Biology, Ecology, and Benefits of Arbuscular Mycorrhizal Fungi in Agricultural Ecosystems
Micrograph showing structures of plant roots such as hyphae, which appear string- or vein-like, and vesicles, which appear as dark circles.
View on Ask IFAS
PDF 2025

Keywords

Mycorrhizal fungi
agroecosystems
microsymbionts

Categories

How to Cite

Andres, Holly, Hui-Ling (Sunny) Liao, and Kaile Zhang. 2025. “Biology, Ecology, and Benefits of Arbuscular Mycorrhizal Fungi in Agricultural Ecosystems: PP383, 3 2025”. EDIS 2025 (2). Gainesville, FL. https://doi.org/10.32473/edis-pp383-2025.

Abstract

Arbuscular mycorrhizal fungi, as symbionts to host plants, play a pivotal role in regulating plant nutrient uptake and maintaining soil health. As approximately 80%-90% of terrestrial plants are colonized by mycorrhizal fungi, this fungal group significantly contributes to the overall yield and functions in crop production. This publication provides updated general knowledge on the biology and ecological functions of the most common types of mycorrhizal fungi. These fungi are highly sensitive to environmental stressors and management practices, such as the application of phosphorus and nitrogen fertilizers, as well as fungicides. An enhanced understanding of mycorrhizal fungi can raise awareness among growers, prompting them to consider mycorrhizal fungal activities when managing their farms. Moreover, it can improve the general public's knowledge of the role mycorrhizal fungi play in natural terrestrial ecosystems, including agricultural and forest ecosystems.

https://doi.org/10.32473/edis-pp383-2025
View on Ask IFAS
PDF 2025

References

Abdelhameed, R. E., and R. A. Metwally. 2019. “Alleviation of Cadmium Stress by Arbuscular Mycorrhizal Symbiosis.” International Journal of Phytoremediation 21 (7): 663–671. https://doi.org/10.1080/15226514.2018.1556584

Abdel Latef, A. A., and H. Chaoxing. 2011. “Arbuscular Mycorrhizal Influence on Growth, Photosynthetic Pigments, Osmotic Adjustment and Oxidative Stress in Tomato Plants Subjected to Low Temperature Stress.” Acta Physiologiae Plantarum 33: 1217–1225. https://doi.org/10.1007/s11738-010-0650-3

Ajay, P., and S. Pandey. 2017. “Role of Arbuscular Mycorrhizal Fungi on Plant Growth and Reclamation of Barren Soil with Wheat (Triticum aestivum L.) Crop.” International Journal of Soil Science 12 (1): 25–31. https://doi.org/10.3923/ijss.2017.25.31

Alexander, T., R. Meier, R. Toth, and H. C. Weber. 1988. “Dynamics of Arbuscule Development and Degeneration in Mycorrhizas of Triticum aestivum L. and Avena sativa L. with Reference to Zea mays L.” New Phytologist 110 (3): 363–370. https://doi.org/10.1111/j.1469-8137.1988.tb00273.x

Balliu, A., G. Sallaku, and B. Rewald. 2015. “AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings.” Sustainability 7 (12): 15967–15981. https://doi.org/10.3390/su71215799

Baslam, M., I. Garmendia, and N. Goichoechea. 2011. “Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce.” Journal of Agricultural and Food Chemistry 59 (10): 5504–5515. https://doi.org/10.1021/jf200501c

Begum, N., C. Qin, M. A. Ahanger, et al. 2019. “Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance.” Frontiers in Plant Science 10: 1068. https://doi.org/10.3389/fpls.2019.01068

Birhane, E., F. Sterck, M. Fetene, F. Bongers, and T. Kuyper. 2012. “Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions.” Oecologia 169: 895–904. https://doi.org/10.1007/s00442-012-2258-3

Bonfante, P., and A. Genre. 2010. “Mechanisms Underlying Beneficial Plant-Fungus Interactions in Mycorrhizal Symbiosis.” Nature Communications 1: 48. https://doi.org/10.1038/ncomms1046

Boyer, L. R., P. Brain, X. M. Xu, and P. Jeffries. 2014. “Inoculation of Drought-Stressed Strawberry with a Mixed Inoculum of Two Arbuscular Mycorrhizal Fungi: Effects on Population Dynamics of Fungal Species in Roots and Consequential Plant Tolerance to Water.” Mycorrhiza 25: 215–227. https://doi.org/10.1007/s00572-014-0603-6

Calvo-Polanco, M., B. Sanchez-Romera, R. Aroca, et al. 2016. “Exploring the Use of Recombinant Inbred Lines in Combination with Beneficial Microbial Inoculants (AMFungus and PGPR) to Improve Drought Stress Tolerance in Tomato.” Environmental and Experimental Botany 131: 47–57. https://doi.org/10.1016/j.envexpbot.2016.06.015

Charoonnart, P., K. Seraypheap, S. Chadchawan, and T. Wangsomboondee. 2016. “Arbuscular mycorrhizal fungus improves the yield and quality of Lactuca sativa in an organic farming system.” ScienceAsia 42: 315. https://doi.org/10.2306/scienceasia1513-1874.2016.42.315

Chen, S., H. Zhao, C. Zou, et al. 2017. “Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings.” Frontiers in Microbiology 8: 2516. https://doi.org/10.3389/fmicb.2017.02516

Figueiredo, A. F., J. Boy, and G. Guggenberger. 2021. “Common Mycorrhizae Network: A review of the Theories and Mechanisms Behind Underground Interactions.” Frontiers in Fungal Biology 2: 735299. https://doi.org/10.3389/ffunb.2021.735299

Gao, X., H. Guo, Q. Zhang, et al. 2020. “Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.).” Scientific Reports 10: 2084. https://doi.org/10.1038/s41598-020-59180-3

Garg, N., and S. Chandel. 2011. “Arbuscular Mycorrhizal Networks: Process and Functions.” In Sustainable Agriculture, edited by E. Lichtfouse, M. Hamelin, M. Navarrete, and P. Debaeke. Vol. 2. Springer Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_40

Giovannetti, M., L. Avio, P. Fortuna, E. Pellegrino, C. Sbrana, and P. Strani. 2006. “At the Root of the Wood Wide Web.” Plant Signaling & Behavior 1 (1): 1–5. https://doi.org/10.4161/psb.1.1.2277

Guzman, A., M. Montes, L. Hutchins, et al. 2021. “Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape.” New Phytology 231 (1): 447–459. https://doi.org/10.1111/nph.17306

Hage-Ahmed, K., K. Rosner, and S. Steinkellner. 2018. “Arbuscular Mycorrhizal Fungi and Their Response to Pesticides.” Pest Management Science 75 (3): 583–590. https://doi.org/10.1002/ps.5220

Hashem, A., A. Akhter, A. A. Alqarawi, G. Singh, K. F. Almutairi, and E. F. AbdAllah. 2021. “Mycorrhisal Fungi Induced Activation of Tomato Defense System Mitigates Fusarium Wilt Stress.” Saudi Journal of Biological Sciences 28 (10): 5442–5420. https://doi.org/10.1016/j.sjbs.2021.07.025

Hijri, M. 2016. “Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield.” Mycorrhiza 26: 209–214. https://doi.org/10.1007/s00572-015-0661-4

Hildebrandt, U., K. Janetta, and H. Bothe. 2002. “Towards Growth of Arbuscular Mycorrhizal Fungi Independent of a Plant Host.” Applied and Environmental Microbiology 68 (4): 1919–1924. https://doi.org/10.1128/AEM.68.4.1919-1924.2002

Jung, S. C., A. Martinez-Medina, J. A. Lopez-Raez, and M. J. Pozo. 2012. “Mycorrhiza-Induced Resistance and Priming of Plant Defenses.” Journal of Chemical Ecology 38: 651–664. https://doi.org/10.1007/s10886-012-0134-6

Kaur, J., J. Chavana, P. Soti, A. Racelis, and R. Kariyat. 2020. “Arbuscular mycorrhizal fungi (AMF) influences growth and insect community dynamics in Sorghum-sudangrass (Sorghum x drummondii).” Arthropod-Plant Interactions 14: 301–315. https://doi.org/10.1007/s11829-020-09747-8

Luginbuehl, L. H., and G. E. D. Oldroyd. 2017. “Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants.” Current Biology 27 (17): R952–R963. https://doi.org/10.1016/j.cub.2017.06.042Madhushan, K. W. A., S. C. Karunarathna, D. M. D. Dissanayake, et al. 2023. “Effect of Arbuscular Mycorrhizal

Fungi on Lowland Rice Growth and Yield (Oryza sativa L.) Under Different Farming Practices.” Agronomy 13 (11): 2803. https://doi.org/10.3390/agronomy13112803

Mansoor, S., O. Ali Wani, J. K. Lone, et al. 2022. “Reactive Oxygen Species in Plants: From Source to Sink.” Antioxidants 11 (2): 225. https://doi.org/10.3390/antiox11020225

Mathur, S., M. P. Sharma, and A. Jajoo. 2018. “Improved Photosynthetic Efficacy of Maize (Zea mays) Plants with Arbuscular Mycorrhizal Fungi (AMF) Under High Temperature Stress.” Journal of Photochemistry and Photobiology B: Biology 180: 149–154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

Nara, K. 2006. “Ectomycorrhizal Networks and Seedling Establishment During Early Primary Succession.” New Phytologist 169 (1): 169–178. https://doi.org/10.1111/j.1469-8137.2005.01545.x

Ohirogge, J. B., and J. G. Jaworski. 1997. “Regulation of Fatty Acid Synthesis.” Annual Review of Plant Physiology 48: 109–136. https://doi.org/10.1146/annurev.arplant.48.1.109

Ouledali, S., M. Ennajeh, A. Zrig, S. Gianinazzi, and H. Khemira. 2018. “Estimating the Contribution of Arbuscular Mycorrhizal Fungi to Drought Tolerance of Potted Olive Trees (Olea europaea).” Acta Physiologiae Plantarum 40: 81. https://doi.org/10.1007/s11738-018-2656-1

Pavithra, D., and N. Yapa. 2018. “Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants.” Groundwater for Sustainable Development 7: 490–494. https://doi.org/10.1016/j.gsd.2018.03.005

Punamiya, P., R. Datta, D. Sarkar, S. Barber, M. Patel, and P. Da. 2010. “Symbiotic Role of Glomus mosseae in Phytoextraction of Lead in Vetiver Grass Chrysopogon zizanioides L.” Journal of Hazardous Materials 177 (1–3): 465–474. https://doi.org/10.1016/j.jhazmat.2009.12.056

Rasmussen, P. U., N. Abrego, R. Roslin, et al. 2022. “Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the high Arctic.” New Phytologist 236 (2): 671–683. https://doi.org/10.1111/nph.18342

Regvar, M., K. Vogel-Mikuš, and T. Ševerkar. 2003. “Effect of AMF Inoculum from Field Isolates on the Yield of Green Pepper, Parsley, Carrot, and Tomato.” Folia Geobotanica 38 (2): 223–234. https://doi.org/10.1007/BF02803154

Tang, H., M. U. Hassan, L. Feng, et al. 2022. “The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops.” Frontiers in Plant Science 13: 919166. https://doi.org/10.3389/fpls.2022.919166

van Der Heijden, M. G. A., J. Klironomos, M. Ursic, et al. 1998. “Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.” Nature 396: 69–72. https://doi.org/10.1038/23932

Villani, A., F. Tommasi, and C. Paciolla. 2021. “The arbuscular mycorrhizal fungus Glomus viscosum improves the tolerance to Verticillium wilt in artichoke by modulating the antioxidant defense systems.” Cells 10 (8). https://doi.org/10.3390/cells10081944

Wang, W., J. Shi, Q. Xie, Y. Jiang, N. Yu, and E. Wang. 2017. “Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.” Molecular Plant 10 (9): 1147–1158. https://doi.org/10.1016/j.molp.2017.07.012

Yang, S., F. Li, S. S. Malhi, P. Wang, S. Dongrang, and J. Wang. 2004. “Long-Term Fertilization Effects on Crop Yield and Nitrate Nitrogen Accumulation in Soil in Northwestern China.” Agronomy Journal 96 (4): 1039–1049. https://doi.org/10.2134/agronj2004.1039

Yooyongwech, S., T. Samphumphuang, R. Tisarum, C. Theerawitaya, and S. Chaum. 2016. “Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline.” Scientia Horticulturae 198: 107–117. https://doi.org/10.1016/j.scienta.2015.11.002

Zhou, L.-J., Y. Wang Y, M. D. Alqahtani, and Q.-S. Wu. 2023. “Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) After Field AMF Inoculation.” Horticulturae 9 (12): 1324. https://doi.org/10.3390/horticulturae9121324

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 UF/IFAS