Abstract
This 5-page document provides guidance on the appropriate use of unmanned aerial vehicles (UAVs) for agricultural applications in Florida. It contains step-by-step instructions for preparing a UAV for flight, creating a mission path (using flight mission planning apps), and collecting UAV-based data. Written by Sri Charan Kakarla, Leon De Morais Nunes, and Yiannis Ampatzidis, and published by the UF/IFAS Department of Agricultural and Biological Engineering, November 2019.
References
Abdulridha, J., R. Ehsani, A. Abd-Elrahman, and Y. Ampatzidis. 2019. "A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses." Computers and Electronics in Agriculture 156: 549-557. https://doi.org/10.1016/j.compag.2018.12.018
Ampatzidis, Y., L. D. Bellis, and A. Luvisi. 2017. "iPathology: Robotic applications and management of plants and plant diseases." Sustainability 9: 1010. https://doi.org/10.3390/su9061010
Ampatzidis, Y., and V. Partel. 2019. "UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence." Remote Sens. 11(4): 410. https://doi.org/10.3390/rs11040410
de Castro, A.I., J. Torres-Sánchez, J. M. Peña, F. M. Jiménez-Brenes, O. Csillik, and F. López-Granados. 2018. "An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows." Remote Sens. 285. https://doi.org/10.3390/rs10020285
Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, and R. Ehsani. 2013. "Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees." Comput. Electron. Agric.: 106-115. https://doi.org/10.1016/j.compag.2012.12.002
Kakarla, S., and Y. Ampatzidis. 2018. Instructions on the Use of Unmanned Aerial Vehicles (UAVs). AE527. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/ae527
Matese, A., F. Capraro, J. Primicerio, G. Gualato, S. F. Di Gennaro, and G. Agati. 2013. "Mapping of vine vigor by UAV." Precis. Agric.: 201-208.
Matese, A., P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio, C. Belli, and A. Zaldei. 2015. "Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision." Remote Sens.: 2971-2990. https://doi.org/10.3390/rs70302971
Nebiker, S., A. Annen, M. Scherrer, and D. Oesch. 2008. "A light-weight multispectral sensor for micro UAV-Opportunities for very high resolution airborne remote sensing." In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, B1.
Pajares, G. 2015. "Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)." Photogramm. Eng. Remote Sens. 81: 281-330. https://doi.org/10.14358/PERS.81.4.281
Xiang, H., and L. Tian. 2011. "Development of a low-cost agricultural remote sensing system based on an autonomous." Biosyst. Eng.: 174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license.