Influence of Alfalfa Plant Growth on the Multiplication Rates and Ceiling Population Density of Meloidogyne hapla
Abstract
The rates of reproduction and multiplication of Meloidogyne hapla decreased as a result of self-regulatory, density-dependent processes with time and nematode population increase in the soil and roots of Medicago sativa cv. Cuf 101. Juvenile, egg, and mature female population densities increased at a maximum rate until damage to the host resulted in alfalfa yield reductions. Temporal differences in multiplication and reproduction rates of M. hapla were observed to be a function of initial population density (Pi), host damage, and root biomass, indicating increased levels of competition for a constant but limited number of feeding sites. Over time, a log linear relationship emerged between multiplication rate of M. hapla and Pi. Slopes of -0.90953 for combined eggs and juveniles and -0.71349 for mature females indicated a gradual approach to ceiling densities. Reproductive rates decreased exponentially from an initial maximal value of 200 to a relatively constant rate of 53 eggs per female. Key words: density dependence, intraspecific competition, reproduction, population dynamics, root-knot nematode, Medicago sativa.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).