PHYLOGENETIC RELATIONSHIPS OF BELONOLAIMUS LONGICAUDATUS POPULATIONS ASSOCIATED WITH TURFGRASSES IN THE SOUTHEASTERN USA

A. Habteweld ${ }^{1 *}$, M. L. Mendes ${ }^{1}$, R. N. Inserra ${ }^{2}$, and W. T. Crow ${ }^{1}$
${ }^{1}$ Entomology and Nematology Department, University of Florida, Gainesville, FL 32611-0620, USA; ${ }^{2}$ Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL 32614-7100, USA; *Corresponding author: ahabteweld@ufl.edu

Abstract

Habteweld, A., M. L. Mendes, R. N. Inserra, and W. T. Crow. 2021. Phylogenetic relationships of Belonolaimus longicaudatus populations associated with turfgrasses in the southeastern USA. Nematropica 51:41-55.

The D2-D3 and ITS regions of rDNA from 31 populations of Belonolaimus longicaudatus associated with turfgrasses in different locations of southeastern USA were sequenced and subjected to phylogenetic analysis. The result showed that there were variations in DNA sequences among populations and morphology and morphometric characters as well. The phylogenetic analysis using D2-D3 LSU and ITS15.8 S-ITS2 rDNA sequences grouped the south Florida populations together with 91 and 81% support, separated from a subclade containing other B. longicaudatus populations from other localities. The south Florida populations as a group tended to have smaller mean stylet knob width and stylet/tail length and shorter mean lip, stylet, and esophagus lengths. Principal components analysis of seven selected morphometric characters also showed correlations among populations related to the subclade to which they belong. Overall, results suggest that the populations from turfgrasses in south Florida fit morphologically with the paratypes of B. longicaudatus described by Rau (1958) from central Florida, which had a stylet and tail length ratio value ≤ 1. Conversely, the populations from other localities grouping in a different subclade in the phylogenetic tree had the highest range of stylet and tail length values >1. Although parasitism to turfgrasses by the B. longicaudatus populations grouping in the two different subclades results in serious damage, more studies are needed to define many biological, ecological and genetic aspects of these populations from turfgrasses.

Key words: Belonolaimus longicaudatus, D2-D3, ITS, phylogenetics, south Florida, sting nematode, turfgrass

[^0]diferentes localidades del Sureste de los Estados Unidos fueron secuenciadas y utilizadas en un análisis filogenético. El resulto mostró variaciones en las secuencias de ADN entre poblaciones, así como en los caracteres morfológicos y morfométricos. El análisis filogenético basado en secuencias de ADNr de D2D3 LSU y ITS1-5.8S-ITS2 agrupó las poblaciones del Sur de Florida, con un soporte de 91 y 81%, separado de un subclado formado por otras poblaciones de B. longicaudatus de otras localidades. Las poblaciones del Sur de la Florida como grupo tendieron a poseer una menor media en el ancho de los nódulos del estilete y estilete/cola; menor media en labio, estilete y longitud del esófago. Un análisis de componentes principales de siete caracteres morfométricos seleccionados también mostró correlaciones entre poblaciones relacionadas al subclado que pertenecen. Los resultados generales sugieren que las poblaciones de césped en el Sur de Florida se ajustan morfológicamente a los paratipos de B. longicaudatus descritos por Rau (1958) del Centro de Florida, el cual posee un radio St / T con valor ≤ 1. Al contrario, las poblaciones de otras localidades agrupadas en diferente subclado en el árbol filogenético posee el rango más alto de valores $\mathrm{St} / \mathrm{T}>1$. Aunque el parasitismo del césped por poblaciones de B. longicaudatus que se agrupan en dos subclados diferentes da como resultado un daño grave, se necesitan más estudios para definir muchos aspectos biológicos, ecológicos y genéticos de estas poblaciones en césped.

Palabras clave: Belonolaimus longicaudatus, D2-D3, ITS, filogenética, Sur de Florida, nematodo del aguijón, césped

INTRODUCTION

The genus Belonolaimus was established with the type species B. gracilis by Steiner (1949). Presently, the genus contains six species namely Belonolaimus gracilis Steiner, 1949; B. longicaudatus Rau, 1958; B. euthychilus Rau, 1963; B. maritimus Rau, 1963; B. nortoni Rau, 1963; and B. maluceroi Cid del Prado Vera and Subbotin, 2012. Belonolaimus longicaudatus is among the most destructive plant-parasitic nematodes to a wide range of plants including turfgrasses, ornamentals, forages, vegetables, agronomic crops, and trees (Duncan et al., 1996; Cid del Prado Vera and Subbotin, 2012; Crow and Duncan, 2018). In addition to direct root damage, B. longicaudatus predisposes plants to stress caused by adverse conditions like drought and heat that could lead to a poor yield and quality (Lucas, 1982).

The University of Florida Nematode Assay Laboratory (NAL) receives thousands of samples containing soil, plugs, and roots from turfgrasses annually from Florida and other states for diagnosis purpose. Turfgrasses represent over 90% of the samples received by NAL annually (Habteweld and Crow, 2018). Results of our diagnoses indicated that B. longicaudatus is one of the top plant-parasitic nematodes associated with high and moderate nematode damage in turfgrasses (Habteweld and Crow, 2018).

Belonolaimus longicaudatus is found
predominately in sandy coastal areas of the southeastern United States where soils consist of $>80 \%$ sand (Robbins and Barker, 1974; Crow, 2018). It is also common in sandy regions along the Gulf of Mexico and Atlantic coasts from Texas to Virginia and also sandy areas inland (Crow, 2018). Florida is considered to be the point-of-origin for B. longicaudatus where it exhibits a great deal of diversity in morphology, host preference, and genetics as noted in the original description by Rau (1958; 1961).

Robbins and Hirschmann (1974) reported pronounced intra- and inter-population morphology and host preference variations including mating incompatibility among six populations form North Carolina and Georgia. The existence of B. longicaudatus pathotypes was shown in early field observations (Perry and Norden, 1963) and subsequently supported by greenhouse studies of populations collected from different crops and localities (Abu-Gharbieh and Perry 1970; Han et al., 2006a,b).

Morphological and molecular studies of different populations of B. longicaudatus from wide geographical locations associated with a specific crop would provide relevant information on their phylogenetic relationships, and the interand intra-population variabilities. There is no information on the morphological and genetic variability of B. longicaudatus populations from turfgrasses. A study was conducted with the objectives: i) to characterize the D2-D3 expansion
segment of the large subunit of nuclear rDNA, ITS1-5.8S-ITS2 rDNA region and morphometric characteristics of a subset of populations from turfgrasses in the southeastern of United States; and ii) to estimate phylogenetic relationships among B. longicaudatus populations associated with turfgrasses from Florida and other states.

MATERIALS AND METHODS

Nematode populations

Nematode populations used in this study were obtained from 31 soil and root samples received by the NAL in 2019 from turfgrass fields including golf courses and residential lawns from Florida and other southeastern states of the US (Table 1). At these sites, nematode populations may have been introduced with sod from turfgrass production fields located largely in Florida, Georgia, and Texas. These populations were at first tentatively assigned to B. longicaudatus based on standard morphological and morphometric characters of diagnostic value for the species (Cid del Prado Vera and Subbotin, 2012). Then some specimens were kept in a refrigerator in a tap water suspension, and others were used for molecular and phylogenetic analyses. Subsequently, refrigerated specimens from four populations that clustered in two different main subclades in the phylogenetic analysis were selected for detailed morphological and morphometric comparisons.

Nematode extraction

Nematodes were extracted from $100 \mathrm{~cm}^{3}$ of soil using centrifugation and sugar-floatation techniques (Harrison and Green, 1976). Nematodes were also extracted from four $3.8-\mathrm{cm}-\mathrm{diam}$. and 5 cm -deep turf plugs which were incubated for 72 hr in a mist chamber (Crow et al., 2020).

Molecular characterization

Total genomic DNA was extracted following the proteinase K method. A single female was transferred to a $200 \mu \mathrm{l}$ PCR tube containing $20 \mu \mathrm{l}$ of DNA extraction buffer consisted of 18μ of TE buffer, $1 \mu \mathrm{l}$ proteinase $\mathrm{K}(20 \mathrm{mg} / \mathrm{ml})$ and $1 \mu \mathrm{l}$ of 2% triton X. To facilitate penetration of the extraction buffer into the nematodes, the tubes containing the nematodes were frozen and thawed
five times. The genomic DNA was extracted by incubating the samples at $56^{\circ} \mathrm{C}$ for 1 hr for optimum proteinase K activity and proteinase K was deactivated by incubating at $95^{\circ} \mathrm{C}$ for 15 min using T100TM thermocycler (Bio-Rad Laboratories Inc., Hercules, CA). DNA amplification was performed in $25 \mu 1$ of reaction mix containing $12.5 \mu \mathrm{l}$ Apex 2 x Hot Start Master mix (Genessee Scientific, San Diego, CA), $0.75 \mu 1$ forward and reverse primers, 9.5μ sterile nuclease free water (Thermo Fisher Scientific, Gainesville, FL) and 1.5μ template DNA. For amplification of the D2-D3 expansion segment of the large subunit (LSU) rDNA, the primers sets D2A (5^{\prime} -CAAGTACCGTGAGGGAAAGTTG-3') and D3B (5'-TCGGAAGGAACCAGCTACTA-3') were used. The ribosomal region spanning the internal transcribed spacer (ITS) $1,5.8 \mathrm{~S}$ gene, and ITS2 was amplified using the primers TW81 (5^{\prime} -GTTTCCGTAGGTGAACCTGC-3') and AB28 (5^{\prime}-ATATGCTTAAGTTCAGCGGGT- 3^{\prime}). The thermocycling was carried out using a $\mathrm{T} 100^{\mathrm{TM}}$ thermo cycler (Bio-Rad Laboratories, Inc., CA). The thermocycling reaction for both DNA regions was as follows: $95^{\circ} \mathrm{C}$ for 15 min ; followed by 30 cycles of $94^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 56^{\circ} \mathrm{C}$ for 45 sec and $72^{\circ} \mathrm{C}$ for 90 sec ; and a final extension step of $72^{\circ} \mathrm{C}$ for 7 min .

DNA fragments were separated by electrophoresis in 1X TBE buffer and 1.2% agarose gel, stained with SYBR safe DNA Gel Stain (Invitrogen, Thermo Scientific Inc.), and visualized under UV light using the ChemiDOC XRS One 4.5.2 program (Bio-Rad Laboratories Inc.). The PCR products were sent to Genewiz LLC (South Plainfield, NJ) for PCR product purification and sequencing. To identify the species, sequences were checked and edited manually using Geneiuos Prime 2020.1.2 (Auckland, New Zealand). Consensus sequences obtained were compared with those deposited in the GenBank database using BLAST engine search for sequence homology. The newly obtained consensus sequences were submitted to the GenBank database under accession numbers MZ045436 to MZ045466 and MZ045467 to MZ045497 for D2-D3 and ITS rRNA, respectively (Table 1).

Phylogenetic analysis

To perform the phylogenetic analysis, D2-D3 LSU, ITS1-5.8S-ITS2 rDNA sequences obtained
Table 1. Belonolaimus longicaudatus populations characterized in this study.

No.	Sample location	Lab number	Grass	Sample source	Analysis code	$\begin{gathered} \text { D2-D3 } \\ \text { accession } \# \end{gathered}$	$\begin{gathered} \text { ITS } \\ \text { accession \# } \end{gathered}$
1	Ft. Lauderdale, Broward, FL	Experimental site	Bermudagrass Latitude36	Golf course	Bl Broward2 FL	MZ045463	MZ045495
2	Naples, Collier, FL	2019-1202	Bermudagrass 'Tifdwarf'	Golf course	Bl Collier 1 FL	MZ045439	MZ045470
3	Plantation, Broward, FL	2019-1358	Bermudagrass 'Tifeagle	Golf course	Bl-Broward 1-FL	MZ045438	MZ045469
4	Tequesta, Palm Beach, FL	2019-368	Bermudagrass 'TifEagle'	Golf course	Bl PalmBeach1 FL	MZ045449	MZ045481
5	Vero Beach, Indian River, FL	2019-1377	Bermudagrass 'Celebration'	Golf course	B1 Indian River 1 FL	MZ045441	MZ045472
6	Sanibel, Lee, FL	2019-1088	Seashore Paspalum 'SeaIsle 1'	Golf course	Bl Lee1 FL	MZ045445	MZ045476
7	Citra, Marion, FL	Experimental site	Bermudagrass 'Latitude 36'	Golf course	Bl Marion 1 FL	MZ045465	MZ045497
8	Sun City, Hillsborough, FL	Lab culture	Bermudagrass 'Tifway'	Golf course	Bl Hillsborough1 FL	MZ045464	MZ045494
9	The Villages, Lake, FL	2019-497	Bermudagrass 'Tifdwarf'	Golf course	Bl Lake1 FL	MZ045442	MZ045473
10	Houston, Harris, TX	2019-530	Bermudagrass 'Miniverde'	Golf course	Bl Harris1 TX	MZ045459	MZ045491
11	Houston, Harris, TX	2019-531	Bermudagrass 'Miniverde'	Golf course	Bl Harris2 TX	MZ045460	MZ045492
12	Key Largo, Monroe, FL	2019-718	Bermudagrass 'Miniverde'	Golf course	Bl Monroe 1 FL	MZ045448	MZ045479
13	Bradenton, Manatee, FL	2019-734	Bermudagrass 'Tifway'	Golf course	Bl Manatee 1 FL	MZ045462	MZ045478
14	My. Dora, Lake, FL	2019-1051	Bermudagrass 'Tifdwarf'	Golf course	Bl Lake2 FL	MZ045443	MZ045474
15	Birmingham, Jefferson, AL	2019-1243	Bermudagrass 'Tifdwarf'	Golf course	B1 Jefferson1 AL	MZ045436	MZ045467
16	Orlando, Orange, FL	2019-1343	Bermudagrass 'Tifeagle'	Golf course	Bl Orange 1 FL	MZ045466	MZ045480
17	Gainesville, Alachua, FL	2019-1345	St. Augustinegrass 'Unknown'	Lawn	Bl Alachua1 FL	MZ045437	MZ045468

Table 1. Continued.

No.	Sample location	Lab number	Grass	Sample source	Analysis code	$\begin{gathered} \text { D2-D3 } \\ \text { accession } \# \end{gathered}$	$\begin{gathered} \text { ITS } \\ \text { accession \# } \end{gathered}$
19	Hilton Head, Beaufort, SC	2019-1309	Bermudagrass 'Tifdwarf'	Golf course	B1 Beaufort2 SC	MZ045453	MZ045485
20	Lady Lake, Lake, FL	2019-1348	Bermudagrass 'Tifway'	Golf course	Bl Lake4 FL	MZ045444	MZ045475
21	Palm Beach Gardens, Palm Beach, FL	2019-1351	Bermudagrass 'Latitude 36'	Municipality	Bl PalmBeach2 FL	MZ045450	MZ045482
22	Myrtle Beach, Horry, SC	2019-1381	Bermudagrass 'Tifway'	Golf course	B1 Horry SC	MZ045454	MZ045486
23	Myrtle Beach, Horry, SC	2019-1384	Bermudagrass 'Tifway'	Golf course	B1 Horry2 SC	MZ045455	MZ045487
24	Crescent City, Putnam, FL	2019-1500	Bermudagrass 'Tifeagle'	Golf course	B1 Putnam1 FL	MZ045451	MZ045483
25	Anyor, Horry, SC	2019-2195	Centipedegrass	Lawn	B1 Horry3 SC	MZ045456	MZ045488
26	Young Harris, Towns, GA	2019-2157	$\begin{aligned} & \text { Bentgrass Mix } \\ & \text { '1020/1019' } \end{aligned}$	Golf course	Bl Towns 1 GA	MZ045440	MZ045471
27	Luling, St. Charles Parish, LA	2019-2249	Bermuda 'Tifdwarf'	Golf course	B1 St.CharlesParish1 LA	MZ045446	MZ045477
28	Spring Branch, Comal, TX	2019-2375	Bermudagrass	Golf course	Bl Comall TX	MZ045457	MZ045489
29	Spring Branch, Comal, TX	2019-2376	'Miniverde'	Golf course	Bl Comal2 TX	MZ045458	MZ045490
30	Austin, Travis, TX	2019-3799	Bermudagrass 'Miniverde'	Golf course	Bl Travis1 TX	MZ045461	MZ045493
31	Diamondhead, Hancock, MS	2019-3800	Bermudagrass	Golf course	Bl Hancock1 MS	MZ045447	MZ045496

from 31 populations of B. longicaudatus: 17 sequences from Florida, and 5, 5, 1, 1, 1, 1 from South Carolina, Texas, Alabama, Georgia, Lousiana and Mississippi, respectively (Table 1), sequences from B. longicaudatus (specified in the following sections) and other Belonolaimus species (B. euthychilus, B. gracilis and B. maluceroi) retrieved from NCBI databases were aligned over the same length in MUSCLE using MEGA v. X (Kumar et al., 2018). The alignment was analysed to obtain the base substitution model for these sequences using MEGA X (Kumar et al., 2018). For D2-D3 LSU and ITS1-5.8S-ITS2 rDNA sequences, the evolutionary history was inferred by using Tamura-Nie model (Tamura and Nei, 1993). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The phylogram was generated using a base substitution model selected for each alignment and running Maximum Likelihood Model with 1000 bootstrap replicates using MEGA X (Kumar et al., 2018) to assess the degree of support for each branch on the tree (Landa et al., 2008). The D2-D3 sequence from Tylenchorynchus leviterminalis (EU368591) and T. dubius (DQ328707) were used as outgroups for constructing the phylogenetic tree based on the sequences from the D2-D3 expansion segment of 28S rRNA. Tylenchorynchus zeae (EF519711) and T. annulatus (EF030983) were used as outgroups in for the phylogenetic tree based on ITS1-5.8SITS r DNA sequence.

Morphometric characterization

Twenty females were used for morphological and morphometric characterization to supplement the molecular data. Nematodes were picked and transferred to a PCR tube and killed with hot $\left(95^{\circ} \mathrm{C}\right) 4 \%$ formalin. The PCR tube with heatkilled nematodes was immediately placed in a thermos-cycler: $95^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 65^{\circ} \mathrm{C}$ for 10 min , $75^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 85^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 95^{\circ} \mathrm{C}$ for 10 min . After the tube reached room temperature, the tube was rinsed with distilled water, and the content was transferred to a staining dish. Then, nematodes were picked out and transferred to a glass slide with a cavity filled with a mixture of glycerol and
distilled water in proportion of 1:20, placed on a hot plate at $70^{\circ} \mathrm{C}$ for $15-20 \mathrm{~min}$ and mounted on glass slides following the method described by De Grisse (1969) and Habteweld et al. (2019).

Measurements of specimens were taken using the ZEN lite software on ZEISS Axiocam ERc5s digital camera installed on an Olympus BH-2 microscope (Olympus, Japan). Morphological and morphometric characteristics were compared with identification keys for Belonolaimus spp. (Cid del Prado Vera and Subbotin, 2012). Morphometeric characteristics of different populations were statistically analyzed using SAS vr. 9.4 (SAS Institute, Cary, NC). Morphometric characters of the populations were first analyzed by one-way analysis of variance (ANOVA) using the General Linear Model (GLM). Then, the morphometric characters of the two B. logicaudatus subclades were analyzed using two-tail t-test ($\alpha=0.05$). To study the correlation among populations, principal components of analysis of seven morphometric characters which differentiated the two subclades of B. longicaudatus was conducted using a Proc Princom procedures in SAS vr 9.4.

RESULTS

Molecular characterization and phylogenetic relationships

D2-D3 of the $28 S r D N A$: PCR with D2A and D3B primers yielded a product of approximately 751-772 bp in length. D2-D3 expansion segment of 28 S rDNA of the populations showed $96-99 \%$ similarity with B. longicaudatus sequences from NCBI GenBank. The D2-D3 alignment included 42 sequences and had 671 positions in length. Out of the 42 sequences, 31 of them were obtained from B. longicaudatus populations isolated in the present study, 11 sequences were from B. longicaudatus (KF963100, GQ896548, AB6026050), B. maluceroi, B. euthychilus, B. gracilis and two out-group sequences (T. leviterminalis and T. dubius) retrieved from NCBI GenBank. Phylogenetic analysis of the D2-D3 sequences alignment revealed three major clades among Belonolaimus populations on 50% majority consensus (Fig. 1). Clade I contained B. euthychilus (DQ672359, DQ672360, DQ672361) + B. gracilis (DQ672362, DQ672363) (88\%), clade

II B. maluceroi (JN967754) (54\%), and clade III all B. longicaudatus populations including sequences retrieved from GenBank (KF963100, GQ896548, AB6026050) (100%). In this clade, the south Florida B. longicaudatus in the present study and the sequence retrieved from GenBank (AB602650) grouped in a subclade IIIA (91\%), whereas the remaining populations from Florida and other states including the retrieved sequences (KF963100, GQ896548) grouped in a subclade IIIB (94\%). The subclade IIIA populations defined by eight unique autapomorphies in the alignment of the D2-D3 region. Within each of these subclades there were $0-9$ nucleotide ($0-1.3 \%$) differences in D2-D3 of 28 S rRNA gene sequences among B. longicaudatus populations (Fig. 1). However, the south Florida B. longicaudatus populations (subclade IIIA) had differences of $10-$ 18 nucleotides (1.5-2.7\%) from those of the other B. longicaudatus populations (subclade IIIB).

ITS1-5.8S-ITS2 rDNA: PCR with TW81 and AB28 primers yielded a product of approximately 887-941 bp in length. Based on BLAST analysis, ITS1-5.8S-ITS2 of the populations showed 95$99 \%$ similarity with B. longicaudatus sequences from NCBI GenBank. The ITS1-5.8S-ITS2 alignment included 44 sequences and had 1092 positions in length. Out of the 44 sequences, 31 of them were obtained from B. longicaudatus populations isolated in the present study, 13 sequences were obtained from B. longicaudatus (KF963098, GQ896549, AB602614), B. maluceroi, B. euthychilus, B. gracilis and the outgroup sequences (T. zeae and T. annulatus) from NCBI GenBank. Phylogenetic analysis of the ITS sequences alignment generated three major clades on 50% majority consensus (Fig. 2). Clade I contained B. maluceroi (JN967751, JN967752, JN967753), B. longicaudatus sequences retrieved from the GenBank (KF963098, GQ896549, AB602614) and B. gracilis (DQ672386) (60\%), Clade II contained B. euthychilus (DQ672381, DQ672382, DQ672383) + B. gracilis (DQ672385 (100%), and clade III contained all B. longicaudatus populations in the present study (100%). In this clade, most of the south Florida populations formed a separate subclade IIIA (81%), whereas the remaining B. longicaudatus populations grouped in the subclade IIIB with 100% consensus support. The subclade containing most of the south Florida populations is defined by 29 autapomorphies in the ITS region. There were

5-84 (0.5-7.7\%) nucleotide differencesin the ITS1-5.8S-ITS2 gene sequences within B. longicaudatus populations in subclade IIIB and 5-19 (0.5-1.7\%) nucleotide differences within those in subclade IIIA (Fig. 2). Within some populations in both subclades IIIA and IIIB there were nucleotide differences with variable consensus support (Fig. 2). The populations in subclade IIIA differed from those in subclade IIIB by 31-179 (2.8\%-16.4\%) nucleotides. Based on DNA sequence data, populations in the B. longicaudatus group were broadly related to geographic locality (Figs. 1, 2). The eight populations in the subclade IIIA were collected mainly from south Florida except a population from northcentral Florida (Marion County). All the rest of the populations in subclade IIIB were from various localities including some from south Florida (Monroe, Palm Beach, and Manatee Counties).

Morphometric characterization

Observation of morphological and morphometric characters of females revealed that all populations were representatives of B. longicaudatus with an offset lip region, a stylet longer than 100 microns and tail length > stylet length. The morphometric characters of these populations were in the range reported for the species (Table 2). However, there have been intraand inter-population variations in morphology and morphometric characters such as degree of lip constriction, lip length, distance of excretory pore from anterior end, esophagus length, median bulb shape, tail shape, stylet/tail ratio and integument thickness. The range in values of the ratio between stylet and tail length were ≤ 1 in the populations in the subclade IIIA. On the contrary, the highest range value of this ratio was >1 in populations from the subclade IIIB (Table 2).

Statistical analysis of morphometric characters between populations in subclades IIIA and IIIB showed significant differences in some of the morphometric characters. Overall, populations in subclade IIIA (south Florida) had smaller mean lip length, stylet knob width, stylet/tail and tail integument; shorter mean stylet length, excretory pore distance from anterior end, and esophagus length (Table 3). The principal component analysis of seven morphometric characters that were significantly different between the subclades showed that the populations in each subclade IIIA

Figure 1. Phylogenetic relationship based on D2-D3 expansion segments of 28S rDNA gene sequences within the genus Belonolaimus. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei model. The tree with the highest log likelihood (-2519.68) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior \log likelihood value. This analysis involved 42 nucleotide sequences. There were a total of 671 positions in the final dataset. Evolutionary analyses were conducted in MEGA X. Accessions preceded by are B. longicaudatus sequences retrieved from the GenBank ${ }^{\circledR}$.

Figure 2. Phylogenetic relationship based on ITS rDNA sequences within the genus Belonolaimus. The evolutionary history was inferred by using the Maximum Likelihood method and Tamura-Nei model. The tree with the highest \log likelihood (-7123.47) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. This analysis involved 44 nucleotide sequences. There were a total of 1092 positions in the final dataset. Evolutionary analyses were conducted in MEGA X. Accessions preceded by are B. longicaudatus sequences retrieved from the GenBank ${ }^{\circledR}$.

Table 2. Continued.

Population	Subclade IIIB				Subclade IIIA			
	FL B1 Manatee 1 FL	Bl Lake4 FL	Bl Harris 1 TX	Bl Horryl SC	Bl Hilsborough1 FL	Bl Leel FL	$\begin{gathered} \hline \text { B1 Broward2 } \\ \text { FL } \\ \hline \end{gathered}$	Bl Marion1 FL
Nerve ring	189.5 ± 16.5	214.0 ± 22.0	187.4 ± 39.8	210.7 ± 10.5	193.5 ± 11.1	187.0 ± 23.6	209.4 ± 8.0	191.2 ± 7.3
	(159-212)	(175.0-238.1)	(116.0-225.6)	(199.0-229.6)	(181.4-212.0)	(133.6-225.1)	(195.0-217.8)	(180.0-200.5)
Excretory pore	207.4 ± 23.5	238.5 ± 22.8	220.0 ± 24.6	237.3 ± 12.3	209.2 ± 11.3	198.0 ± 22.9	222.6 ± 9.0	211.6 ± 16.1
	(170.7-246.5)	(200.0-263.5)	(186.0-263.5)	(218.0-251.0)	(199.5-230.3)	(143.6-228.0)	(208.5-233.0)	(183.5-228.0)
Esophagus	247.9 ± 27.3	275.5 ± 20.9	269.8 +25.7	282.9 ± 16.8	245.7 ± 11.0	248.9 ± 24.2	283.9 ± 16.6	249.0 ± 9.0
	(210.8-290.0)	(240.0-304.5)	(233.5-309.2)	(265.0-315.7)	(236.0-272.0)	(199.0-288.0)	(257.0-310.6)	(228.1-259.5)
Median bulb length	24.3 ± 2.0	27.2 ± 2.3	26.5 ± 3.3	27.8 ± 2.7	29.4 ± 1.9	27.0 ± 2.0	27.2 ± 1.0	26.0 ± 2.6
	(22.0-27.3)	(24.0-30.0)	(23.0-33.3)	(25.0-32.5)	(25.7-31.3)	(23.9-30.0)	(25.3-28.4)	(23.3-31.4)
Median bulb width	18.5 ± 1.4	20.9 ± 2.0	20.7 ± 3.5	20.8 ± 2.0	19.4 ± 2.2	19.8 ± 1.7	20.2 ± 1.5	19.7 ± 1.2
	(15.7-20.0)	(18.0-24.2)	(16.5-27.0)	(17.0-25.0)	(16.8-22.6)	(17.0-23.2)	(17.6-23.5)	(18.5-22.1)
Anal body width	29.8 ± 1.4	33.0 ± 3.3	35.6 ± 8.5	32.8 ± 2.6	32.1 ± 2.9	30.5 ± 1.4	31.6-1.2	32.1 ± 1.7
	(28-32)	(25.6-37.8)	(26.0-52.7)	(28.7-35.1)	(29.0-37.7)	(27.3-32.9)	(30.2-33.8)	(29.8-35.0)
Tail length (T)	132.5 ± 9.7	139.7 ± 7.7	134.3 ± 9.1	134.3 ± 10.7	133.5-14.6	133.5 ± 12.5	142.4 ± 6.5	134.8 ± 13.0
	(118-145)	(128.0-153.0)	(117.3-146.0)	(107.5-148.0)	(115.0-157.8)	(115.6-147.8)	(137.0-155.4)	(117.3-155.9)
Stylet/tail (St/T)	0.92 ± 0.08	0.96 ± 0.05	0.9 ± 0.1					
	(0.78-1.06)	(0.87-1.01)	(0.8-1.1)	(0.86 $\pm 1.2)$	(0.8-1.0)	(0.7-1.0)	(0.8-0.9)	(0.8-1.0)
Tail integument	7.2 ± 1.1	7.1 ± 0.7	7.1 ± 1.1	7.6 ± 0.6	6.1 ± 0.8	6.5 ± 0.8	7.8 ± 1.3	6.5 ± 1.3
	(5.4-8.6)	(6.4-8.5)	(6.0-9.1)	(6.7-8.4)	(4.8-7.6)	(5.3-8.4)	(6.3-10.1)	(5.0-8.4)

Table 3. Statistically significant morphometric characters of females from populations of Belonolaimus longicaudatus in subclade IIIA (south Florida) and subclade IIIB (other localities) in D2-D3 and ITS phylogenetic trees shown in Figs. 1, 2. All measurements are in micrometers and in the form: mean $(\mathrm{n}=20)$ \pm standard deviation (range).

	Subclade IIIA	Subclade IIIB
Lip length	$9.6 \pm 1.1 \mathrm{~b}$	$10.3 \pm 1.2 \mathrm{a}$
	$(6.7-12.2)$	$(7.8-12.9)$
Stylet length	$118 \pm 7 \mathrm{~b}$	$126 \pm 8 \mathrm{a}$
	$(102-129)$	$(99-142)$
Stylet knob width	$5.4 \pm 0.5 \mathrm{~b}$	$5.7 \pm 0.5 \mathrm{a}$
	$(4.5-6.4)$	$(5.0-6.7)$
Excretory pore distance	$210 \pm 18 \mathrm{~b}$	$226 \pm 26 \mathrm{a}$
	$(144-233)$	$(171-264)$
Esophagus length	$257 \pm 22 \mathrm{~b}$	$269 \pm 26 \mathrm{a}$
	$(199-311)$	$(211-316)$
Stylet/tail	$0.87 \pm 0.07 \mathrm{~b}$	$0.94 \pm 0.08 \mathrm{a}$
	$(0.72-1.0)$	$(0.78-1.2)$
Tail integument	$6.7 \pm 1.2 \mathrm{~b}$	$7.2 \pm 0.9 \mathrm{a}$
	$(4.8-10.1)$	$(5.4-9.1)$

and III B were closely related, with exception of one population from each subclade (Fig. 3).

DISCUSSION

This study showed that there were variations in DNA sequences among the populations of B. longicaudatus from turfgrasses. Differences in sequences of rDNA genes between B. longicaudatus populations were observed in previous studies (Cherry et al., 1997; Gozel et al., 2006; Han et al., 2006b; Cid del Prado Vera and Subbotin, 2012). In the phylogenetic trees using D2-D3 of the 28 S rDNA and ITS1-5.8S-ITS2 rDNA gene sequences, the populations from turfgrasses in the present study clustered in two different moderately supported subclades (IIIA and IIIB), which reflected their geographical locations. Subclade IIIA contained populations mainly from south Florida while subclade IIIB contained populations from Florida and other states. Subclade IIIA showed unique autapomorphies for the group which shared 8 and 29 autapomorphies for D2-D3 and ITS regions, respectively. The number of autapomorphies are in the range reported for B. longicaudatus consisting of 10-17 and 26-51
autapomorphies for D2-D3 and ITS regions, respectively (Gozel et al., 2006).

Subclade IIIA contained south Florida populations except one population from northcentral Florida, but not populations from other states. The sod for the northcentral Florida (Marion County) site was received from south Florida (Sarasota County), which may explain the similarities of this population with those from south Florida. Morphological and genetic differences that were related to different geographical localities were reported for B. longicaudatus populations (Gozel et al. 2006; Cid del Prado Vera and Subbotin, 2012). However, these differences may have been induced by the different hosts of these populations. In our study, turfgrasses were the only host of the populations indicating that the variability among our populations was mainly related to the geographical localities. Our principal components analysis supported that populations were correlated to each other based on the B. longicaudatus subclades to which they belong. This suggests populations of same subclades are correlated to their geographical locations.

The three D2-D3 B. longicaudatus sequences retrieved from GenBank fit into the respective
subclades corresponding to their localities. AB602605, which was obtained from Hillsborough County in south Florida, clustered together in the south Florida subclade IIIA whereas KF963100 and GQ896548, which were obtained from Levy County in north-central Florida and Delaware, respectively, clustered together in subclade IIIB. However, the three ITS B. longicaudatus sequences clustered together in clade I with B. maluceroi. The possible explanations for the discordance between D2-D3 and ITS trees could be caused by independent nucleotide substitutions and/or occurrence of polymorphism in the D2-D3 and ITS regions (Gozel et al., 2006; Han et al., 2006b; Kutsuwa et al., 2015). Cid del Prado Vera and Subbotin (2012) and Kutsuwa et al. (2015) reported results consistent with those of the present study. In their phylogenetic analysis based on the ITS region, some B. longicaudatus populations grouped together with B. maluceroi in the same
clade. Furthermore, none of the nominal Belonolaimus species they studied were monophyletic based on this gene. These findings may indicate that B. longicaudatus is a species complex.

The morphometrics of the populations from south Florida in subclade IIIA fit those of the paratypes of this species from central Florida reported by Rau (1958), which have values of the stylet and tail length ratio ranging from 0.68-1.0. Subsequently, Rau (1961) reported stylet and tail length ratio values ranging from 0.67-1.14 for another population collected from the same host corn (Zea mays) and type locality (Sanford, FL) and pointed out the presence of many "ecotypes' of this species. Our results are in line with this statement and the results of previous studies reporting intra- and inter-population variations in morphology and morphometric characters among populations from different localities and host plants

Figure 3. Principal component analysis of the means of seven morphometric characters shown in Table 3 from eight populations of Belonolaimus longicaudatus. Populations in the same subclade of B. longicaudatus (Figs. 1 and 2) generally grouped together except one population from each subclade. Numbers represent: 1= B1-Manatee1-FL, $2=$ B1-Lake1-FL, 3= B1-Harris1TX, 4= Bl-Horry1-SC, 5=Bl-Hillsborough-FL, 6=Bl-Lee1-FL, 7=Bl-Broward2-FL, 8=Bl-Marion-FL.
(Robbins and Hirschmann, 1974; Duncan et al., 1996; Gozel et al., 2006; Han et al., 2006b).

The morphological similarities between the populations from turfgrasses in south Florida and paratypes of B. longicaudatus prevent any speculation about the origin of this species in Florida. The B. longicaudatus populations with stylet and tail length ratios ≥ 1 may have evolved on slash pine that is native to central and south Florida or turfgrasses such as St. Augustinegrass (Stenotaphrum secundatum) that is native to regions bordering the Gulf of Mexico. Our results confirm that B. longicaudatus is a species complex that deserves further studies to verify differences in the biology, parasitic habit, and damaging effect on turfgrasses of populations with stylet and tail length ratios of ≤ 1 compared with those with ratios ≥ 1.

LITERATURE CITED

Abu-Gharbieh, W. L., and V. G. Perry. 1970. Host differences among Florida population of Belonolaimus longicaudatus. Journal of Nematology 2:209-216.
Cassidy, G. H. 1930. Nematodes associated with sugarcane in Hawaii. Hawaiian Planters Record 34: 379-387.
Cherry, T., A. L. Szalanski, T. C. Todd, and T. O. Powers. 1997. The internal transcribed spacer region of Belonolaimus (Nematoda: Belonolaimidae). Journal of Nematology 29:23-29.
Cid del Prado Vera, I., and S. A. Subbotin. 2012. Belonolaimus maluceroi sp. n. (Tylenchida: Belonolaimidae) from a tropical forest in Mexico and key to the species of Belonolaimus. Nematropica 42: 201-210.
Crow, W. T. 2018. Sting Nematode, Belonolaimus longicaudatus Rau (Nematoda: Secernentea: Tylenchida: Tylenchina: Belonolaimidae: Belonolaiminae). UF/IFAS Extension (EENY618), Revised November 2018, Gainesville, FL 32611.
Crow, W. T., and L. W. Duncan. 2018. Management of plant-parasitic nematode pests in Florida. Pp. 209-246 in S. A. Subbotin and J. J. Chitambar (eds.) Plant Parasitic Nematodes in Sustainable Agriculture of North America V. 2 - Northeastern, Midwestern and Southeastern USA. Cham,

Switzerland: Springer.
Crow, W. T., A. Habteweld, and T. Bean. 2020. Mist chamber extraction for improved diagnosis of Meloidogyne spp. from golf course bermudagrass. Journal of Nematology 52:1-20.
De Grisse, A. T. 1969. Redescription ou modification de queques techniques utilisés dans l'étude des nématodes phytoparasitaires. Meded. Rijksfakulteit Landbouwwetenschappen Gent 34:351-69.
Duncan, L. W., J. W. Noling, R. N. Inserra, and D. Dunn. 1996. Spatial patterns of Belonolaimus spp. among and within citrus orchards on Florida's central ridge. Journal of Nematology 28:352-359.
Filipjev, I.N. 1936. On the classification of the Tylenchinae. Proceedings of the Helminthological Society of Washington 3:80-82.
Golden, A. M. 1971. Classification of the genera and higher categories of the order Tylenchida (Nematoda). Pp. 191-232 in B. M. Zuckerman (ed.) Vol. I. Plant Parasitic Nematodes. Academic Press: New York.
Gozel, U., B. J. Adams, K. B. Nguyen, R. N. Inserra, R. M. Giblin-Davis, and L. W. Duncan. 2006. A phylogeny of Belonolaimus populations in Florida inferred from DNA sequences. Nematropica 36:55-171.
Habteweld, A., and W. T. Crow, 2018. Nematodes are a hidden threat to turfgrass industry: The UF Nematodes Assay Lab experience. Journal of Nematology 50:638 (Abstract).
Habteweld, A., F. Akyazi, S. Joseph, W. T. Crow, E. Abebe, and T. Mekete. 2019. Description of Hirschmanniella dicksoni n. sp. (Nematoda: Pratylenchidae) from rhizosphere soil of limpograss from Florida, USA. Journal of Nematology $51:$ e2019-83.
Han, H.-R., D. W. Dickson, and D. P. Weingartner. 2006a. Biological characterization of five isolates of Belonolaimus longicaudatus. Nematropica 36:25-35.
Han, H.-R., A. Jeyaprakash, D. P. Weingartner, and D. W. Dickson. 2006b. Morphological and molecular biological characterization of Belonolaimus longicaudatus. Nematropica 36:37-52.
Harrison, J. M., and C. D. Green. 1976. Comparison of centrifugal and other methods
for standardization of extraction of nematodes from Soil. Annals of Applied Biology 82:299-308.
Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547-9.
Kutsuwa, K., D. W. Dickson, J. A. Brito, A. Jeyaprakash, and A. Drew. 2015. Belonolaimus longicaudatus: An emerging pathogen of peanut in Florida. Journal of Nematology 47: 87-96.
Landa, B. B., J. E. P. Rius, N. Vovlas, R. Carneiro, C. M. N. Maleita, I. M. D. Abrantes, and P. Castillo. 2008. Molecular characterization of Meloidogyne hispanica (Nematoda, Meloidogynidae) by phylogenetic analysis of genes within the rDNA in Meloidogyne spp. Plant Disease 92:1104-10.
Lucas, L. T. 1982. Population dynamics of Belonolaimus longicaudatus and Criconemella ornata and growth response of bermudagrass and over seeded grasses on golf greens following treatments with nematicides. Journal of Nematology 14:358-363.
Perry, V. G., and A. J. Norden. 1963. Some effect of cropping sequence on populations of certain plant nematodes. Soil and Crop Science Society of Florida Proceedings 23:116-120.
Rau, G. J. 1958. A new species of sting nematode. Proceedings of the Helminthological Society of Washington 25:95-98.
Rau, G. J. 1961. Amended descriptions of Belonolaimus gracilis Steiner, 1949, and B. longicaudatus Rau, 1958 (Nematoda: Tylenchida). Proceedings of the

Helminthological Society of Washington 28:198-200.
Rau, G. J. 1963. Three new species of Belonolaimus (Nematoda: Tylenchida) with additional data on B. longicaudatus and B. gracilis. Proceedings of the Helminthological Society of Washington 30:119-128.
Robbins, R. T., and H. Hirschmann. 1974. Variation among populations of Belonolaimus longicaudatus. Journal of Nematology 6:8794.

Robbins, R. T., and K. R. Barker. 1974. The effect of soil type, particle size, temperature, and moisture on reproduction of Belonolaimus longicaudatus. Journal of Nematology 6:1-6.
Sethi, C. L., and G. Swarup. 1968. Plant Parasitic Nematodes of North-Western India I. the Genus Tylenchorhynchus. Nematologica 14:7 7-88.
Siddiqi, M.R., B. Mukherjee, and M. K. Dasgupta. 1982. Tylenchorhynchus microconus n. sp., T. crassicaudatus leviterminalis n . subsp. and T. coffeae Siddiqi and Basir, 1959 (Nematoda: Tylenchida). Systematic Parasitology 4: 257262.

Steiner, G. 1949. Plant nematodes the grower should know. Proceedings of the Soil Science Society of Florida 4-B (1942):72-117.
Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution 9:678-87.
Tamura, K., and M. Nei. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.

Received:
30/IV/2021
Recibido:

[^0]: RESUMEN
 Habteweld, A., M. L. Mendes, R. N. Inserra, y W. T. Crow. 2021. Relaciones filogenéticas de algunas poblaciones de Belonolaimus longicaudatus asociadas a césped en el Sureste de los Estados Unidos. Nematropica 51:41-55.

 Las regiones D2-D3 e ITS de ADNr de 31 poblaciones de B. longicaudatus asociadas a césped en

