released for the biological control of weeds are safe and effective.
view on EDIS


Ahmad, S. 2012. Herbivorous Insects: Host-Seeking Behavior and Mechanisms. Elsevier.

Amsellem, L., J. L. Noyer, T. Le Bourgeois, and M. Hossaert‐Mckey. 2000. "Comparison of Genetic Diversity of the Invasive Weed Rubus alceifolius Poir.(Rosaceae) in Its Native Range and in Areas of introduction, Using Amplified Fragment Length Polymorphism (AFLP) Markers." Molecular Ecology 9 (4): 443–455.

Asmare, E. 2017. "Current Trend of Water Hyacinth Expansion and Its Consequence on the Fisheries around North Eastern Part of Lake Tana, Ethiopia." Journal of Biodiversity and Endangered Species 5 (02): 189.

Boevé, J.L., R. Rozenberg, F. Mc Kay, and G. S. Wheeler. 2018. "Toxic Peptides in Populations of Two Pergid Sawflies, Potential Biocontrol Agents of Brazilian Peppertree." Journal of Chemical Ecology 44 (12): 1139–1145.

Cuda, J. P. 2016. "Novel Approaches for Reversible Field Releases of Candidate Weed Biological Control Agents: Putting the Genie back into the Bottle." In Biological And Environmental Hazards, Risks And Disasters, edited by J. F. Shroder and R. Sivanpillai, 137–152.. Amsterdam: Elsevier, Inc.

Hinz, H. L., R. L. Winston, and M. Schwarzländer. 2019. "How safe is weed biological control? A global review of direct nontarget attack." The Quarterly Review of Biology 94 (1): 1–27.

Lazzaro, L., F. Essl, A. Lugliè, B. M. Padedda, P. Pyšek, and G. Brundu. 2018. "Invasive Alien Plant Impacts on Human Health and Well-Being." Invasive Species and Human Health 13 (10): 16.

Minteer, C. R., M. C. Smith, P. Madeira, C. Goosem, R. Zonneveld, J. Makinson, G. S. Wheeler, and M. Purcell. 2020. "Is biological control for earleaf acacia (Acacia auriculiformis) Feasible in the United States?" [Review]. Biocontrol Science and Technology 30 (12): 1275–1299.

Naranjo, S. E., P. C. Ellsworth, and G. B. Frisvold. 2015. Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems." Annual Review of Entomology 60.

Overholt, W. A., R. Diaz, E. Rosskopf, S. J. Green, and W. A. Overholt. 2015. "Deep Characterization of the Microbiomes of Calophya spp.(Hemiptera: Calophyidae) Gall-Inducing Psyllids Reveals the Absence of Plant Pathogenic Bacteria and Three Dominant Endosymbionts." PLoS One 10 (7): e0132248.

Qi, S.-S., Z. -C. Dai, D. -L. Zhai, S. -C. Chen, C. -C. Si, P. Huang, R. P. Wang, Q. X. Zhong, and D. L. Du. 2014. "Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata." PLoS One 9 (11): e113964.

Salaudeen, T., M. Thomas, D. Harding, and S. D. Hight. 2013. "Economic Impact of Tropical Soda Apple (Solanum viarum) on Florida Cattle Production." Weed Technology 27 (2): 389–394.

Schultheis, E. H., and D. J. MacGuigan. 2018. "Competitive Ability, not Tolerance, May Explain Success of Invasive Plants over Natives." Biological Invasions 20 (10): 2793–2806.

Schwarzländer, M., H. L. Hinz, R. Winston, and M. Day. 2018. "Biological Control of Weeds: An Analysis of Introductions, Rates of Establishment and Estimates of Success, Worldwide. BioControl 63 (3): 319–331.

Sheppard, A. W., R. D. Van Klinken, and T. A. Heard. 2005. Scientific Advances in the Analysis of Direct Risks of Weed Biological Control Agents to Nontarget Plants." Biological control 35 (3): 215–226.

USDA-APHIS. 2019. Technical Advisory Group for Biological Control Agents of Weeds Manual. USDA-APHIS.

Wapshere, A. 1974. "A Strategy for Evaluating the Safety of Organisms for Biological Weed Control." Annals of Applied Biology 77 (2): 201–211.

Copyright (c) 2021 UF/IFAS