Multiple View Summarization Framework for Social Media
DOI :
https://doi.org/10.32473/flairs.36.133169Mots-clés :
Multiple-View Summarization, COVID-19 Vaccine Tweet Summarization, Microblogging Summarization, Sentiment-based summarization, Social feature-based summarizationRésumé
Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
© Chih-yuan Li, Soon Chun, James Geller 2023
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.