Dispersion of Fruit Flies (Diptera: Tephritidae) at High and Low Densities and Consequences of Mismatching Dispersions of Wild and Sterile Flies

  • Alfie Meats


Both wild and released (sterile) Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) and wild Bactrocera papayae (Drew and Hancock) in Australia had patchy distributions and comparisons with predictions of the negative binomial model indicated that the degree of clumping was sometimes very high, particularly at low densities during eradication. An increase of mean recapture rate of sterile B. tryoni on either of 2 trap arrays was not accompanied by a reduction in its coefficient of variation and when recapture rates were high, the percentage of traps catching zero decreased only slightly with increase in recapture rate, indicating that it is not practicable to decrease the heterogeneity of dispersion of sterile flies by increasing the number released. There was often a mismatch between the dispersion patterns of the wild and sterile flies, and the implications of this for the efficiency of the sterile insect technique (SIT) were investigated with a simulation study with the observed degrees of mismatch obtained from the monitoring data and assuming the overall ratio of sterile to wild flies to be 100:1. The simulation indicated that mismatches could result in the imposed rate of increase of wild flies being up to 3.5 times higher than that intended (i.e., 0.35 instead of 0.1). The effect of a mismatch always reduces the efficiency of SIT. The reason for this asymmetry is discussed and a comparison made with host-parasitoid and other systems. A release strategy to counter this effect is suggested.

View this article in BioOne
Literature Review Articles