Recovery and Longevity of Egg Masses of Meloidogyne incognita during Simulated Winter Survival

Authors

  • J. L. Starr

Abstract

Effects of soil matrix potential on longevity of egg masses of Meloidogyne incognita were determined during simulated winter conditions. Egg masses were recovered from isolated root fragments incubated in field soil at matrix potentials of -0.1, -0.3, -1.0, and -4.0 bars throughout winter survival periods of 10 weeks for tomato roots and 12 weeks for cotton roots. Egg masses were more superficial on cotton roots than on tomato roots and were more easily dislodged from cotton roots during recovery of root fragments by elutriation. The rate of decline in numbers of eggs and'J2 per egg mass was greater in wet as compared to dry soils (P = 0.01), with the relationship between numbers of eggs and J2 per egg mass and time being best described by quadratic models. Percentage hatch of recovered eggs declines linearly with time at soil matrix potentials of -0.1 and -0.3 bars, but at -1.0 and -4.0 bars the percentage hatch of recovered eggs increased before declining. Effects of soil matrix potential on numbers of eggs per egg mass and percentage hatch of recovered eggs were consistent with previous reports that low soil moisture inhibits egg hatch before affecting egg development. Estimations of egg population densities during winter survival periods will be affected by ability to recover infected root fragments from the soil without dislodging associated egg masses. There is a need for procedures for extraction of egg masses not attached to roots from the soil. Key words: egg mass, matrix potential, Meloidogyne incognita, nematode, root knot, soil moisture, winter survival.

Downloads

Published

1993-06-15

Issue

Section

Articles