Susceptibility and Activity of Glutathione S-Transferases in Nine Field Populations of <I>Panonychus Citri</I> (Acari: Tetranychidae) to Pyridaben and Azocyclotin
Abstract
Nine field collected populations of Panonychus citri from Chinese citrus orchards were assayed for susceptibility to pyridaben and the alternative acaricide azocyclotin and activity of glutathione S-transferases (GSTs). The results showed that populations from Pujiang, Wanzhou, and Pengshan exhibited a low level of sensitivity to pyridaben, but demonstrated a high level of sensitivity to azocyclotin. The correlation coefficient between GSTs activities and the LC 50 of pyridaben was r = 0.93 while the correlation coefficient between GSTs activities and the LC 50 of azocyclotin was r = 0.03. The V max value of CDNB (1-chloro-2, 4-dinitrobenzene) in populations from Beibei, Jintang, Pengshan, Wanzhou, and Zhongxian exhibited a: 2.5-, 11.6-, 7.0-, 5.1-, and 6.4-fold increase in resistance, respectively, relative to the pyridaben susceptible population. In addition, azocyclotin was the most sensitive inhibitor of the GSTs compared with the EA (ethacrynic acid) and pyridaben, based on the values for I 50. The current study suggested that GSTs might be involved in resistance of P. citri to pyridaben and but not azocyclotin in the field.View this article in BioOne
Downloads
Published
Issue
Section
License
Copyright for any article published in Florida Entomologist is held by the author(s) of the article. Florida Entomologist is an open access journal. Florida Entomologist follows terms of the Creative Commons, Attribution Non-Commercial License (cc by-nc). By submitting and publishing articles in Florida Entomologist, authors grant the FOJ and Florida Entomologist's host institutions permission to make the article available through Internet posting and electronic dissemination, and to otherwise archive the information contained both electronically and in a hard printed version. When used, information and images obtained from articles must be referenced and cited appropriately. Articles may be reproduced for personal, educational, or archival purposes, or any non-commercial use. Permission should be sought from the author(s) for multiple, non-commercial reproduction. Written permission from the author(s) is required for any commercial reproduction.