RESEARCH NOTE/NOTA DE INVESTIGACIÓN

MANAGEMENT OF PRATYLENCHUS COFFEAE ON BANANA PLANTLETS BY SOLARIZATION

J. J. S. Araújo¹, M. F. S. Muniz*, S. S. Lima¹, G. M. Filho¹, J. L. Souza², and R. A. Ferreira Junior¹

¹Universidade Federal de Alagoas, Centro de Ciências Agrárias, BR 104 Norte km 85, CEP 57100-000 Rio Largo, AL, Brazil. ²Universidade Federal de Alagoas, Instituto de Ciências Atmosféricas, Cidade Universitária, CEP 57072-970 Maceió, AL, Brazil. *Corresponding author: mf.muniz@uol.com.br

ABSTRACT


The objective of this work was to investigate the effects of solarization on banana rhizome seedlings infected with Pratylenchus coffeae. The experiment was performed outdoors, during the dry season, with infected rhizomes wrapped within two layers of clear plastic bags and exposed to sunlight for 0, 2, 6, and 8 hr, from 08:30 to 16:30 hr. The air temperatures of the area were recorded, and the rhizome temperatures were recorded and registered automatically and continuously with a PROB-107 sensor. After exposure to sunlight, the infected rhizomes were grown in pots containing sterilized soil under greenhouse conditions for 3 months. The percentage of sucker emergence and nematode population in the root, rhizome, and soil was recorded. Solarization treatments did not affect sucker emergence. The maximum temperatures registered in the rhizomes were of 27.0, 36.9, 54.3 and 51.8ºC (corresponding to the exposure periods of 0, 2, 6, and 8 hr, respectively). The sunlight exposition treatment of infected rhizomes for 6 and 8 hr reduced the population density of P. coffeae. Solarization is a promising method to reduce plant-parasitic nematode populations in banana plantlets.

Key words: heat treatment, lesion nematode, Musa spp.

RESUMO


O objetivo deste trabalho foi avaliar o tratamento de mudas infectadas com Pratylenchus coffeae com o uso da solarização. O experimento foi implantado no Centro de Ciências Agrárias - CECA, em área a céu aberto, em dia quente e seco. As mudas infectadas foram envoltas em sacos plásticos transparentes durante 0, 2, 6 e 8 hr, no período de 8:30 às 16:30 hr. A temperatura do ar do local foi registrada assim como foram obtidas medições automáticas e contínuas da temperatura dos rizomas com o sensor PROB-107. Posteriormente, as mudas foram cultivadas em vasos contendo solo esterilizado e mantidas em casa de vegetação. A avaliação do experimento foi realizada três meses após a aplicação dos tratamentos, observando-se o percentual de brotação das mudas e a população de nematóides em raiz, rizoma e solo. Ao final do período experimental obteve-se 100% de brotação das mudas em todos os tratamentos. A temperatura máxima alcançada nos rizomas em cada tratamento foi de 27, 36,9, 54,3 e 51,8ºC, correspondendo aos tempos de exposição de 0, 2, 6 e 8 hr, respectivamente. Os resultados obtidos mostraram que os períodos de 6 e 8 horas de exposição das mudas à energia solar proporcionaram as maiores reduções da densidade populacional de P. coffeae.

Palavras chave: Musa spp., nematoide das lesões radiculares, termoterapia

Banana (Musa spp.) is the second most cultivated fruit crop in Brazil, with an annual production of approximately 7 million tons. In Brazil, the major banana-growing areas are located in the Northeast region, with approximately 33% of the overall national production (IBGE, 2015). Yet, average Brazilian productivity at 14.5 t/ha remains low compared to global leaders such as India at 37.0 t/ha per year (FAO, 2014). Plant-parasitic nematodes may cause severe losses to banana production (Sarah, 1989; Gowen et al., 2005). In cash crops, production losses ranging from 10% to 50% have been documented (Pinochet, 1986; Davide, 1996). In Brazil, losses reaching 100% have been recorded (Zem, 1982).

More than 140 species of plant-parasitic nematodes are associated with Musa spp. (Gowen et al. 2005). Among the most important plant-

Some of the major nematode management techniques for banana production in Brazil are tissue-cultured propagated plants, crop rotation with Crotalaria spp. or Tagetes spp., and the use of organophosphate and carbamate nematicides (Salomão and Siqueira, 2015; Cordeiro et al., 2016). Another useful technique previously tested in other countries consists in the solarization of banana planting material (Mbwana and Seshu-Reddy, 1995; Gaidashova et al., 2003; Wang and Hooks, 2009). Only limited information on solarization against plant-parasitic nematodes on banana is available in Brazil. Therefore, this research, aimed to evaluate solarization of the banana propagative material, is needed.

The experiment was designed in a completely randomized layout with four treatments and five replicates (Salomão and Siqueira, 2015). Nematode reproduction factor (Rf) [Rf = final population (root+rhizome+soil)/initial population from the rhizome] for each sample was calculated according to Oostenbrink (1966).

The Lilliefors-test of homogeneity of variances and normality was applied and a square root transformation ($\sqrt{x + 1}$) used to normalize the data. Data were subjected to analysis of variance using the F-test, and means were compared by the Scott-Knott test at 5% probability. In addition, regression analyses between the number of nematodes in the rhizome, roots, and soil, final nematode population, and Rf versus the period of exposition to the sunlight were performed. All statistical analyses were conducted using the software SAEG 5.0 (UFV, Viçosa, MG, Brazil).

The experiment was designed in a completely randomized layout with four treatments and five replications. The treatments consisted of four increasing hours of solarization periods: 0, 2, 6, and 8 h, within the period of 8:30 to 16:30 h, with rhizomes being individually wrapped in a double layer of transparent 14-µm thick plastic film. One-day periods were used based on a preliminary assay. After the application of each treatment, the plantlets were transferred to 8-L plastic pots filled with sterilized soil and maintained under greenhouse conditions for 3 months.

The percentage of sucker emergence and the nematode population in the soil, rhizome, and roots were evaluated after the 3-month period. Nematodes were extracted from 100 cm³ of soil and 10 g of roots and 10 g of rhizome using centrifugation-flotation methods (Coolen and D’Herde, 1972; Jenkins, 1964).

Following extraction, nematodes were fixed in a 4% formaldehyde heated solution. The nematode population was estimated based on the counting of 1 ml suspension in a Peters’ slide, under an inverted light microscope. The fixed Pratylenchus was identified to species (Gonzaga et al., 2012). Nematode reproduction factor (Rf) [Rf = final population (root+rhizome+soil)/initial population from the rhizome] for each sample was calculated according to Oostenbrink (1966).

The Lilliefors-test of homogeneity of variances and normality was applied and a square root transformation ($\sqrt{x + 1}$) used to normalize the data. Data were subjected to analysis of variance using the F-test, and means were compared by the Scott-Knott test at 5% probability. In addition, regression analyses between the number of nematodes in the rhizome, roots, and soil, final nematode population, and Rf versus the period of exposition to the sunlight were performed. All statistical analyses were conducted using the software SAEG 5.0 (UFV, Viçosa, MG, Brazil).

The Lilliefors-test of homogeneity of variances and normality was applied and a square root transformation ($\sqrt{x + 1}$) used to normalize the data. Data were subjected to analysis of variance using the F-test, and means were compared by the Scott-Knott test at 5% probability. In addition, regression analyses between the number of nematodes in the rhizome, roots, and soil, final nematode population, and Rf versus the period of exposition to the sunlight were performed. All statistical analyses were conducted using the software SAEG 5.0 (UFV, Viçosa, MG, Brazil).

The Lilliefors-test of homogeneity of variances and normality was applied and a square root transformation ($\sqrt{x + 1}$) used to normalize the data. Data were subjected to analysis of variance using the F-test, and means were compared by the Scott-Knott test at 5% probability. In addition, regression analyses between the number of nematodes in the rhizome, roots, and soil, final nematode population, and Rf versus the period of exposition to the sunlight were performed. All statistical analyses were conducted using the software SAEG 5.0 (UFV, Viçosa, MG, Brazil).

The Lilliefors-test of homogeneity of variances and normality was applied and a square root transformation ($\sqrt{x + 1}$) used to normalize the data. Data were subjected to analysis of variance using the F-test, and means were compared by the Scott-Knott test at 5% probability. In addition, regression analyses between the number of nematodes in the rhizome, roots, and soil, final nematode population, and Rf versus the period of exposition to the sunlight were performed. All statistical analyses were conducted using the software SAEG 5.0 (UFV, Viçosa, MG, Brazil).
Fernández and Ortega (1998), economic threshold densities of *P. coffeae* have been estimated at 5,000-10,000 nematodes/100 g roots in high-fertility soils, whereas 1,000-5,000 nematodes/100 g roots constitute a threshold in low-fertility soils.

Solarization promoted an increase in the temperature of the rhizomes, up to 54.40°C, registered at 14:40 h, while the maximum air temperature was 31.5°C, at 13:00 h (Fig. 2). According to Ferraz and Brown (2002), phytonematodes do not survive temperatures higher than about 50°C. Considering heat units, the higher suppression of nematode population required 112.85 accumulated h, equivalent to 7.60 h of exposure to sunlight (Fig. 3).

The regression analyses performed using a cubic inverse model for the nematode population in the rhizome and root; with a quadratic inverse model for soil and final population (Fig. 4), and with a linear model for Rf (Fig. 5) were significant. A slight increase in the nematode population was observed after a 2-h exposure (Fig. 4). The highest temperature reached in the rhizomes was 36.9°C, while the air temperature reached only 29.1°C (Fig. 2). This result is also in accordance with the heat units, which were near zero (Fig. 3). *Pratylenchus coffeae* is capable of surviving in a wide temperature range, even though the optimum temperature for its development is considered to be 25-30°C (Acosta and Malek, 1979; Tuyet et al., 2013).

The few scientific studies published about the use of solarization on banana seedlings infected by plant-parasitic nematodes employed a solarized box constructed of wood and glass, which after reaching an internal temperature of 65°C was used to treat the seedlings for at least 20 min, leading to a drop in *P. goodeyi* population in plant roots 300, 450, and 650 days after planting (Mbwana and Seshu-Reddy, 1995). On the other hand, Wang and Hooks (2009) recommended the use of a transparent plastic film to wrap the seedlings individually, but did not provide a duration required for the treatment.

The present study used a double plastic-film system aiming at higher efficiency with the solarization technique. Other authors observed an increase in soil temperature using the same system (Raymundo et al., 1986; Stapleton et al., 1999). Our results proved that solarization is a promising method to reduce nematode populations in banana plantlets and can be used as an alternative to hot water treatment (15-25 min at 55°C) (Gowen et al., 2005). Furthermore, the double layer of plastic film is easier for farmers because hot water treatment is limited due to the cost of the equipment required. Additional field tests are necessary to determine the viability of the double layer solarization technique and the feasible utilization of solarized banana plantlets by farmers.

**ACKNOWLEDGMENT**

The first author thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.
Fig. 2. Temperatures (°C) in banana rhizomes registered with a PROB-107 sensor and in the air as recorded by the Agrometeorological Station during a solarization period.

Fig. 3. Heat units observed in banana rhizomes after exposition to solar energy. Log-normal model is: \( y = -0.2637 + 113.1103 \exp\left(-0.5\ln(x)^2/7.5998^2/0.4429^2\right) \) \( (R^2 = 0.999; P < 0.01; df = 45) \).
Fig. 4. Predicted Pratylenchus coffeae population (y) in banana rhizome, root, and soil and the final nematode population (rhizome+root+soil) in response to different periods of exposure of the banana plantlets to solarization. Equations are: Rhizome $y^1 = 0.0228 - 0.0052 x + 0.000414 x^3$ ($R^2 = 0.998, P < 0.01, df = 1$); Root $y^1 = 0.0066 - 0.000432 x + 0.000080 x^3$ ($R^2 = 0.999, P < 0.01, df = 1$); Soil $y^1 = 0.0114 - 0.0027 x + 0.00071x^2$ ($R^2 = 0.964, P < 0.01, df = 1$); Final $y^1 = 0.0055 - 0.0012 x + 0.0004 x^2$ ($R^2 = 0.999, P < 0.01, df = 1$).

Fig. 5. Pratylenchus coffeae reproduction factor ($Rf = P_f/P_i$) in response to different periods of banana plantlet exposure to solarization. Equation is: $Rf = 6.2060 - 0.5740x$ ($R^2 = 0.986; P < 0.01; df = 2$).
(CAPES) for support through a Master’s degree scholarship.

LITERATURE CITED


