Types of Unmanned Aerial Vehicles (UAVs), Sensing Technologies, and Software for Agricultural Applications
view on EDIS
PDF-2021

Keywords

UAV
precision agriculture
Artificial Intelligence
Sensing

Categories

How to Cite

Kakarla, Sri Charan, and Yiannis Ampatzidis. 2021. “Types of Unmanned Aerial Vehicles (UAVs), Sensing Technologies, and Software for Agricultural Applications: AE565/AE565, 10/2021”. EDIS 2021 (5). Gainesville, FL. https://doi.org/10.32473/edis-ae565-2021.

Abstract

This publication provides detailed information about the most used UAVs, sensing technologies, and software for agricultural applications. Written by Sri Charan Kakarla and Yiannis Ampatzidis, and published by the UF/IFAS Department of Agricultural and Biological Engineering, October 2021.

https://doi.org/10.32473/edis-ae565-2021
view on EDIS
PDF-2021

References

Abdulridha, J., Y. Ampatzidis, J. Qureshi, and P. Roberts. 2020a. "Laboratory and UAV-Based Identification and Classification of Tomato Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato Utilizing Hyperspectral Imaging and Machine Learning." Remote Sensing 12(17): 2732. https://doi.org/10.3390/rs12172732

Abdulridha, J., Y. Ampatzidis, P. Roberts, and S. C. Kakarla. 2020b. "Detecting Powdery Mildew Disease in Squash at Different Stages Using UAV-Based Hyperspectral Imaging and Artificial Intelligence." Biosystems Engineering 197:135-148. https://doi.org/10.1016/j.biosystemseng.2020.07.001

Abdulridha, J., Y. Ampatzidis, S. C. Kakarla, and P. Roberts. 2020c. "Detection of Target Spot and Bacterial Spot Diseases in Tomato Using UAV-Based and Benchtop-Based Hyperspectral Imaging Techniques." Precision Agriculture 21:955-978. https://doi.org/10.1007/s11119-019-09703-4

Abdulridha, J., O. Batuman, and Y. Ampatzidis. 2019. "UAV-Based Remote Sensing Technique to Detect Citrus Canker Disease Utilizing Hyperspectral Imaging and Machine Learning." Remote Sensing 11(11): 1373. https://doi.org/10.3390/rs11111373

Ampatzidis, Y., V. Partel, and L. Costa. 2020. "Agroview: Cloud-Based Application to Process, Analyze and Visualize UAV-Collected Data for Precision Agriculture Applications Utilizing Artificial Intelligence." Computers and Electronics in Agriculture 174:105157. https://doi.org/10.1016/j.compag.2020.105457

Ampatzidis, Y., V. Partel, B. Meyering, and U. Albrecht. 2019. "Citrus Rootstock Evaluation Utilizing UAV-Based Remote Sensing and Artificial Intelligence." Computers and Electronics in Agriculture 164:104900. https://doi.org/10.1016/j.compag.2019.104900

Ampatzidis, Y., and V. Partel. 2019. "UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence." Remote Sensing 11(4): 410. https://doi.org/10.3390/rs11040410

Costa, L., L. Nunes, and Y. Ampatzidis. 2020. "A New Visible Band Index (vNDVI) for Estimating NDVI Values on RGB Images Utilizing Genetic Algorithms." Computers and Electronics in Agriculture 172:105334. https://doi.org/10.1016/j.compag.2020.105334

Gan, H., W. S. Lee, V. Alchanatis, and A. Abd-Elrahman. 2020. "Active Thermal Imaging for Immature Citrus Fruit Detection." Biosystems Engineering 198:291-303. https://doi.org/10.1016/j.biosystemseng.2020.08.015

García, M., S. Saatchi, S. Ustin, and H. Balzter. 2018. "Modelling Forest Canopy Height by Integrating Airborne LiDAR Samples with Satellite Radar and Multispectral Imagery." International Journal of Applied Earth Observation and Geoinformation 66. https://doi.org/10.1016/j.jag.2017.11.017

Hariharan, J., J. Fuller, Y. Ampatzidis, J. Abdulridha, and A. Lerwill. 2019. "Finite Difference Analysis and Bivariate Correlation of Hyperspectral Data for Detecting Laurel Wilt Disease and Nutritional Deficiency in Avocado." Remote Sensing 11(15): 1748. https://doi.org/10.3390/rs11151748

Kakarla, S. C., and Y. Ampatzidis. 2018. Instructions on the Use of Unmanned Aerial Vehicles (UAVs). AE527. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-ae527-2018

Kakarla, S. C., and Y. Ampatzidis. 2019. Postflight Data Processing Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. AE533. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-ae533-2019

Kakarla, S. C., L. De Morais, and Y. Ampatzidis. 2019. Preflight and Flight Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications. AE535. Gainesville: University of Florida Institute of Food and Agricultural Sciences. https://doi.org/10.32473/edis-ae535-2019

Sankey, T., J. Donager, J. McVay, and J. Sankey. 2017. "UAV LiDAR and Hyperspectral Fusion for Forest Monitoring in the Southwestern USA." Remote Sensing of Environment 195:30-43. https://doi.org/10.1016/j.rse.2017.04.007

Swarup, A., W. S. Lee, N. Peres, and C. Fraisse. 2020. "Strawberry Plant Wetness Detection Using Color and Thermal Imaging." Biosystems Engineering 45:409-421. https://doi.org/10.1007/s42853-020-00080-9

Zhou, Z., Y. Majeed, G. D. Naranjo, and E. M. T. Gambacorta. 2021. "Assessment for Crop Water Stress with Infrared Thermal Imagery in Precision Agriculture: A Review and Future Prospects for Deep Learning Applications." Computers and Electronics in Agriculture 182:106019. https://doi.org/10.1016/j.compag.2021.106019

Copyright (c) 2021 UF/IFAS