Fine Structure of Body Wall Cuticle of Females of Eight Genera of Heteroderidae
Abstract
Body wall cuticle of adult females of eight genera within the Heteroderidae was examined by transmission electron microscopy for comparison with previously studied species within the family. Cuticle structure was used to test some current hypotheses of phylogeny of Heteroderidae and to evaluate intrageneric variability in cuticle layering. Verutus, Rhizonema, and Meloidodera possess striated cuticle surfaces and have the simplest layering, suggesting that striations have not necessarily arisen repeatedly in Heteroderidae through convergent or parallel evolution. Atalodera and Thecavermiculatus possess similar cuticles with derived characteristics, strengthening the hypothesis that the two genera are sister groups. Similarly, the cuticle of Cactodera resembles the specialized cuticle of Globodera and Punctodera in having a basal layer (D) and a surface layer infused with electron-dense substance. Heterodera betulae has a unique cuticle in which the thickest layer (C) is infiltrated with an electron-dense matrix. Little intrageneric difference was found between cuticles of two species of Meloidodera or between two species of Atalodera. However, Atalodera ucri has a basal layer (E) not found in other Heteroderidae. The most striking intrageneric variation in cuticle structure was observed between the thin three-layered cuticle of Sarisodera africana and the much thicker four-layered cuticle of Sarisodera hydrophila; results do not support monophyly of Sarisodera. Key words: Atalodera ucri, body wall cuticle, Cactodera sp., comparative morphology, fine structure, Heterodera betulae, Heteroderidae, Meloidodera floridensis, phylogeny, Rhizonema sequoiae, Sarisodera africana, systematics, Thecavetmiculatus gracililancea, Verutus volvingentis.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).