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Abstract

Some of the most interesting neuroscience problems, fundamental to the 
field, are inherently mathematical. Central problems include understanding 

how cellular and network level mechanics of the peripheral and central 
nervous system coordinate to encode, process, and learn information, as 

well as how the Central Nervous System (CNS) is able to synchronize brain-
wide neural activity. Answering these questions requires understanding 
how neuronal circuits react to stimuli and interact with one another to 
process information specific to their roles within a network. To simulate 

these intercellular dynamics, FitzHugh-Nagumo neurons were connected 
through incoming and outgoing voltage currents to form dynamic 

networks. External stimuli consisting of both excitatory and inhibitory 
signals were sent through these networks. As a network’s connectivity 

coefficient increased, neurons began to synchronize. In some cases, 
neuronal activity segregated and competed so that neither signal was 
able to dominate the artificial network – underlining the importance of 

the relationship between signal and architecture in functional, biological 
circuits. Biological components which have been implicated in network 

synchronization, and how they could be mathematically implemented in 
future network simulations, were discussed.
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Introduction
A Biological Background to Mathematical Methods

	 The neuron is a type of electrically excitable cell common to the 
CNS, which includes the brain, spinal cord, and the peripheral nervous 
system (PNS). As seen in Figure 1 below, neurons consist of a cell body 
from which neuro-transmitter receptive terminals called dendrites 
protrude. A large tail-like structure called the axon trails off the cell 
body and eventually splits off into multiple, fine endings called axon 
terminals. A preceding neuron’s axon terminal will connect up to the 
dendrites of multiple neighboring neurons. The individual connections 
that form between the axon terminals and dendrites make up what is 
known as the synaptic cleft. The synaptic cleft is essentially a small gap 
junction through which chemical signals called neuro-transmitters flow 
from the presynaptic neuron’s terminal to the receiving post synaptic 
neuron’s dendrite.21

Figure 1: Diagram of a presynaptic and postsynaptic neuron.12 

	 A neuron becomes “excited,” or “activated,” when it receives in-
coming neuro-transmitters from other activated neurons connected to 
its dendrites. The excited cell’s membrane will depolarize and cause an 
electrical signal called an action potential to travel down the length of 
its axon to the axonal terminals. Once activated by the electrical signal, 
mechanisms in the axonal terminals will release neuro-transmitters 
into the synaptic clefts formed with other neurons, thereby, exciting the 
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neuron’s neighbors as well.21 3

	 In this way, neurons connect and form an active and dynamic 
network amongst themselves. Neuronal networks encode and process 
information, such as external stimuli from an animal’s environment, 
which can ultimately incite a motor response from the animal. Alterna-
tively, some neurons, known as inhibitory neurons, release neurotrans-
mitters which compete with excitatory neuro-transmitter signals from 
other neurons. At times, such inhibitory signals will prevent the post 
synaptic receiving neuron from firing. This competition between inhib-
itory and excitatory signals is crucial to the network’s ability to encode 
and distribute such information carrying signals to areas of the net-
work meant to receive and process them.3 16 17

	 As the CNS develops, synaptic connections between neurons 
are selectively pruned to improve efficiency. Synaptic pruning is vital 
to developing distinctive neural circuits which process very specific 
kinds of information.15 Neural circuits are essentially substructures of 
the neuronal network, comprised of neurons that form specialized ar-
chitectures designed to process very specific types of information. The 
startle circuit, for example, has been studied across a sweeping range of 
diverse animal species and is responsible for fast motor response in the 
presence of an external threat. Stimulation of these circuits in organ-
isms with smaller, more tractable neuron connectomes are known to 
lead to very predictable responses such as omega turns in the Caenor-
habditis Elegans, a species of nematode.4 
	 One can easily extrapolate that larger, more sophisticated neu-
ron connectomes, such as the human CNS, would exhibit a broader 
range of circuitry roles, such as visual processing, object recognition, 
and the experience of conscious thought. When an animal possessing 
a connectome of such magnitude, such as a vertebrate, receives an ex-
ternal stimuli, the neuron connectome is able to compress such high 
dimensional information coming in from sensory neurons through-
out the body into the spinal cord. The compressed information then 
fans out into the vertebrate cortex for processing, ultimately eliciting 
a motor response signal which is compressed back into the spinal cord 
and fanned back out into the animal’s body, activating it’s muscles in a 
coordinated response. The nervous system’s impressive feat of dimen-
sionality reduction is key to its information processing abilities. Such 



properties in combination with the electrical and chemical dynamics 
of connected neurons make the nervous system a mathematically in-
teresting subject to study. Importantly, integration of Mathematics and 
Neuroscience are necessary to illuminating how biological components 
of the nervous system process information in tandem. More specifical-
ly, understanding the functionality of, and the dynamics between, neu-
ronal circuits is key to understanding the brain’s functionality and has 
since inspired collaborations between mathematicians and scientists, 
leading to mathematical neuron models and studies on the dynamics of 
their respective networks.2 17 

Mathematical Models of Neurons 

	 In 1963 Alan Lloyd Hodgkin and Andrew Fielding Huxley re-
ceived the Nobel Prize in Physiology and Medicine for a series of pa-
pers they published on the ionic mechanism underlying the excitation 
and inhibition of neuron membranes. Their work, considered one of 
the great achievements of 20th century biophysics, culminated in a bio-
physical model, which captures action potential dynamics in neurons 
and has since transformed the field of mathematical and computation-
al neuroscience. The action potential captured in their neuron model, 
a 4x4 system of nonlinear differential equations, is driven by the flow 
of ions (neuro-transmitters) across ion gates in the cell’s membrane. 
These ion gates, known as voltage gated channels, select for specific 
ions: sodium (Na+), potassium (K+), and chloride anions (Cl-). It should 
be noted that chloride anions influence the voltage dynamics of potas-
sium and sodium, but do not actually pass through the cell’s membrane 
themselves. The specific alpha and beta functions in the equations of 
the 4x4 system were derived from experimental data the team collect-
ed on ion dynamics which generated action potentials that propagated 
down large nerve axons in a deceased giant squid. Applying an external 
stimulus I0 to the model elicits characteristic spiking behavior consis-
tent with what was observed in the giant squid axons.10 19
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V(t) is the voltage of the action potential. 
Voltage gated variables potassium, N(t), and sodum, M(t) and H(t) drive the 

action potential.
I(0) is an externally applied current to the cell. 

Parameters for the first equation are: g Na = 120, g K = 36, g L = 0.3, VNa = 
115, VK = -12, and VL = 10.6

	 The Hodgkin-Huxley model established neuron dynamics, giv-
ing way to the meteoric expansion of the fields of mathematical and 
computational neuroscience. Since its advent, a number of additional 
models have been developed from the Hodgkin-Huxley model, includ-
ing the addition of slower calcium dynamics, which allows for multiple 
timescales and reductions such as the FitzHugh-Nagumo Model.10 19

	 Richard FitzHugh was able to capture neuron dynamics in the 
Hodgkin-Huxley model while eliminating dependence on the driving 
electrochemical properties of calcium and potassium ion flows by mod-
ifying the Van der Pol model, an oscillator with nonlinear damping. This 
simplification allowed him to reduce his model to a two dimensional 
system. The lower dimensionality of the FitzHugh-Nagumo system, in 
comparison to the 4x4 Hodgkin-Huxley model, eases observation of the 
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V(t) is the voltage dynamics
W(t) models the refractory period of the neuron

I(0) is an externally applied current to the cell. I(0) represents stimulus/action 
potential(s) of any connected presynaptic neuron(s).

system’s solution and as a result, facilitates the study of dynamics of 
networks of neurons.6 10

	 Figure 2, shown below, depicts the action potentials of a presyn-
aptic FItzHugh-Nagumo neuron driving the action potentials of a sec-
ond, post synaptic FitzHugh-Nagumo neuron. When the neuron spike 
train passes above the threshold 0.8V, the neuron is considered to have 
spiked, or activated.

Figure 2: Voltage outputs of two connected presynaptic and postsynaptic 
FitzHugh-Nagumo Neurons

Methods

	 FitzHugh-Nagumo neurons were connected together to form a 
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network of ten neurons in total. Two of these neurons received exter-
nal input signals. In the first experiment, the two input signals were 
identical and excitatory (non-negative). In the second experiment, the 
signals were identical in magnitude, however, one signal was inhibitory 
(non-positive), while the other was excitatory (non-negative).

	 External input stimuli (input signals) were 
implemented by shifting left-to-right through 
the elements of a vector. The duration of the to-
tal neuron firing for a given simulation was di-
vided into equal intervals of time. As each time 
interval passed, the input signal value changed 
to the next element in the vector.  As an exam-
ple using the vector above, the input signal val-
ue during the first time interval was 1, during 

the second time interval the signal value would have been 0, and so on. 
This changing input signal value is represented by the I(0) term in the 
first FitzHugh-Nagumo equation.
	 In addition to containing the signal value (if the neuron was one 
of two receiving an external input signal), the I(0) term also serves as a 
means to connect neurons together into a network. Recall that the I(0) 
term represents all currents coming into a particular neuron – this in-
cludes possible external input stimuli and the output of all presynaptic 
neurons connecting to its dendrites. The total input to a neuron from its 
neighbors can be thought of as a weighted sum.
	 Each presynaptic neuron is represented as the product of its 
voltage output V(t) and its respective  “connectivity strength”. The sum 
of these products is a scalar representation of all currents flowing into 
the post synaptic neuron. Therefore, I(0) is the sum of any present ex-
ternal input signals and the incoming weighted voltages from its neigh-
boring presynaptic neurons.
	 An adjacency matrix, or connectivity matrix, was used to keep 

[1 0 1 0]
Figure 3: Example 
of a vector of four 

nonnegative elements 
in total
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track of the connectivity 
strengths between all ten of 
the neurons in the network. 
An example of a connec-
tivity matrix and its phys-
ical interpretation is given 
above for three neurons. 
Each grey circle represents 
a neuron, whereas the ar-

rows represent connections, and thereby communication, between the 
neurons. Notice that neuron 3 connects to neuron 2, but neuron 2 does 
not connect to neuron 3. In this case, communication is one-directional, 
and only flows from neuron 3 to 2. Likewise, neurons 1 and 2 both con-
nect to one another. As a final example, neurons 3 and 1 do not commu-
nicate at all. Neurons are not considered to communicate with them-
selves. In the connectivity matrix A, each column is associated with a 
particular neuron and the elements of each column represent its out-
going-connections to every other neuron in the network. The rows rep-
resent each neuron and their respective incoming connections. Notice 
that the entry in row 1, column 1 is zero. This is because neuron 1 does 
not connect to itself. In a similar fashion, all entries down the diagonal 
are also zero. As an example, the connectivity strength of the connec-
tion from neuron 1 to neuron 2 is 0.2145. The connectivity strength 
from neuron 2 to neuron 1 is -0.27.11

	 The dot product is taken between a vector containing output 
voltages (V(t)) from each of the neurons and a particular neuron’s row 
in the adjacency matrix to obtain the weighted sum mentioned earlier. 
The 10x10 adjacency matrix in this experiment was randomized and 
had zeros as its diagonal entries. In both experiments, the connectivity 
matrix was scaled by a connectivity coefficient, c, set for the first run at 
0.05 and the second at 0.2. Increasing c in the second run represents 
increasing the connectivity strengths of neurons in the matrix.
	 A Runge-Kutta based solver with variable time step was imple-
mented to approximate the voltages V(t). Runge-Kutta methods are a 
special variation of Euler’s method, popularized for their improved ac-
curacy and stability. Euler’s Method uses the definition of a derivative to 
approximate a function’s slope and subsequent values as its trajectory Figure 6
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changes through time. It essentially starts with an initial function value 
at time t=0 and bootstraps its way to the next value, and subsequent 
values of a function. A subsequent function value is obtained by adding 
the product of the function’s slope approximation and magnitude of the 
time step to the currently known function value, i.e. the initial value in 
the case of t=0. Runge-Kutta methods vary from Euler’s in that they em-
ploy several approximations of a function’s slope during a single time 
step, rather than only one.1 10

Results and Discussion

	 As the matrix connectivity coefficient, c, increases, network 
neurons begin to synchronize with one another and the external input 
signals. Neurons lose their traditional post-synaptic spiking pattern 
shape seen in Figure 2 and Figure 6, and more closely resemble the 
non-organic shapes of the artificial external input signal as demonstrat-
ed in Figure 7. As the neurons synchronize with one another, distinc-
tive bands of synchronized spiking begin to occur throughout the spike 
trains in Figure 7. When a spike train passes the threshold of 0.8V, the 
column corresponding to the activated neuron lights up in figures 7 and 
8. As long as the spike train remains above the threshold of 0.8V, the 
column will remain lit. Figures 7 and 8 provide an alternative means of 
observing synchronization between all ten neurons in the network. In 

Figure 6

Two Neurons receiving identical 
external input signals
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Band of synchonized 
spiking activity

Figure 7

Figure 8 Figure 9 

these, and the following illustrations, neurons 1 and 6 are receiving the 
external stimuli.
	 When neurons receiving external stimuli are fed opposing sig-
nals of equal magnitude but opposite sign, two things take place. Like 
figure 7, bands of synchronization begin to emerge, however, in the 
case of figure 10, the combination of the network’s particular connec-
tivity and opposing signals will force synchronous activity to bifurcate. 
In figure 7, roughly half of the neurons follow the external darker input 
signal and the other half follow the lighter one as though the signals are 
battling to dominate the networks activity. The underlying connectivity 
matrix determines which of the two opposing driving signals a neuron 

Figure 10a

Figure 10b
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will most closely convey, and the degree to which it is both directly and 
vicariously influenced by the two opposing inputs.
	 In naturally occurring networks, such as the nervous systems 
of animals, “battling” behavior is a natural result of the network’s de-
pendency on combinations of inhibitory and excitatory neurons and 
signals to encode specific information.16 17  However, in biological net-
works, circuit architectures are formed to receive a set of signals partic-

Figure 10a

Figure 10b

Opposing
signals

Band
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ular to it, so that when this “battling” does occur, either one or the other 
signal will dominate and pass on to subsequent circuits.
	 Interestingly, the architecture of such circuits can change over 
time under the influence of incoming signals to reflect and incorporate 
new kinds of encoded information. In a way, architecture and signals 
inform and change one another as signals filter through dynamic net-
works of circuits. In some sense, these networks transform input infor-
mation into output commands. As an example, imagine reading a sen-
tence written on a chalk board; visual information is being taken in and 
transformed into neural activity. Now imagine copying the sentence be-
low it and gradually increasing the size of your letters as you write. Not 
only is your brain taking in visual information about letter shapes as 
external stimuli, but it’s also transforming this information into a mo-
tor function that encodes these very shapes and relative ratios. As you 
write larger and larger, these networks are able to temporarily modify 
their functionality to adjust your motor output while you compare your 
current movements to the size of your prior writing and prior move-
ments.

Further Research 

	 Synchronization is key to network functionality and coherence. 
It largely arises out of the network’s ability to organize into struc-
tures that convey meaningful information. Such architectures have to 
switch between promoting and inhibiting varying sets of input stimuli 
to achieve different functions, much like stoplights directing traffic. A 
network’s ability to incorporate the ability to process new information 
into its architecture by altering its complex, dynamic connectivities can 
be expressly summarized as its ability to learn.7 20

	 Glial cells, namely astrocytes and oligodendrocytes, tile the 
brain, forming networks and connecting to neurons, which lie in their 
respective domains. Previously regarded only as physical and physio-
logical support to neurons, recent findings have implicated these cells 
in information processing roles comparable to their neuron counter-
parts: most strikingly, the ability to synchronize neuronal activity and 
modify network connectivity.13 However, to gain insight into how these 
cells and their respective networks modulate neuronal networks, mod-
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els of naturally occurring architectures and stimuli must first be estab-
lished.
	 Recall that in Figure 10 the network’s activity is somewhat in-
coherent. The networks in these experiments are randomized and do 
not reflect any particular architectures one might find in an animal’s 
brain. The output of the networks in this experiment do not encode any 
kind of particularly meaningful information, thus leading to incoherent 
output seen in Figure 10. Further study of model neurons organized 
into more organic architecture with appropriate corresponding stimuli 
is warranted. A particular network or circuit’s functionality should first 
be clarified before trying to understand how cells such as glia might 
influence and alter them. Simulating signals running through architec-
tures in well documented circuits and connectomes such as those of the 
optical cortex of mice, or the nematode Caenorhabditis elegans, is an 
ideal starting point.8 9

	 Because glia modulate grey matter via neurotransmitters and 
white matter by manipulating an axon’s conduction velocity, alterna-
tive neuron models to the FitzHugh-Nagumo model should be consid-
ered.12 13 Unlike FitzHugh-Nagumo, alternate models might incorporate 
dynamics driven by electrochemical activity and delayed differential 
equations for the neuron’s voltage. These additions may obstruct ob-
servation and analysis of large network dynamics, but on some level of 
detail may need to be addressed to capture characteristics key to a het-
erogeneous, neuronal-glial network’s functionality in information pro-
cessing and learning. Finally, because of the spatio-temporal complexi-
ty of neuronal networks, let alone neuronal-glial, mode decomposition 
methods may be necessary to glean information on glial functionality 
from data derived from organic networks, and to analyze glial function-
ality in simulations of heterogeneous networks.2

Conclusion

	 Understanding how dynamic networks in nature encode and 
process information requires an understanding of the relationship be-
tween network architecture and signal and how these architectures are 
modified during learning or under the influence of novel stimuli. Such 
architectures are complex, containing alternate modes of functionality 



and feedback loops. Inherently, such a problem requires a mathemat-
ical approach. This study outlines mathematical tools fundamental to 
analyzing neuronal network dynamics and underlines the importance 
of the relationship between architecture and stimuli. To gain deeper 
insight into the information processing roles of neuronal networks, 
simulation of organic architectures and stimuli are necessary. Such in-
formation would facilitate future research of how glial cells modulate 
neuronal networks and perhaps offer insight into their synchroniza-
tion, varying modes of functionality, and the cellular and network level 
mechanics of learning and information processing.
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