TemporalAugmenter: An Ensemble Recurrent Based Deep Learning Approach for Signal Classification
DOI:
https://doi.org/10.32473/flairs.37.1.135278Keywords:
Deep Learning, Ensemble Classifiers, Convolution Neural Network, LSTM, Artificial Neural Network, emotion detection, ECG, Radar Signal Classification, ECG ClassificationAbstract
Ensemble modeling has been widely used to solve complex problems as it helps to improve overall performance and generalization. In this paper, we propose a novel TemporalAugmenter approach based on ensemble modeling for augmenting the temporal information capturing for long-term and short-term dependencies in data integration of two variations of recurrent neural networks in two learning streams to obtain the maximum possible temporal extraction. Thus, the proposed model augments the extraction of temporal dependencies. In addition, the proposed approach reduces the preprocessing and prior stages of feature extraction, which reduces the required energy to process the models built upon the proposed TemporalAugmenter approach, contributing towards green AI. Moreover, the proposed model can be simply integrated into various domains including industrial, medical, and human-computer interaction applications. Our proposed approach empirically evaluated the speech emotion recognition, electrocardiogram signal, and signal quality examination tasks as three different signals with varying complexity and different temporal dependency features.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nelly Elsayed, Constantinos L. Zekios, Navid Asadizanjani, Zag ElSayed
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.