Regulation of Defense-related Gene Expression during Plant-Pathogen Interactions
Abstract
Plants have evolved a broad array of defense mechanisms involved in disease resistance. These include synthesis of phytoalexin antibiotics and proteinase inhibitors, deposition of cell wall materials, and accumulation of hydrolytic enzymes such as chitinases. Resistance appears to depend on the ability of the host to recognize the pathogen rapidly and induce these defense responses in order to limit pathogen spread. Application of molecular technologies has yielded significant new information on mechanisms involved in pathogen recognition, signal transduction, and defense-related gene activation, and is leading to novel strategies for engineering enhanced disease resistance. We are using these approaches to analyze regulation of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), a key enzyme mediating the production of terpenoid defense compounds. This enzyme is encoded by four genes in tomato; hmg2 gene expression is specifically associated with responses to pathogen or defense elicitors. Transgenic plants containing DNA constructs that fuse the hmg2 promoter to a reporter gene have been used to analyze both tissue specificity and patterns of defense-related expression. Because this gene is rapidly induced in tissues directly surrounding the site of ingress by a variety of pathogens, it may serve as a valuable tool in engineering new disease-resistance mechanisms. Key words: disease interaction, gene expression, phytoalexin.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).