Visualization of Learning Process in Feature Space

Authors

DOI:

https://doi.org/10.32473/flairs.36.133329

Keywords:

Visualization, Stochastic Embedding, Mapping, Dimensionality Reduction

Abstract

In machine learning, the structure of feature space is an important factor that determines the performance of a model. Therefore, we can deepen our understanding of learning algorithms if we can visualize changes in the structure of feature space during the learning process. However, visualizing such changes is difficult because it requires dimensionality reduction while maintaining consistency with the data structure in high-dimensional space and in the temporal direction. In this study, we visualized feature changes during the learning process by capturing them as changes in the positional relationship between target features and time-invariant reference coordinates with a log-bilinear model.

Downloads

Published

08-05-2023

How to Cite

Inoue, T., Murata, N., & Sugiura, T. (2023). Visualization of Learning Process in Feature Space. The International FLAIRS Conference Proceedings, 36(1). https://doi.org/10.32473/flairs.36.133329

Issue

Section

Special Track: Neural Networks and Data Mining