Tractable Inference for Hybrid Bayesian Networks with NAT-Modeled Dynamic Discretization
DOI :
https://doi.org/10.32473/flairs.v35i.130561Mots-clés :
Bayesian nets, Causal independence models, Probabilistic inference, Dynamic DiscretizationRésumé
Hybrid BNs (HBNs) extend Bayesian networks (BNs) to both discrete and continuous variables.
Among inference methods for HBNs, we focus on dynamic discretization (DD)
that converts HBN to discrete BN for inference.
Complexity of BN inference is exponential on treewidth, which extends to DD for HBNs.
We presents a novel framework where HBN is transformed into NAT-modeled BN
(NAT: Non-impeding noisy-AND Tree) for tractable inference.
A case-study under the framework is presented on sum of continuous variables.
We report significant efficiency gain of approximate inference by NAT-modeled DD
over alternative methods.
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
© Yang Xiang, Hanwen Zheng 2022
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.