Preflight and Flight Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications
A drone aircraft in mid-flight. Photo taken 06-14-19.
view on EDIS
PDF-2019

Keywords

UAV
remote sensing
precision agriculture

How to Cite

Kakarla, Sri Charan, Leon de Morais Nunes, and Yiannis Ampatzidis. 2019. “Preflight and Flight Instructions on the Use of Unmanned Aerial Vehicles (UAVs) for Agricultural Applications: AE535, 11/2019”. EDIS 2019 (6). Gainesville, FL:5. https://doi.org/10.32473/edis-ae535-2019.

Abstract

This 5-page document provides guidance on the appropriate use of unmanned aerial vehicles (UAVs) for agricultural applications in Florida. It contains step-by-step instructions for preparing a UAV for flight, creating a mission path (using flight mission planning apps), and collecting UAV-based data. Written by Sri Charan Kakarla, Leon De Morais Nunes, and Yiannis Ampatzidis, and published by the UF/IFAS Department of Agricultural and Biological Engineering, November 2019.

https://doi.org/10.32473/edis-ae535-2019
view on EDIS
PDF-2019

References

Abdulridha, J., R. Ehsani, A. Abd-Elrahman, and Y. Ampatzidis. 2019. "A remote sensing technique for detecting laurel wilt disease in avocado in presence of other biotic and abiotic stresses." Computers and Electronics in Agriculture 156: 549-557. https://doi.org/10.1016/j.compag.2018.12.018

Ampatzidis, Y., L. D. Bellis, and A. Luvisi. 2017. "iPathology: Robotic applications and management of plants and plant diseases." Sustainability 9: 1010. https://doi.org/10.3390/su9061010

Ampatzidis, Y., and V. Partel. 2019. "UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence." Remote Sens. 11(4): 410. https://doi.org/10.3390/rs11040410

de Castro, A.I., J. Torres-Sánchez, J. M. Peña, F. M. Jiménez-Brenes, O. Csillik, and F. López-Granados. 2018. "An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows." Remote Sens. 285. https://doi.org/10.3390/rs10020285

Garcia-Ruiz, F., S. Sankaran, J. M. Maja, W. S. Lee, J. Rasmussen, and R. Ehsani. 2013. "Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees." Comput. Electron. Agric.: 106-115. https://doi.org/10.1016/j.compag.2012.12.002

Kakarla, S., and Y. Ampatzidis. 2018. Instructions on the Use of Unmanned Aerial Vehicles (UAVs). AE527. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/ae527

Matese, A., F. Capraro, J. Primicerio, G. Gualato, S. F. Di Gennaro, and G. Agati. 2013. "Mapping of vine vigor by UAV." Precis. Agric.: 201-208.

Matese, A., P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio, C. Belli, and A. Zaldei. 2015. "Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision." Remote Sens.: 2971-2990. https://doi.org/10.3390/rs70302971

Nebiker, S., A. Annen, M. Scherrer, and D. Oesch. 2008. "A light-weight multispectral sensor for micro UAV-Opportunities for very high resolution airborne remote sensing." In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, B1.

Pajares, G. 2015. "Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)." Photogramm. Eng. Remote Sens. 81: 281-330. https://doi.org/10.14358/PERS.81.4.281

Xiang, H., and L. Tian. 2011. "Development of a low-cost agricultural remote sensing system based on an autonomous." Biosyst. Eng.: 174-190. https://doi.org/10.1016/j.biosystemseng.2010.11.010

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) license.