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Abstract: Plants have evolved a broad array of defense mechanisms involved in disease resistance. 
These include synthesis of phytoalexin antibiotics and proteinase inhibitors, deposition of cell wall 
materials, and accumulation of hydrolytic enzymes such as chitinases. Resistance appears to depend 
on the ability of the host to recognize the pathogen rapidly and induce these defense responses in 
order to limit pathogen spread. Application of molecular technologies has yielded significant new 
information on mechanisms involved in pathogen recognition, signal transduction, and defense- 
related gene activation, and is leading to novel strategies for engineering enhanced disease resis- 
tance. We are using these approaches to analyze regulation of 3-hydroxy-3-methylglutaryl CoA 
reductase (HMGR), a key enzyme mediating the production of terpenoid defense compounds. This 
enzyme is encoded by four genes in tomato; hmg2 gene expression is specifically associated with 
responses to pathogen or defense elicitors. Transgenic plants containing DNA constructs that fuse 
the hmg2 promoter to a reporter gene have been used to analyze both tissue specificity and patterns 
of defense-related expression. Because this gene is rapidly induced in tissues directly surrounding 
the site of ingress by a variety of pathogens, it may serve as a valuable tool in engineering new 
disease-resistance mechanisms. 
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T h e  appl icat ion o f  molecu la r  techniques  
and  r e c o m b i n a n t  D N A  methodolog ies  has 
led to significant advances  in o u r  unde r -  
s t and ing  o f  p l a n t - p a t h o g e n  in terac t ions  
and  the mechan i sms  associated with dis- 
ease resistance versus susceptibility. In  ad- 
di t ion,  r ecen t  successes in genet ic  engi-  
nee r ing  o f  plants  p rov ide  new strategies 
fo r  di rect ly  m a n i p u l a t i n g  these  in terac-  
t ions a n d  e n h a n c i n g  d isease  res i s t ance  
(51). O u r  goal he re  is to briefly review o u r  
cu r r en t  u n d e r s t a n d i n g  o f  host  resistance 
mechanisms ,  to describe some o f  the mo-  
lecular  tools available to the p lant  pathol-  
ogist, a n d  where  possible,  to re la te  this 
i n f o r m a t i o n  to p o t e n t i a l  e x p e r i m e n t a l  
strategies to s tudy and  man ipu la t e  p l a n t -  
n e m a t o d e  interact ions.  W h e r e  a p p r o p r i -  
ate, examples  will be  used  f r o m  o u r  cur-  
r en t  work  address ing  the m e c h a n i s m  o f  
de fense - r e l a t ed  gene  regu la t ion  control- 
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ling the synthesis o f  t e rpeno id  phytoalex-  
ins in tomato  and  potato.  

HOST RESISTANCE MECHANISMS 

Plants  have  evo lved  c o m p l e x  m e c h a -  
nisms including bo th  passive ( p r e f o r m e d )  
and  active (inducible) de fense  responses  
for  protec t ion  against  pa thogen ic  agents.  
T h e  tools o f  molecu la r  biology have  been  
appl ied  pr imar i ly  to analyses o f  active de-  
fense responses,  that  is, those responses  di- 
rectly induced  by pa thogens  or  by stresses 
such as wound ing  or  preda t ion .  T h e s e  in- 
ducible responses  include synthesis o f  low- 
molecular -weight  antibiotic de fense  com- 
p o u n d s  t e r m e d  phytoalexins ,  p r o d u c t i o n  
o f  hydroly t ic  enzymes  such as chi t inase  
and  ~- l ,3-glucanase ,  r ap id  modif ica t ion  o f  
existing cell wall material ,  and  d e p o s i t i o n  
of  new cell wall mater ia l  including lignins, 
callose, phenol ics ,  a n d  h y d r o x y p r o l i n e -  
rich gtycoproteins  (10,20,26,30,45,50,98). 
T h e s e  responses  are  localized to the site o f  
infection and,  in some interactions,  are  as- 
sociated with localized cell death ,  i.e., a hy- 
persensi t ive resistance (HR) response .  In-  
ducible  p lan t  de fenses  also involve sys- 
temic responses  that  include accumula t ion  
o f  prote inase  inhibitors and  o the r  de fense  
prote ins  in tissues dis tant  f r o m  the site o f  
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pathogen attack (20,29,30,75,85,94,95). As 
discussed later in more detail, many of  
these inducible responses involve activa- 
tion of  defense-related genes that direct 
the synthesis of  these proteins and chemi- 
cals. Of  particular significance is recent ev- 
idence that many of the same genes are 
similarly activated in response to fungal, 
bacterial, or  viral infections. Thus, it is 
likely that at least some of  these genes 
would also be triggered during nematode 
infection. This also suggests that informa- 
tion gained on understanding gene regu- 
lation dur ing other  disease interactions 
will be applicable to molecular strategies 
for enhancing resistance to nematodes. 

Gene-for-gene interactions: A diagram 
summarizing our  current  understanding 
of  host responses to an invading pathogen 
is presented in Figure 1. In a generalized 
incompatible interaction, signals released 

from the pathogen are recognized by the 
host cell, resulting in activation of  host de- 
fense responses. The precise mechanisms 
of  pathogen recognition and signal trans- 
duction remain elusive but are an area of  
major research emphasis and some recent 
progress (24,25,29,50,61,76). Significant 
efforts have focused on understanding the 
molecular basis of  the gene-for-gene inter- 
actions and host specificity. The gene-for- 
gene hypothesis  proposes  that specific 
compounds  p roduced  directly or  indi- 
rectly by a dominant avirulence (avr) gene 
in a specific pathogen race interact (again 
directly or indirectly) with the product of  a 
resistance (R) gene of  the host to trigger an 
incompatible interaction (43). In molecu- 
lar terms, thesimplest  conceptualization is 
that avirulence gene products are signal 
molecules that directly bind to host cell re- 
ceptors encoded by R-genes. However, re- 
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FIG. 1. Simplified diagram of  molecular interactions between a plant host cell and a pathogen. This 
illustration draws primarily on studies of interactions involving fungal or bacterial pathogens but  also contains 
responses known to occur in plants reacting to pathogenic viruses and nematodes. PR = pathogenesis-related; 
MeJA = methyl jasmonate;  HRGP = hydroxyproline-rich glycoprotein. 
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cent evidence suggests that at least some 
avirulence genes encode  enzymes that 
function in the modification of  cell surface 
glycoproteins, glycolipids, or elicitor mole- 
cules (33,44 46). In several bacterial sys- 
tems, transfer of  a single avr gene from 
one bacterial strain to another can alter 
host specificity (45,56,57,84,88,96). The  
first fungal avirulence gene to be charac- 
terized, avr9 from Cladosporiumfulvum, en- 
codes a small peptide that activates host 
defense responses in a cultivar-specific 
manner  associated with the presence of  the 
cf9 R-gene in the host (91). The cloning of 
avr genes and their use for genetic trans- 
formation of host specificity provides de- 
finitive evidence of  their role as determi- 
nants in recognition by host species carry- 
ing the  a p p r o p r i a t e  res is tance gene.  
Evidence is mounting that avr genes from 
one bacterial pathogen function in widely 
different  bacterial species on unrelated 
plant hosts (45,56,96). This suggests that 
resistance genes may be conserved among 
some plant species, and more importantly, 
that R-genes from one plant species, when 
t ransferred to distantly related species, 
may function to trigger new non-host re- 
sistance against specific pathogens. 

Host resistance genes: Molecular cloning of 
host resistance genes has proceeded more 
slowly than that of  pathogen avirulence 
genes because of  the increased complexity 
of the plant genome. Additionally, because 
the products of the R-genes are unknown, 
the only method for detection involves the 
generation of an HR response following 
inoculation with an appropriate pathogen. 
In well-defined gene-for-gene type inter- 
actions, the test pathogen would be one ex- 
pressing the specific complementary avr 
gene. Strategies being employed to localize 
and clone R-genes include RFLP mapping 
coupled with chromosome walking and 
transposon tagging (7,66). Prime examples 
of mapping strategies are those focused on 
cloning the tomato Mi gene, which confers 
resistance to Meloidogyne incognita (1), and 
bacterial resistance genes from Arabidopsis 
thaliana (25). Transposon tagging utilizes 
an active transposable element to muta- 

genize an R-gene; the tagged R-gene is 
then isolated based on known sequences of 
the transposon. This strategy has been at- 
tempted for isolation of the maize Rpl lo- 
cus (7), but the complication of  results by a 
high recombination f requency suggests 
that resistance loci may be complex and 
contain multiple linked alleles. Several new 
strategies are also being applied, e.g., ge- 
nome subtractive cloning (87) and func- 
tion~il cloning strategies based on pooled 
DNA clones from resistant plants, which 
are "shotgunned" into plant tissues using 
particle bombardment  and screened for 
resistance responses (45). Thus, specific 
R-genes probably will be cloned and char- 
acterized within the next 1-3 years. 

Defense elicitors and signal transduction: 
Many compounds isolated from microbial 
preparations, fungal cell walls, infected 
plant material, or plant cells treated with 
digestive enzymes function as elicitors to 
trigger host defense responses. With a few 
exceptions (46,89,91), most elicitors do not 
show the race-cultivar specificity of  the in- 
tact plant systems, possibly because of  lim- 
itations in extraction methods. However, 
these elicitors have been instrumental in 
molecular analyses of defense-related gene 
activation involved in host resistance (18, 
26,30,50). Perhaps best characterized of  
the microbial elicitors is a [~-linked hepta- 
glucan isolated f rom Phytophthora me- 
gasperma f. sp. glycinea. N a n o m o l a r  
amounts of  this glucan trigger defense 
gene activation and glyceollin phytoalexin 
accumulation in soybean hypocotyls (81). 
An elicitor-binding protein in soybean has 
been identified for this glucan, and efforts 
are focused on elucidating an elicitor- 
r ecep to r  signal t r ansduc t ion  pa thway 
(77,100). Release of endogenous elicitors, 
for example, oligogalacturonides released 
from plant cell wall pectins, may also be 
important regulators of  host defenses (27, 
47,50). 

Molecular mechanisms have not yet 
been delineated for pathogen-induced sig- 
nal transduction pathways, i.e., the steps 
occurring between the cell surface recog- 
nition event and the actual defense-related 
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TABLE 2. Cloned host defense-response Genes.? 

Defense-response gene Function Source of clone Reference5; 

Phytoalexin biosynthesis 
Phenylpropanoid phytoalexin 

Phenylalanine ammofaia lyase 
4-Coumarate CoA ligase 
Chalcone synthase 

Chalcone isomerase 

Resveratrol (stilbene) synthase 

Isoflavone reductase 

Terpenoid phytoalexins 
HMG-CoA reductase 

Casbene synthetase 
Cell wall components 

Lignin 
Phenylalanine ammonia lyase 
Cinnamyl alcohol dehydrogenase 
Caffeic acid o-methyhransferase 
Lignin-forming peroxidase 

Hydroxyproline-rich glycoproteins 
Glycine-rich proteins 
Thionins 

PR or " pathogenesis-related" proteins 
Chitinases 

Class I chitinase, basic 
Class I and II chitinase, acidic 
Class II chitinase 

~- 1,3-Glucanase, acidic 

[3-1,3-Glucanase, basic 

PR1, PR-la, PR-lb, PR-lc 
Pv PR1, Pv PR2 

Pv PR3 
PR-5, osmotin 

Others 
Proteinase inhibitors 

Superoxide dismutase 

Lipoxygenase 

Enzyme, central pathway 
Enzyme, central pathway 
Enzyme, isoflavanoid 

branch 
Enzyme, isoflavanoid 

branch 
Enzyme, isoflavanoid 

branch 
Enzyme, isoflavanoid 

branch 

Bean, parsley, potato (19,23,59) 
Parsley, potato (4,32) 
Bean, soybean, parsley (52,97) 

Bean (63) 

Grapevine, peanut (37) 

Alfalfa (71 ) 

Enzymes, centralpathway Tomato, tobacco, (14,72,73) 
potato 

Casbene biosynthesis Castor bean (58) 

See above 
Enzyme, lignin branch Tobacco (78) 
Enzyme, lignin branch Alfalfa, tobacco (41) 
Lignin polymerization Tobacco (49) 
Structural protein Bean, tomato (15,82,98) 
Structural protein Bean, potato, pea, rice (82) 
Antifungal Barley (8) 

(39,54,62,74) 
Vacuolar, antifungal Tobacco, bean, tomato 
Extracellular, antifungal Bean 
Bifunctional lysozyme, Cucumber, tobacco, 

chitinase barley, Virginia 
creeper, petunia 

Extracellular, antifungal Bean, tobacco, potato, (8,62,69) 
rice, Arabidopsis 

Vacuolar, chitinase Bean, pea, tobacco (8,69) 
synergist 

Unknown Tobacco, parsley (17,64) 
Unknown, birch pollen Bean (similar in 

allergen-like parsley, pea and 
potato) 

Unknown Bean (80) 
Antifungal, thaumatin- Tobacco, maize (16,86) 

like osmotin-like 

Trypsin-, chymotrypsin- Potato, tomato (43,75) 
inhibitors 

Anti-oxidant enzyme Tobacco, maize, (9) 
tomato 

Lipid peroxidation, Arabidopsis (65) 
jasmonate biosynthesis 

t Some of this information was drawn from previous reviews (21,30). 
:~ Due to space limitations, not all genes or species are referenced. Researchers interested in accessing specific genes are 

encouraged to utilize available databanks (GenBank, EMBL). If an institution does not subscribe to these databases, the 
National Center for Biotechnology Information will facilitate database access through internet [e.g., info@ncbi.nlm.nih.gov or 
retrieve@ncbi.nlm.nih.gov]. 
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gene activation taking place within the nu- 
cleus (Fig. 1). Experimental evidence in 
some plant-pathogen or plant-elicitor re- 
sponses suggests that ethylene, calcium, ac- 
tivated oxygen species, and protein phos- 
phorylation may play a role in defense sig- 
nal l ing (31,34,35,48,50,76).  Recently,  
salicylic acid and methyljasmonate (MeJA) 
have been suggested as key molecules me- 
diating the systemic response (61,65,85,90, 
94). Although progress is being made in 
identifying putative molecular messengers 
in plant defense signalling, much work re- 
mains to develop a comprehensive cause- 
and-effect relationship in these complex 
pathways mediating pathogen recognition 
and defense activation. 

Defense-related genes of the host: Pathogen 
ingress or defense elicitors trigger a rapid 
change in plant gene expression resulting 
in increased t ranscr ipt ion of  defense-  
related genes (18,21,30). A large number  
of  defense- re la ted  genes or  cDNA se- 
quences (generated by reverse transcrip- 
tion or PCR-amplification of  mRNAs) 
have now been cloned (Table 1). Many de- 
fense-related genes encode biosynthetic 
enzymes involved in the production of  
phytoalexins, critical components in many 
disease interactions (3,11,83). For exam- 
ple, a resistant soybean cuhivar, blocked 
for phytoalexin accumulation by specific 
inhibitors, showed concomitant loss of re- 
sistance against Phytopthora megasperma f. 
sp. glycinea (67). Some pathogens utilize ei- 
ther suppression of  phytoalexin biosynthe- 
sis or detoxification of the host phyto- 
alexin as a key mechanism in successful 
pathogenicity (93). Phytoalexins have been 
linked to the localized cell death character- 
istic of  an HR response (83), as have reac- 
tive oxygen species and lipoxygenase activ- 
ities (22,31). The potential to use phyto- 
alexin biosynthetic enzymes to engineer 
novel disease resistance has recently been 
demonstrated: a stilbene synthetase gene 
from grapevine (Vitis vinifera) was intro- 
duced  into tobacco, and the result ing 
transgenic plants produced a novel phy- 
toalexin,  resvera t ro l ,  and  showed in- 
creased resistance to infection by Bot~ytis 
cinerea (37). 

A second g roup  of  de fense - r e l a t ed  
genes is involved in the fortification of the 
plant cell wall, presumably creating addi- 
tional structural barriers to further  patho- 
gen ingress. These include genes encoding 
extensins or HRGPs, glycine-rich proteins, 
enzymes involved in lignin biosynthesis, 
and a novel cell wall protein,  thionin, 
which is toxic to pathogenic fungi (8,15,41, 
78,82,98). Additional pathogen-induced 
changes in cell wall physiology, e.g., local- 
ized deposition of  callose and increased 
cross-linking of existing cell wall material, 
do not appear to function through activa- 
tion of host gene expression (10,50). 

A third group of  defense genes encodes 
hydrolytic enzymes (initially identified as 
pathogenesis-related proteins, Table 1), 
some of which are effective in attacking 
pathogen cell walls. These enzymes, pri- 
marily chitinases and glucanases, are local- 
ized both to vacuoles and to extracellular 
compartments and show differential effec- 
tiveness against specific pathogens (62,79, 
92). 

Regulation of defense-related gene expres- 
sion: Characterization of  these defense- 
activated genes has led to an understand- 
ing of  temporal  and spatial expression 
patterns during both compatible and in- 
compatible interactions with pathogens 
(13,18,23,74,97,99). In some cases, regula- 
tory sequences within the gene promoters 
have been identified; these sequences di- 
rect and coordinate transcriptional activa- 
tion in response to wounding, pathogens, 
or elicitors (25,38,52,53,59,64,101). Exten- 
sive literature has accumulated in the last 
10 years on gene expression and regula- 
tory mechanisms of the defense-related 
genes listed in Table 1 and is more com- 
prehensibly reviewed elsewhere (30,45,50, 
94). 

Several general points concerning de- 
fense-related gene regulation and plant 
disease resistance can be drawn from this 
literature, i) The timing of the defense re- 
sponses seems to be critical in determining 
the outcome of compatible versus incom- 
patible interactions. Although a suscepti- 
ble plant appears to have the genetic ca- 
pacity to generate  an effective defense 
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(e.g., as in response to an incompatible 
race), either the plant does not recognize 
the pathogen such that defense responses 
are not rapidly initiated or else the patho- 
gen somehow suppresses the activation re- 
sponse (5,14,23,30,50,93). ii) Many de- 
fense genes are activated in response to a 
broad variety of  pathogens and stress- 
related stimuli, i.e., viruses, fungi, bacteria, 
wounding, and in some cases, cold, UV, or 
drought  stress (59,86,97). This broad re- 
sponse may indicate that common or over- 
lapping regulatory circuits are utilized for 
distinct pathogen or abiotic stresses. How- 
ever, wounding generates expression pat- 
terns distinct f rom those generated by 
pathogens or elicitor treatment (14,55,99). 
iii) Many pathogen-inducible genes show 
specific patterns of  gene expression in the 
absence of  defense-related induction (13, 
24,49,59,72,98). These genes may there- 
fore  have addi t iona l  roles in no rma l  
growth and development, iv) Many plant 
defense genes are part of  small multigene 
families, members of  which are differen- 
tially expressed during development  or 
defense responses (4,13-15,19,55,99). v) 
Genetic engineering strategies manipulat- 
ing several of  the defense genes listed in 
Table 1 have generated plants with altered 
disease interactions to viral, bacterial, and 
fungal pathogens (11,37,51). These re- 
combinant DNA-based strategies for engi- 
neering disease resistance may represent 
the next generation of  integrated disease 
control. 

Compared to studies on viral, bacterial, 
and fungal diseases, molecular analyses on 
nematode- induced  defense  compounds  
and host defense gene activation are lim- 
ited (36). It is likely that some of  these 
same defense genes and resulting defense 
compounds will be involved in determin- 
ing the outcome of specific host-nematode 
interactions, especially those interactions 
characterized by typical HR responses. For 
example, phytoalexins and oxygen radicals 
are elevated in nematode-infected roots or 
in association with nematode-induced HR 
responses (12,102). The  defense-related 
genes in Table 1 are now available as tools 

for the nematologist to use in dissecting 
the molecular basis of  these complex inter- 
actions. 

MOLECULAR ANALYSES OF A 
DEFENSE-RELATED GENE 

In order to demonstrate the application 
of  specific molecular tools for analyses of  
plant defense genes and their role in dis- 
ease resistance, we will review some of  our 
recent work on the regulation of  3-hy- 
droxy-3-methylglutaryl  CoA reductase  
(HMGR). This enzyme catalyzes the rate- 
limiting step in terpenoid biosynthesis and 
is thus important not only in disease resis- 
tance because of  its role in defense com- 
pound  product ion (sesquiterpene [e.g., 
rishitin, lubumin], monoterpene, and di- 
terpene phytoalexins, steroid glycoalka- 
loids), but also in growth and development 
(e.g., cytokinins, gibberellins, abscisic acid, 
chlorophyll, quinones, sterols, carotenoid 
pigments, isoprenylated proteins). We ini- 
tially cloned a tomato HMGR gene based 
on sequence homology with a yeast HMGR 
gene (72,73). Subsequent ly ,  we deter-  
mined that HMGR isozymes in tomato are 
encoded by four distinct isogenes that are 
differentially expressed during develop- 
ment and in response to stress. One of  
these isogenes, hmg2, is the HMGR gene 
pr imari ly  associated with de fense  re- 
sponses  (72,73). We have m o n i t o r e d  
changes in HMGR mRNA levels (as an ap- 
proximation of  gene expression) by North- 
ern blot hybridization with isogene-specific 
probes (72,73,99). Wounding triggers an 
increase in hmg2 mRNA levels in both to- 
mato (leaf, roots, stem) and potato (tuber) 
with kinetics typical of  many defense-  
related genes (e.g., mRNA maxima at 12- 
14 hours after wounding). Treatment  with 
elicitors (arachidonic acid or fungal cell 
wall compounds) or inoculation with the 
soft-rot bacterium Erwinia carotovora spp. 
carotovora triggers a significantly greater 
induction of hmg2 mRNAs than wounding 
(72,73,99). In contrast, tomato hmgl ex- 
pression is not induced by defense elicitors 
but is elevated in tissues undergoing cell 
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division and thus may be associated with 
s terol  b iosynthes i s  ( C o t t i n g h a m  and  
Cramer, unpubl, data). In potato tubers, 
hmg2 and hmg3 are similarly activated by 
wounding and elicitor treatments; hmgl is 
wound inducible but, unlike hmg2 and 
hmg3, is suppressed by elicitor (14). Thus, 
HMGR genes appear to show complex de- 
fense-related regulation in both tomato 
and potato. Because hmg2 has an expres- 
sion pattern consistent with an important 
role in defense, we have utilized it for fur- 
ther analyses on mechanisms of  pathogen- 
induced gene activation. 

Expression of hgm2: reporter gene fusions in 
transgenic plants: A powerful tool for pre- 
cisely delineating patterns of  tissue speci- 
ficity and pathogen induction, and for 
identifying specific regulatory elements 
with a gene promoter,  involves the fusion 
of the promoter  or regulatory region of  a 
gene of  interest to a reporter  gene and ex- 
pressing this construct in transgenic plants 
(40,42,74,95). In order  to further  analyze 
the regulation of  the hmg2 gene directly in 
p l an t -pa thogen  interactions,  we fused 
about 2.3 kb of  the upstream promoter- 
regulatory region of  the tomato hmg2 gene 
to the coding region of  the GUS reporter  
gene (42) encoding [3-glucuronidase. This 
reporter  gene is very effective in tobacco 
and tomato because these plants contain 
very little endogenous activity and expres- 
sion of the introduced gene is easily mon- 
itored both histochemically and biochemi- 
cally using a sensitive fluorometric assay 
(42). The hmg2:GUS gene construct was 
transferred into tobacco and tomato plants 
using s tandard  Agrobacterium-mediated 
leaf-disk transformation (40). Transgenic 
tobacco plants expressing the hmg2:GUS 
fusions were used to monitor gene expres- 
sion directly in plant tissues. Unstressed to- 
bacco leaf or stem tissues show little or no 
GUS activity, an indication that the hmg2 
p r o m o t e r  is t ranscr ipt ional ly  inactive. 
Wounding, however, resulted in a rapid 
and dramatic increase in GUS activity, vi- 
sualized as intense blue pigmentation (a 
product of  the GUS reaction following in- 
cubation with the X-glucuronide substrate 

[42]) localized to the wound site (Weissen- 
born, Yu and Cramer, unpubl, data). 

In preliminary results, we have moni- 
tored hmg2:GUS expression in excised 
leaves inoculated with Erwinia carotovora 
spp. carotovora and intact hypocotyls of  
seedl ings inocu la ted  with the funga l  
pathogen Rhizoctonia solani. In both inter- 
actions, GUS activity was highly expressed 
in the host cells directly surrounding the 
site of  inoculation (24 hours after inocula- 
tion) and result ing lesion (48 and 72 
hours) (Weissenborn and Cramer, unpubl. 
data). Fur ther  analyses moni tor ing the 
timing of  expression and comparing com- 
patible and incompat ib le  in teract ions  
should provide insight into the kinetics of  
gene activation and signal transduction to 
adjacent cells. 

We have generated a series of  promoter  
deletions (ranging from 58 to 2,300 base 
pairs from the transcription initiation site) 
from the 5'-upstream region of the tomato 
hmg2 gene. These t runcated promoters  
have been fused to GUS and transformed 
into tobacco. Analysis of  the pathogen in- 
duction patterns in these transgenic plants 
will aid in delineating the regions within 
the hmg2 promoter  responsible for the 
pathogen-specific responses. Analogous 
approaches with o ther  defense-re la ted  
genes have identified within these promot- 
ers critical regions that bind specific pro- 
teins and thereby mediate the rate of gene 
transcription and tissue specificity (38,52, 
90,101). This information has recently led 
to the isolation of  specific DNA-binding 
regulatory proteins and may lead to alter- 
native strategies for genetically manipulat- 
ing an entire battery of  defense genes and 
thus enhancing resistance. 

Nematode-induced expression of hmg2 gene 
activity: Terpenoid phytoalexins are toxic 
to nematodes,  and increases in at least 
some of  the biological activities mentioned 
in Table 1 have been noted in various 
plant-nematode interactions (12,60,102). 
Because of  HMGR's role in mediating ses- 
qui terpene phytoalexin production and 
hmg2's activation by both fungi and bacte- 
ria, we were interested in determining if 
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hmg2 expression was activated by nema- 
tode infection. To date, we have only very 
preliminary results obtained with trans- 
genic tomato seedings (germinated on 
agar) containing the hmg2:GUS gene and 
inoculated with second-stage juveniles of 
Meloidogyne incognita and M. hapla. No 
GUS activity was seen in root tips of  unin- 
oculated seedlings or in infected roots 
within the first 48 hours after inoculation. 
However, once feeding and galling was ini- 
tiated, high levels of  GUS activity were ob- 
served localized to the galling tissue (Weis- 
senborn, Eisenback, Radin and Cramer, 
unpubl, data). This result suggests that 
hmg2 may be a nematode-response gene. 
Obviously, these experiments require con- 
firmation with appropriate controls and 
defined susceptible and resistant cultivars. 

Genetic engineering strategies for disease re- 
sistance: The ability to genetically engineer 
new or altered genes into plants is a valu- 
able tool not only for assessing changes in 
gene expression but also potentially for 
manipulating the plant-pathogen interac- 
tion directly (28,51). As described above, 
the difference between disease susceptibil- 
ity and resistance often appears to be de- 
termined by how quickly the pathogen is 
detected and a defense response is acti- 
vated. Thus, one can speculate that, short 
of  isolation of  specific recognition factors 
(e.g., R-genes), mechanisms accelerating 
the rate or magnitude of the response or 
constitutively expressing specific defense 
genes may result in enhanced disease re- 
sistance. 

There  are examples of  enhanced disease 
resistance in transgenic plants based on al- 
tered expression o f  a specific defense- 
related transgene. Constitutive expression 
driven by the cauliflower mosaic virus 35S 
promoter  (6) of  a bean (or tobacco) chiti- 
nase in transgenic tobacco yielded plants 
with enhanced resistance to Rhizoctonia so- 
lani (11). Chitinase overexpression, how- 
ever, did not yield resistance to Cercospora 
nicotianae in Nicotiana sylvestris (68) and 
would not be expected to function against 
pathogens (e.g., Pythium or Phytopthora) 
without a chitinous cell wall. Perhaps chiti- 

nase overexpression would affect nema- 
tode propagation by attacking the chitina- 
ceous egg shell. Enhanced  resis tance 
against a variety of bacterial pathogens was 
demonstrated in transgenic tobacco plants 
expressing lysozymes or insect-derived 
bacterial toxins (2,28,70). Overexpression 
of proteinase inhibitors has successfully 
enhanced host resistance to specific insects 
(43). In addition, introduction of a grape- 
vine stilbene synthase gene into tobacco re- 
sulted in the production of the phytoalexin 
resveratrol in the transgenic plants (37), 
demonstrat ing the potential of  circum- 
venting specific pathogenicity mechanisms 
by expressing new phytoalexins. 

The  interact ion of  host plants with 
nematode pathogens, especially endopara- 
sitic nematodes, is a highly complex inter- 
action that, in many ways, is distinct from 
interactions with pathogenic viruses, bac- 
teria, or fungi. The application of molec- 
ular techniques to studies of these plant-  
microbial pathogen interactions has clearly 
led to enhanced understanding of  the mo- 
lecular basis of  disease resistance and to 
novel strategies for disease control. Hope- 
fully, an increased research focus on the 
molecular basis of  plant-nematode inter- 
actions will generate new genetic engineer- 
ing-based strategies for nematode control. 
Identification of plant gene regulatory se- 
quences expressed constitutively in root 
target tissues or induced during suscepti- 
ble interactions could be used to direct lo- 
calized accumulation of specific nemati- 
cidal or  nematostat ic compounds .  En- 
hanced plant-based nematode resistance 
would positively impact crop productivity 
and hopefully result in long-term benefits 
to the environment derived from reduced 
utilization of chemical pesticides. 
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