Effects of Zinc Fertilization of Corn on Hatching of Heterodera glycines in Soil
Abstract
Experiments were conducted to determine the effects of zinc fertilizers on hatching and soil population densities of Heterodera glycines. In vitro egg hatching in solutions of reagent-grade zinc sulfate and zinc chloride and fertilizer-grade zinc sulfate was significantly greater than hatching in deionized water, whereas zinc chelate fertilizer significantly inhibited egg hatching relative to deionized water. In greenhouse experiments, no differences in cumulative percentage egg hatch were detected in soil naturally infested with H. glycines amended with fertilizer-grade zinc sulfate and zinc chelate at rates equivalent to 0, 1.12, 11.2, and 112 kg Zn/ha and subsequently planted with corn (Zea mays L.). In a field experiment, no significant differences in H. glycines egg population densities and corn yields were detected among plots fertilized with 0, 11.2, and 22.4 kg Zn/ha rates of zinc chelate. Yields of H. glycines-susceptible soybean planted in plots 1 year after zinc fertilization of corn plots also were not significantly affected. Zinc compounds significandy affected H. glycines egg hatching in vitro, but had no effect on hatching in natural soils. Key words: Glycine max, Heterodera glycines, hatching, nematode, soybean cyst nematode, zinc fertilizer.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).