Multiple View Summarization Framework for Social Media

作者

  • Chih-yuan Li New Jersey Institute of Technology
  • Soon Chun City University of New York – College of Staten Island https://orcid.org/0000-0001-9360-4679
  • James Geller New Jersey Institute of Technology

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.32473/flairs.36.133169

关键词:

Multiple-View Summarization, COVID-19 Vaccine Tweet Summarization, Microblogging Summarization, Sentiment-based summarization, Social feature-based summarization

摘要

Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.

##submission.downloads##

已出版

2023-05-08

栏目

Main Track Proceedings