Expectation Management of AI for Automated Military Behavior Representations

Auteurs-es

  • Chris McGroarty U.S. Army Combat Capabilities Development Command - Soldier Center (DEVCOM SC) Simulation and Training Technology Center (STTC)
  • Scott Gallant Effective Applications Corporation

DOI :

https://doi.org/10.32473/flairs.v35i.130874

Mots-clés :

Modeling and Simulation, Artificial Intelligence, Military Simulation, State-of-the-art

Résumé

While advances in the field of Artificial Intelligence (AI) have expanded the possibilities of how automated military behavior representations can be implemented in simulation environments, the diverse and unusual (compared to typical uses of AI) needs of the Military Modeling and Simulation (M&S) Enterprise requires an examination of the state-of-the-art of AI compared against key user requirements. The United States (US) Army Combat Capabilities Development Command – Soldier Center (DEVCOM SC) Simulation and Training Technology Center (STTC) conducts Research and Development (R&D) activities focused on applying emerging technologies in M&S. As part of this mission, DEVCOM SC works with stakeholders across the six US Army M&S Communities (Acquisition, Analysis, Experimentation, Intelligence, Test & Evaluation, and Training), the broader US Department of Defense (DoD), and international partners to forecast technology needs and align their R&D towards these needs.

 

This poster will focus on an exploration of relevant military M&S use cases for automated military behavior representations mapped against AI technologies of interest. It will provide an opportunity for other AI practitioners to discuss potential solutions to these user needs and introduce the authors to technologies that they may not be aware of for future R&D and collaboration. Conversely, we will introduce where we believe AI is supporting these use cases and where there are opportunities for growth. Finally, we hope to leverage the ensuing discussion towards a roadmap for automated military behavior representations and ultimately support the expectation management of key stakeholders for AI to ensure mutual understanding of the state-of-the-art.

Téléchargements

Publié-e

2022-05-04

Comment citer

McGroarty, C., & Gallant, S. (2022). Expectation Management of AI for Automated Military Behavior Representations. The International FLAIRS Conference Proceedings, 35. https://doi.org/10.32473/flairs.v35i.130874