Spatially Continuous Interpolation of Water Stage and Water Depths Using the Everglades Depth Estimation Network (EDEN)
EDIS Cover Volume 2007 Number 18 soil image
view on EDIS
PDF-2007

Keywords

UW278

How to Cite

Pearlstine, Leonard, Aaron Higer, Monica Palaseanu, Ikuko Fujisaki, and Frank Mazzotti. 2007. “Spatially Continuous Interpolation of Water Stage and Water Depths Using the Everglades Depth Estimation Network (EDEN): CIR1521/UW278, Rev. 9/2007”. EDIS 2007 (18). Gainesville, FL. https://doi.org/10.32473/edis-uw278-2007.

Abstract

Circular 1521, a 34-page report by Leonard Pearlstine, Aaron Higer, Monica Palaseanu, Ikuko Fujisaki, and Frank Mazzotti, documents the procedures used in generation of EDEN water stage and water depth interpolated surfaces. Includes references. Published by the UF Department of Wildlife Ecology and Conservation, July 2007. Minor revision September 2007.

CIR1521/UW278: Spatially Continuous Interpolation of Water Stage and Water Depths Using the Everglades Depth Estimation Network (EDEN) (ufl.edu)

https://doi.org/10.32473/edis-uw278-2007
view on EDIS
PDF-2007

References

Barnhill, R.E., and Stead, S.E., 1984. Multistage trivariate surfaces, Rocky Mount. J. Math., 14, 103 - 118. https://doi.org/10.1216/RMJ-1984-14-1-103

Borga, M., and Vizzaccaro, A., 1997. On the interpolation of hydrologic variables, formal equivalence of multiquadric surface fitting and kriging. J of Hydrology, 195, 160-171. https://doi.org/10.1016/S0022-1694(96)03250-7

Carlson, R.E., and Foley, T.A., 1991. The parameter R2 in multiquadric interpolation. Comput. Math. Appl., 21, 29 - 42. https://doi.org/10.1016/0898-1221(91)90123-L

Conrads, P.A. and Roehl, E.A., 2006. Estimating water depths using artificial neural networks. Hydroinformatics 2006, edited by Philippe Gourbesgille, Jean Cunge, Vincent Guinot, Shie-Yui Liong, Vol. 3, p. 1643-1650.

Conrads, P.A. and Roehl, E.A., (Unpublished). Hydrologic Record Extension of Water-Level Data in the Florida Everglades, 2000-2006. U.S. Geological Survey Open-File Report.

Curnutt, J. L., J. Comiskey, M. P. Nott, and L. J. Cross., 2000. Landscape-based spatially explicit species index models for Everglades restoration. Ecological Applications 10(6):1849-1860. https://doi.org/10.1890/1051-0761(2000)010[1849:LBSESI]2.0.CO;2

Dyn, N., and Levin, D., 1980. Bell shaped functions for surface fitting, Report 80-81, Dept. of Mathematical Science, Tel-Aviv University, Israel.

Dyn, N., and Levin, D., 1983. Iterative solution of systems originating from integral equations and surface interpolation, SIAM Jl Numer. Analysis 20, 377 - 390. https://doi.org/10.1137/0720026

Ferreira, A.J.M., Roque, C.M.C., and Martins, P.A.L.S., 2005. Analysis of thin isotropic rectangular and circular plates with multiquadrics. Strength of Materials, 37 (2), 63-173. https://doi.org/10.1007/s11223-005-0029-7

Foley, T. A., 1987. Interpolation and approximation of 3-D and 4-D scattered data. Computers Math. Applic., 13, 711-740. https://doi.org/10.1016/0898-1221(87)90043-5

Franke. R., 1982. Scattered data interpolation: tests of some methods. Math. Comput. 38, 181 - 199 https://doi.org/10.2307/2007474

Golberg, M.A., Chen, C.S., and Karur, S.R., 1996. Improved multiquadric approximation for partial differential equations. Engineering Analysis with boundary elements, 18, pp. 9-17. https://doi.org/10.1016/S0955-7997(96)00033-1

Gopfert, W., 1977. Interpolationsergebnisse mit der multiquadratischen Methode. ZfV Z. VermessWes. 102, 457 - 460. [With summary in English].

Hardy, R.L., 1971. Multiquadric equations of topography and irregular surfaces. J. Geophys. Res., 176(8), 1905-1915. https://doi.org/10.1029/JB076i008p01905

Hardy, R.L. 1977. Least squares prediction. Photogrammetric Engineering and Remote Sensing 43(4), 475-492.

Hardy, R.L., and Nelson, S.A., 1986. A multiquadric biharmonic representation and approximation of disturbing potential. Geoph. Res. Lett., 13, 18 - 21. https://doi.org/10.1029/GL013i001p00018

Hardy, R.L., 1988. Concepts and results of mapping in three dimensional space. Technical Papers, 2, 106 - 115. Cartography Am. Congr. Surveying And Mapping 48th A. Meet., St. Luis, Miss.

Hardy, R.L., 1990 Theory and applications of the multiquadric-biharmonic method, 20 years of Discovery, 1968 - 1988, Comp. math Applic. Vol 19, no. 8/9, pp. 163 - 208 https://doi.org/10.1016/0898-1221(90)90272-L

Hardy, R.L., and Sirayanone, S., 1989. The multiquadric-biharmonic method of three dimensional mapping inside ore deposits. Proc. 1989 Multinat. Conf. Mine Planning and Design, Univ. of Kentucky, Lexington, KY, May 22-26, 1989.

Immanuel, A., Berry, M.W., Gross, L.J., Palmer, M. and Wang, D., 2005. A parallel implementation of ALFISH: simulating hydrological compartmentalization effects of fish dynamics in the Florida Everglades. Simulation Modeling Practice and Theory. 13:55-76. https://doi.org/10.1016/j.simpat.2004.09.002

Johnston, K., Ver Hoef, J.M., Krivoruchko, K., and Lucas, N., 2001. Using ArcGIS Geostatistical Analyst, ESRI Press, Redlands, California.

Jones, J.W. and Price, S.D., 2007a. Everglades Depth Estimation Network (EDEN) digital elevation model research and development. U.S. Geological Survey Open-File Report 2007-1034, 29 pgs. https://doi.org/10.3133/ofr20071034

Jones, John W. and Price, Susan P. 2007b. Conceptual design of the Everglades Depth Estimation Network (EDEN) grid. U.S. Geological Survey Open File Report 2007-1200. 12 pgs. https://doi.org/10.3133/ofr20071200

Kansa, E.J., 1990a. Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics - I. Surface approximations and partial derivative estimates. Computers Math. Applic., 19 (8/9), 127 - 145. https://doi.org/10.1016/0898-1221(90)90270-T

Kansa, E.J., 1990b. Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics - II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers Math. Applic., 19 (8/9), 147-161. https://doi.org/10.1016/0898-1221(90)90271-K

Kansa, E.J., and Carlson, R. E., 1992. Improved accuracy of multiquadric interpolation using variable shape parameters. Computers Math. Applic., 24 (12), 99-120. https://doi.org/10.1016/0898-1221(92)90174-G

Madych, W. R. and Nelson, S.A., 1990. Multivariate interpolation and conditionally positive definite functions. Mathematics and Computation, 54(189), 211-230. https://doi.org/10.1090/S0025-5718-1990-0993931-7

Michelli, C. A., 1986. Interpolation of scattered data: distance matrices and conditionally positive functions. Constr. Approx., 2, pp. 11-22 https://doi.org/10.1007/BF01893414

Myers, D.E., 1994. Spatial interpolation: an overview. Geoderma, 62, 17 - 28. https://doi.org/10.1016/0016-7061(94)90025-6

Obeyselera, J., and Rutchey, K., 1997. Selection of scale for Everglades landscape models. Landscape Ecology, 12(1), 7-18. https://doi.org/10.1007/BF02698203

Rippa, S., 1999. An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Advances in Comp. Math., 11, pp. 193-210. https://doi.org/10.1023/A:1018975909870

Sirayanone, S., 1988. Comparative studies of kriging, multiquadric-biharmonic, and other methods for solving mineral resource problems. PhD. Dissertation, Dept. of Earth Sciences, Iowa State University, Ames, Iowa.

Syed, K.H., Goodrich, D.C., Myers, D.E., and Sorooshiah, S., 2003. Spatial characteristics of thunderstorm rainfall fields and their relation to runoff. J. of Hydrology, 271, 1-21. https://doi.org/10.1016/S0022-1694(02)00311-6

Telis, P.A., 2006. The Everglades Depth Estimation Network (EDEN) for support of ecological and biological assessments. U.S. Geological Survey Fact-Sheet 2006-3087, 4 p. https://doi.org/10.3133/fs20063087

Walters, C., Gunderson, L. and Holling, C.S., 1992. Experimental policies for water management in the Everglades. Ecological Applications 2(2):189-202. https://doi.org/10.2307/1941775

Wang, J.D., Swain, E.D., Wolfert, M.A., Langevin, C.D., James, D.E., and Telis, P.A., 2007, Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida: U.S. Geological Survey SIR 2007-5010, 112 p. https://doi.org/10.3133/sir20075010

Wolock, D.M. and Price, C.V.,1994. Effects of digital elevation model map scale and data resolution on a topography-based watershed model. Water Resources Research 30(11):3041-3052. https://doi.org/10.1029/94WR01971

License