Multiple View Summarization Framework for Social Media


  • Chih-yuan Li New Jersey Institute of Technology
  • Soon Chun City University of New York – College of Staten Island
  • James Geller New Jersey Institute of Technology



Multiple-View Summarization, COVID-19 Vaccine Tweet Summarization, Microblogging Summarization, Sentiment-based summarization, Social feature-based summarization


Social Media provide voluminous posts about current topics and events. When a user desires to investigate a popular topic, it is not feasible as there are many posts. Besides, posts show different biases, viewpoints, perspectives, and emotions. Thus, providing summaries of large post sets with different viewpoints is necessary. We develop a multiple view summa-rization framework to generate different view-based summar-ies of Twitter posts. Users can apply different methods to generate summaries: 1) Entity-centered, 2) Social feature-based, 3) Event-based summarization, using all triple embed-dings and 4) Sentiment-based summarization to generate summaries of positive or negative views of tweets. These summarization methods are compared with BertSum, SBert, T5, and Bart-Large-CNN with a gold standard dataset. Our results, based on Rouge scores, were better than these pub-lished extractive and abstractive summarization models.




How to Cite

Li, C.- yuan, Chun, S., & Geller, J. (2023). Multiple View Summarization Framework for Social Media. The International FLAIRS Conference Proceedings, 36(1).



Main Track Proceedings