Query-Based Keyphrase Extraction from Long Documents
DOI :
https://doi.org/10.32473/flairs.v35i.130737Mots-clés :
keyphrase, keyword, long documents, query-based keyphrase extraction, BERT, transformerRésumé
Transformer-based architectures in natural language processing force input size limits that can be problematic when long documents need to be processed. This paper overcomes this issue for keyphrase extraction by chunking the long documents while keeping a global context as a query defining the topic for which relevant keyphrases should be extracted. The developed system employs a pre-trained BERT model and adapts it to estimate the probability that a given text span forms a keyphrase. We experimented using various context sizes on two popular datasets, Inspec and SemEval, and a large novel dataset. The presented results show that a shorter context with a query overcomes a longer one without the query on long documents.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
© Martin Dočekal, Pavel Smrž 2022
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.