Abstract
CRISPR is a contemporary biological technology that has attracted the interest of both the science community and the general public. This 4-page article discusses why tomato researchers are interested in CRISPR, what tomato traits have been targeted by CRISPR, and potential applications of CRISPR for tomato genetics and breeding. Written by Tong Geon Lee and published by the UF/IFAS Department of Horticultural Sciences, February 2018.
http://edis.ifas.ufl.edu/hs1314
References
Brooks, C., V. Nekrasov, Z. B. Lippman, and J. Van Eck. 2014. "Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system." Plant Physiol. 166(3):1292-1297. https://doi.org/10.1104/pp.114.247577
Čermák, T., N. J. Baltes, R. Čegan, Y. Zhang, and D. F. Voytas. 2015. "High-frequency, precise modification of the tomato genome." Genome Biol. 16:232. https://doi.org/10.1186/s13059-015-0796-9
Jacobs. T. B., N. Zhang, D. Patel, and G. B. Martin. 2017. "Generation of a collection of mutant tomato lines using pooled CRISPR libraries." Plant Physiol. 174(4):2023-2037. https://doi.org/10.1104/pp.17.00489
Nekrasov, V., C. Wang, J. Win, C. Lanz, D. Weigel, and S. Kamoun. 2017. "Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion." Sci Rep. 7(1):482. https://doi.org/10.1038/s41598-017-00578-x
Pan, C., L. Ye, L. Qin, X. Liu, Y. He, J. Wang, L. Chen, and G. Lu. 2016. "CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations." Sci Rep. 6:24765. https://doi.org/10.1038/srep24765
Ron, M., K. Kajala, G. Pauluzzi, D. Wang, M. A. Reynoso, K. Zumstein, J. Garcha, S. Winte, H. Masson, S. Inagaki, F. Federici, N. Sinha, R. B. Deal, J. Bailey-Serres, and S. M. Brady. 2014. "Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model." Plant Physiol. 166(2):455-469. https://doi.org/10.1104/pp.114.239392
Soyk, S., Z. H. Lemmon, M. Oved, J. Fisher, K. L. Liberatore, S. J. Park, A. Goren, K. Jiang, A. Ramos, E. van der Knaap, J. Van Eck, D. Zamir, Y. Eshed, and Z. B. Lippman. 2017a. "Bypassing negative epistasis on yield in tomato imposed by a domestication gene." Cell. 169(6):1142-1155.e12. https://doi.org/10.1016/j.cell.2017.04.032
Soyk, S., N. A. Müller, S. J. Park, I. Schmalenbach, K. Jiang, R. Hayama, L. Zhang, J. Van Eck, J. M. Jiménez-Gómez, and Z. B. Lippman. 2017b. "Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato." Nat Genet. 49(1):162-168. https://doi.org/10.1038/ng.3733
Ueta, R., C. Abe, T. Watanabe, S. S. Sugano, R. Ishihara, H. Ezura, Y. Osakabe, and K. Osakabe. 2017. "Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9." Sci Rep. 7(1):507. https://doi.org/10.1038/s41598-017-00501-4
Xu, C., K.L. Liberatore, C. A. MacAlister, Z. Huang, Y. H. Chu, K. Jiang, C. Brooks, M. Ogawa-Ohnishi, G. Xiong, M. Pauly, J. Van Eck, Y. Matsubayashi, E. van der Knaap, and Z. B. Lippman. 2015. "A cascade of arabinosyltransferases controls shoot meristem size in tomato." Nat Genet. 47(7):784-792. https://doi.org/10.1038/ng.3309
Xu, C., S. J. Park, J. Van Eck, and Z. B. Lippman. 2016. "Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators." Genes Dev. 30(18):2048-2061. https://doi.org/10.1101/gad.288415.116
Unless otherwise specified, articles published in the EDIS journal after January 1, 2024 are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license.