MOLECULAR CHARACTERIZATION OF SIX LONGIDORUS SPECIES FROM SWITZERLAND WITH THE DESCRIPTION OF LONGIDORUS HELVETICUS SP.N. (NEMATODA, DORYLAIMIDA)

by
F. Lamberti, P. Kunz, J. Grunder, S. Mouinari, F. De Luca, A. Agostinelli and V. Radicci

Abstract

Summary. Six species of Longidorus were found during a survey of longidorid nematodes carried out during 1996-2000 in fruit orchards in Switzerland. They are L. elongatus (De Man) Thorne et Swanger; L. macrosoma Hooper; L. profundorum Hooper; L. raskii Lamberti et Agostinelli; L. arthensis Brown, Grunder, Hooper, Klingler et Kunz and L. belveticus sp.n. L. helveticus is a bisexual species characterized by body length of ca. 8 mm , odontostyle of ca. 135 mm , hemi-elliptical lip region, continuous with the rest of the body, amphidial pouches not lobed, equally developed female genital branches and bluntly rounded tail. The first juvenile stage has a digitate tail. L. belveticus resembles L. macrosoma, L. poessneckensis Altherr, L. picenus Roca, Lamberti et Agostinelli and L. nevesi Macara. The six species are characterized by superoxide dismutase and esterase isozymes and by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of amplified ITS.

Several species of Longidorus Micoletzky occur in Switzerland (Klingler et al., 1985b) and many of them are large and morphometrically similar (Klingler et al., 1983; Lamberti and Agostinelli, 1993; Brown et al., 1994) causing identification problems for non-specialists.

Isoelectrofocusing superoxide dismutase (SOD) profiles seem an appropriate and efficient method in separating species of Xiphinema (Lamberti et al., 1999b), Heterodera (Molinari et al., 1996) and Meloidogyne (Molinari, 2001). Recombinant DNA techniques are frequently being used to differentiate nematode species within a genus (Guirao et al. 1995; Braasch et al., 1995; Irdani et al., 1996; Schmitz et al., 1998; Duncan et al., 1999; Lamberti et al., 1999a; 1999b).

Analysis of SOD and esterase isozymes and polymerase chain reaction-restriction fragment
length polymorphism (PCR-RFLP) were used to separate populations of Longidorus species collected in Switzerland during 1996-2000; some of the populations represent, to the best of our knowledge, a species new to science which is described here as Longidorus belveticus sp.n.

Materials and methods

Soil samples were collected from the rhizosphere of orchard trees at different localities. Nematodes were extracted by sieving and centrifugal flotation (Coolen and D'Herde, 1977 modified by Kunz). For taxonomic studies, specimens were killed in hot 5% formalin, mounted in anhydrous glycerol and measured with the aid of a camera lucida and with a microscope
combined with a computer aided, pixel-based system from Zeiss AG (Brown et al., 1994).

For isozyme activity analysis, hand-picked nematodes were placed in a small volume of distilled water and rinsed to cleanse them from debris. Aliquots of ten active specimens were then transferred to a plastic Eppendorf-shaped miniature homogenizer (Biomedix, U.K.). The distilled water was replaced with $10 \mu \mathrm{l}$ of the extraction buffer, consisting of 20% sucrose 0.1 M Trizma-Base, 0.08 M boric acid, $\mathrm{pH} 8.4,2.5$ mMEDTA, $5 \mu \mathrm{~g}$ of bromophenol blue with the inhibitors of proteases PMSF (1 mM), pepstatin ($1 \mu \mathrm{M}$) and leupeptin ($1 \mu \mathrm{M}$). Samples kept in an ice bath were homogenized in the extraction tube, using a small plastic pestle, connected to a rotor and then centrifuged at $10,000 \mathrm{rpm}$ for five mintues. The clarified supernatants were used immediately for electrophoresis.

SOD isozymes were separated by isoelectrofocusing (IEF) and esterase isozymes by native polyacrylamide gel electrophoresis (n-PAGE). Electrophoresis was carried out using Phast System equipment (Pharmacia Biotech, USA), which, associated with small size gels ($4 \times 4 \mathrm{~cm}$) and allowing pre-programming of the chosen separation method, exhibited a high level of accuracy and reproductibility of band position. Procedures are described in Molinari et al, (1996).

SOD activity was detected by its ability to inhibit the reduction of nitrobluetetrazolium (NBT) by riboflavin (Molinari et al. 1997). Esterase bands were visualized by staining gels for 20 min in the Phast System Developer set at $37{ }^{\circ} \mathrm{C}$, using a solution containing $0.02 \%(\mathrm{w} / \mathrm{v})$ of both α - and β-naphthyl acetate and 0.05% fast blue RR salt in 0.1 M potassium phosphate buffer, pH 6.0 (Soltis et al., 1983). Stained esterase gels were rinsed in a preserving solution consisting of 13% glycerol and 10% acetic acid; all the gels were dried overnight. Mini-gels were scanned by means of a ScanJet II cx (Hewlett Packard). SOD gels were arranged by computer as negative images to strengthen
band detection. Finally, gels were printed with a high-quality Laser Printer Jet 4, Hewlett Packard.

For PCR-RFLP, genomic DNA was isolated from single nematodes, as described by Molinari et al., (1997). For these samples, a modified lysis buffer was used containing $50 \mathrm{mM} \mathrm{KCL}, 10 \mathrm{mM}$ Tris-HC1 $\mathrm{pH} 8.3,2.5 \mathrm{mM} \mathrm{MgCl} 2,0.1 \mathrm{mg} / \mathrm{ml}$ gelatin, $0.45 \% \mathrm{NP} 40,0.45 \%$ Tween $20,10 \mathrm{mg} / \mathrm{ml}$ proteinase K. Sequences corresponding to ITS, 28 S and 18 S subunits of the rDNA cistron were amplified and analyzed for length polymorphism among nematode populations. PCR amplification conditions were: denaturation at $94^{\circ} \mathrm{C}$ for 1 min , annealing at $55^{\circ} \mathrm{C}$ for 50 sec and extension at 72 ${ }^{\circ} \mathrm{C}$ for 2 min , repeated for 35 cycles.

Following PCR, $1 / 10$ of each amplification product was digested with the restriction enzymes: Eco RI, Dde I, Rsa I, Alu I, Ava II and Hinf I (Lamberti et al., 1999a).

Results

The morphometric approach to the study of the populations revealed the presence of six species. They are L. elongatus (de Man, 1876) Thorne et Swanger, 1936; L. macrosoma Hooper, 1961; L. profundorum Hooper, 1966; L. raskii Lamberti et Agostinelli, 1993; L. arthensis, Brown, Grunder, Hooper, Klingler et Kunz, 1994 and an undescribed species which is here named L. belveticus.

Descriptions

LONGIDORUS ELONGATUS (De Man, 1876)
Thorne et Swanger, 1936
(Tables I and VII; Figs 1, 2, 20-22)

A single population of L. elongatus was found mixed with L. macrosoma, L. profundorum and L. arthensis in the rhizosphere of a pear tree (Pyrus communis L.) at Horgen.

Table I - Morpbometrics of a population of Longidorus elongatus from Switzerland

Locality	Horgen
Host	Pear
n	10 우
L (mm)	$\begin{aligned} 6 & \pm 0.44 \\ 5.1 & -6.5 \end{aligned}$
	$\begin{gathered} 107.5 \pm 7.01 \\ 92.2-116.3 \end{gathered}$
b	$\begin{aligned} & 13.2 \pm 1.50 \\ & 10.5-15.3 \end{aligned}$
	$\begin{array}{r} 117.6 \pm 11.41 \\ 98.4-137.6 \end{array}$
	$\begin{aligned} & 1.2 \pm 0.06 \\ & 1.1-1.3 \end{aligned}$
V\%	$\begin{gathered} 48.6 \pm 1.17 \\ 47-51 \end{gathered}$
Odontostyle $\mu \mathrm{m}$	$\begin{gathered} 87.3 \pm 3.52 \\ 80-94 \end{gathered}$
Odontophore $\mu \mathrm{m}$	$\begin{aligned} & 65.1 \pm 3.69 \\ & 60.6-71.8 \end{aligned}$
Oral aperture to guide ring $\mu \mathrm{m}$	$\begin{aligned} & 32.1 \pm 1.29 \\ & 29.4-33.5 \end{aligned}$
Tail $\mu \mathrm{m}$	$\begin{aligned} & 51.6 \pm 4.33 \\ & 46.5-61.8 \end{aligned}$
J (hyaline portion of tail) $\mu \mathrm{m}$	$\begin{gathered} 10.1 \pm 1.10 \\ 9-13 \end{gathered}$
Body diam. at lip region $\mu \mathrm{m}$	$\begin{array}{r} 14 \pm 0.52 \\ 13.5-14.7 \end{array}$
Body diam. at guide ring $\mu \mathrm{m}$	$\begin{aligned} & 23.3 \pm 0.83 \\ & 21.8-24.7 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	$\begin{aligned} & 46.1 \pm 2.32 \\ & 41.8-48.8 \end{aligned}$
Body diam. at vulva $\mu \mathrm{m}$	$\begin{aligned} & 56.3 \pm 3.18 \\ & 51.2-60.6 \end{aligned}$
Body diam. at anus $\mu \mathrm{m}$	$\begin{aligned} & 42.8 \pm 1.86 \\ & 40.6-46 \end{aligned}$
Body diam: at beginning of J $\mu \mathrm{m}$	$\begin{array}{r} 20.6 \pm 1.27 \\ 18-21.8 \end{array}$

Female body of medium size, assuming a J or open C posture when killed; it tapers very gradually towards the extremities. Lip region cylindrical, continuous with or imperceptibly offset from the rest of the body, anteriorly flattened and laterally rounded. Amphidial pouches slightly but distinctly bilobed, with symmetrical lobes and obscure aperture. Vulva almost at mid-body; vagina occupying from $1 / 2$ to $2 / 3$ the body diameter; genital system amphidelphic with almost equally developed branches; uteri devoid of sperms; a large strongly muscularized sphincter separates the uterus from the oviduct; ovaries reflexed with large oocytes. Prerectum very long, 10 to 15 times anal bodywidth; rectum as long as or slightly longer then the anal body-width. Tail conoid with rounded terminus, convex dorsally and slightly concave ventrally, bearing two or three papillae on each side.

Male and juveniles not found.
The head and tail morphology of this population of L. elongatus is identical to that of topotypes (Hooper, 1961); biometrically the Swiss specimens are a little larger than Dutch and British populations (Hooper, 1961; 1973).

Fig. 1 - Photomicrographs of Longidorus elongatus: A, female anterior region; B, female posterior region.

According to the Chen et al., (1997) polytomous key for the identification of Longidorus species the code for this Swiss population is: A3, B2, C2/3, D3, E2, F3, G2, H2, I1; which fits the code proposed for L. elongatus.

Electrofocusing of SOD isoforms of the Horgen population of L. elongatus (Fig. 20) showed a wide homology with the pattern of one population of L. elongatus from Scotland (Lamberti et al., 1999a; Crozzoli et al., 2000), although it lacks the acidic isoforms observed in the Scottish population. The esterase profile (Fig. 21) unequivocally descrimintes L. elongatus by two bands at Rm 0.45 and 0.5 .

The PCR product of the ITS region of L. elongatus from Switzerland was about 1600 kb (Table VII) and it was digested by the six restriction enzymes giving the pattern indicated in Fig. 2.

longidorus macrosoma Hooper, 1961.

(Tables II, and VII; Figs. 3-6, 20-22)

Populations of L. macrosoma were found at Liestal (Table II), Arth and Steinerberg, in the rhizosphere of cherry trees, Prunus avium L., and at Horgen in the rhizosphere of a pear tree.

Female with large size body, some specimens longer than 11 mm , assuming in the female a more or less open C posture, when killed; body tapering gradually towards the extremities. Lip region continuous with the rest of the body, frontally concave or flattened. Amphidial pouches pocket to funnel shaped, not lobed at the base, with obscure opening. Vulva almost at mid-body; vagina occupying slightly more than $1 / 2$ of the corresponding body diameter. Genital system amphidelphic with equally developed branches; uteri filled with large sperms; a large and well muscularized sphincter separates the uterus from the oviduct; ovaries reflexed with large oocytes. Prerectum ca. 10 times as long as the anal body width, rectum as long as $2 / 3$ of the anal body width. Tail short,
conoid with broadly rounded terminus, dorsally convex and ventrally flat, bearing two caudal papillae on each side.

Males numerous, the body posterior region more coiled than in females; bow-shaped, robust spicules with a wedge-shaped gubernaculum; long testes with many sperms in the distal portion. The adanal pair of supplements is preceeded by a row of $13-15$ ventromedian supplements. Tail short, bluntly rounded, dorsally convex and ventrally slightly concave, bearing three or four caudal papillae on each side.

Juveniles clearly separated in four groups (Fig. 5) the first development stage possessing a digitate tail, as illustrated by Hooper (1961); tail bluntly rounded in the second, third and fourth juvenile stages.

Morphometrics of the Swiss populations of L. macrosoma generally agree with the original description (Hooper, 1961); only the mean value of the c ratio (170-225 in the original description) and of the mean length of the odontostyle (125-137 $\mu \mathrm{m}$ in the original description) and the odontophore (62-84 $\mu \mathrm{m}$ in the original description) are bigger in the Swiss than in the British populations.

The identification code for this Swiss populations is: A $5 / 5, \mathrm{~B} 4 / 5, \mathrm{C} 3 / 4, \mathrm{D} 3, \mathrm{E} 4, \mathrm{~F} 5, \mathrm{G}$ $2 / 3$, H 1 , I 2, which fits the code proposed by Chen et al. (1997) for L. macrosoma.

The isozyme profiles of the Liestal population of L. macrosoma are characterized by a very active neutral isoform of SOD (Fig. 20), and a single marked band of esterase (Fig. 21).

The PCR product of the ITS region of L. macrosoma from Switzerland (specimens of the populations from Liestal, Steinerberg and Horgen were tested) was about 2000 kb (Table VII); it was digested by all the restriction enzymes tested, giving the pattern indicated in Fig. 6.

In Switzerland L. macrosoma has been reported as a vector of the raspberry ringspot virus (RRSV) to cherry trees (Klingler et al., 1985a; Buser, 1990).

Table II - Morphometrics of a population of Longidorus macrosoma from Switzerland.

Locality		Liestal				
Host	Cherry					
n	10 ¢	50°	10 J 1	$11 \mathrm{~J}_{2}$	$10 \mathrm{~J}_{3}$	$10 \mathrm{~J}_{4}$
$\mathrm{L}(\mathrm{mm})$	$\begin{gathered} 10.3 \pm 0.53 \\ 9.6-11.5 \end{gathered}$	$\begin{aligned} & 10 \pm 1.11 \\ & 8.4-11.1 \end{aligned}$	$\begin{aligned} & 2 \pm 0.13 \\ & 1.8-2.2 \end{aligned}$	$\begin{gathered} 3.1 \pm 0.29 \\ 2.6-3.6 \end{gathered}$	$\begin{gathered} 4.7 \pm 0.67 \\ 4-5.7 \end{gathered}$	$\begin{gathered} 6.8 \pm 0.49 \\ 6.1-7.7 \end{gathered}$
a	$\begin{aligned} & 114 . \pm 7.17 \\ & 104.9-126 \end{aligned}$	$\begin{gathered} 124 \pm 9.48 \\ 114.3-135.7 \end{gathered}$	$\begin{gathered} 67.8 \pm 3.14 \\ 63.8-74.8 \end{gathered}$	$\begin{gathered} 76 \pm 4.60 \\ 68.4-82.7 \end{gathered}$	$\begin{gathered} 86.4 \pm 6.16 \\ 73-99.9 \end{gathered}$	$\begin{gathered} 98.2 \pm 8.33 \\ 83.8-109 \end{gathered}$
b	$\begin{gathered} 16.3 \pm 1.17 \\ 15-19 \end{gathered}$	$\begin{aligned} & 15.1 \pm 2.14 \\ & 12.6-18.5 \end{aligned}$	$\begin{gathered} 5.6 \pm 0.71 \\ 5-6.9 \end{gathered}$	$\begin{gathered} 7.5 \pm 0.73 \\ 6.4-8.8 \end{gathered}$	$\begin{aligned} & 9.3 \pm 1.36 \\ & 7.5-11.5 \end{aligned}$	$\begin{gathered} 12.1 \pm 0.76 \\ 11-12.9 \end{gathered}$
c	$\begin{gathered} 258.8 \pm 19.24 \\ 227.3-283 \end{gathered}$	$\begin{aligned} & 241.4 \pm 18.66 \\ & 219.9-262.4 \end{aligned}$	$\begin{gathered} 46 \pm 4.03 \\ 39.2-53.4 \end{gathered}$	$\begin{gathered} 89.2 \pm 7.37 \\ 76.7-99 \end{gathered}$	$\begin{gathered} 120.7 \pm 14.34 \\ 100-144.7 \end{gathered}$	$\begin{aligned} & 171.9 \pm 18.44 \\ & 151.3-199.5 \end{aligned}$
C^{\prime}	$\begin{gathered} 0.6 \pm 0.06 \\ 0.5-0.7 \end{gathered}$	$\begin{gathered} 0.7 \pm 0.04 \\ 0.6-0.7 \end{gathered}$	$\begin{gathered} 1.9 \pm 0.13 \\ 1.8-2.2 \end{gathered}$	$\begin{aligned} & 1 \pm 0.08 \\ & 0.9-1.1 \end{aligned}$	$\begin{gathered} 0.9 \pm 0.07 \\ 0.8-1 \end{gathered}$	$\begin{gathered} 0.6 \pm 0.05 \\ 0.6-0.7 \end{gathered}$
V\%	$\begin{gathered} 52 \pm 1.37 \\ 51-55 \end{gathered}$	-	-	-	-	-
Odontostyle $\mu \mathrm{m}$	$\begin{gathered} 140.6 \pm 5.42 \\ 131.8-148 \end{gathered}$	$\begin{gathered} 140 \pm 6.34 \\ 130-147 \end{gathered}$	$\begin{gathered} 74.7 \pm 5.14 \\ 64.7-80 \end{gathered}$	$\begin{gathered} 83.8 \pm 2.50 \\ 80-88.2 \end{gathered}$	$\begin{aligned} & 102.4 \pm 8.12 \\ & 88.2-111.8 \end{aligned}$	$\begin{aligned} & 121.2 \pm 6.31 \\ & 111.8-129.4 \end{aligned}$
Odontophore $\mu \mathrm{m}$	$\begin{gathered} 90.9 \pm 2.98 \\ 85.3-94 \end{gathered}$	$\begin{gathered} 83.5 \pm 4.45 \\ 80-88.2 \end{gathered}$	$\begin{aligned} & 50 \pm 2.02 \\ & 47-51.8 \end{aligned}$	$\begin{gathered} 62.2 \pm 2.17 \\ 58.8-66.5 \end{gathered}$	$\begin{gathered} 70.4 \pm 3.56 \\ 67-76.5 \end{gathered}$	$\begin{aligned} & 79.2 \pm 2.32 \\ & 76.5-82.3 \end{aligned}$
Replacement odontostyle $\mu \mathrm{m}$	-	-	$\begin{aligned} & 85.8 \pm 3.82 \\ & 79.4-92.3 \end{aligned}$	$\begin{gathered} 101.6 \pm 4.59 \\ 94-111 \end{gathered}$	$\begin{aligned} & 119.7 \pm 6.26 \\ & 111.8-129.4 \end{aligned}$	$\begin{aligned} & 138.6 \pm 7.20 \\ & 123.5-146.5 \end{aligned}$
Oral aperture to guide ring $\mu \mathrm{m}$	$\begin{aligned} & 41.6 \pm 2.04 \\ & 38.2-44.7 \end{aligned}$	$\begin{gathered} 44 \pm 2.57 \\ 40.4-47.6 \end{gathered}$	$\begin{gathered} 21.9 \pm 1.13 \\ 20-23.5 \end{gathered}$	$\begin{aligned} & 25.6 \pm 2.12 \\ & 22.9-29.4 \end{aligned}$	$\begin{gathered} 31.5 \pm 1.65 \\ 28.2-34 \end{gathered}$	$\begin{gathered} 37.4 \pm 2.57 \\ 34-41.2 \end{gathered}$
Tail $\mu \mathrm{m}$	$\begin{gathered} 40 \pm 2.71 \\ 37-44 \end{gathered}$	$\begin{aligned} & 41.3 \pm 2.44 \\ & 38.2-44.7 \end{aligned}$	$\begin{gathered} 42.6 \pm 2.60 \\ 38.8-47 \end{gathered}$	$\begin{aligned} & 34.8 \pm 2.12 \\ & 32.3-38.2 \end{aligned}$	$\begin{aligned} & 38.7 \pm 2.35 \\ & 34.7-42.3 \end{aligned}$	$\begin{gathered} 39.6 \pm 3.03 \\ 35.3-44 \end{gathered}$
J Chyaline portion of tail) $\mu \mathrm{m}$	$\begin{aligned} & 16 \pm 1.97 \\ & 14-19.4 \end{aligned}$	$\begin{gathered} 16.2 \pm 1.18 \\ 15-17.6 \end{gathered}$	$\begin{gathered} 12.4 \pm 2.17 \\ 9.4-14.7 \end{gathered}$	$\begin{gathered} 8.4 \pm 0.93 \\ 7-10.5 \end{gathered}$	$\begin{gathered} 10.3 \pm 0.97 \\ 9-11.8 \end{gathered}$	$\begin{gathered} 11.5 \pm 1.60 \\ 9-14.7 \end{gathered}$
Body diam. at lip region $\mu \mathrm{m}$	$\begin{gathered} 21.7 \pm 1.49 \\ 20-24.7 \end{gathered}$	$\begin{gathered} 21.4 \pm 0.54 \\ 20.6-21.8 \end{gathered}$	$\begin{aligned} & 9.5 \pm 0.60 \\ & 8.8-10.6 \end{aligned}$	$\begin{gathered} 11.7 \pm 0.32 \\ 11-11.8 \end{gathered}$	$\begin{gathered} 13.7 \pm 0.99 \\ 12-15 \end{gathered}$	$\begin{aligned} & 17.3 \pm 0.35 \\ & 15.9-18.2 \end{aligned}$
Body diam. at guide ring $\mu \mathrm{m}$	$\begin{aligned} & 40 \pm 2.16 \\ & 36.5-44 \end{aligned}$	$\begin{aligned} & 40 \pm 2.14 \\ & 37-42.3 \end{aligned}$	$\begin{aligned} & 15.3 \pm 0.62 \\ & 14.7-16.5 \end{aligned}$	$\begin{gathered} 21 \pm 1.50 \\ 19.4-23.5 \end{gathered}$	$\begin{aligned} & 26.6 \pm 2.69 \\ & 21.2-29.4 \end{aligned}$	$\begin{aligned} & 32.8 \pm 2.39 \\ & 28.8-36.5 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	$\begin{aligned} & 78.8 \pm 3.26 \\ & 73.5-82.9 \end{aligned}$	$\begin{gathered} 71 \pm 3.89 \\ 64.7-74.7 \end{gathered}$	$\begin{gathered} 26.3 \pm 1.01 \\ 24.7-28.3 \end{gathered}$	$\begin{gathered} 38 \pm 3.60 \\ 32.3-44.7 \end{gathered}$	$\begin{aligned} & 49.8 \pm 6.48 \\ & 38.8-61.8 \end{aligned}$	$\begin{gathered} 63.3 \pm 4.13 \\ 56.5-71.8 \end{gathered}$
Body diam. at mid-body or vulva $\mu \mathrm{m}$	$\begin{gathered} 89.8 \pm 3.63 \\ 82.3-95.3 \end{gathered}$	$\begin{aligned} & 80.4 \pm 4.31 \\ & 73.5-85.3 \end{aligned}$	$\begin{gathered} 28.8 \pm 1.38 \\ 26.5-31.8 \end{gathered}$	$\begin{aligned} & 41.2 \pm 3.88 \\ & 35.3-47.6 \end{aligned}$	$\begin{gathered} 54 \pm 6.08 \\ 44-64.7 \end{gathered}$	$\begin{gathered} 69.2 \pm 4.32 \\ 63-76.5 \end{gathered}$
Body diam. at anus $\mu \mathrm{m}$	$\begin{gathered} 64.4 \pm 2.24 \\ 61.2-68.2 \end{gathered}$	$\begin{gathered} 61 \pm 7.81 \\ 52.3-70.6 \end{gathered}$	$\begin{aligned} & 22.2 \pm 1.13 \\ & 20.6-24.7 \end{aligned}$	$\begin{gathered} 35 \pm 2.51 \\ 31.8-38.8 \end{gathered}$	$\begin{gathered} 44.7 \pm 4.63 \\ 37-51.2 \end{gathered}$	$\begin{gathered} 58.7 \pm 4.44 \\ 53-67.6 \end{gathered}$
Body diam. at beginning of $\mathrm{J} \mu \mathrm{m}$	$\begin{gathered} 44.9 \pm 3.19 \\ 40.6-51.8 \end{gathered}$	$\begin{gathered} 46.4 \pm 4.94 \\ 41.2-51.2 \end{gathered}$	$\begin{gathered} 10.3 \pm 1.18 \\ 9-11.8 \end{gathered}$	$\begin{gathered} 20.4 \pm 2.49 \\ 17-24 \end{gathered}$	$\begin{gathered} 30 \pm 4.29 \\ 23-35.3 \end{gathered}$	$\begin{gathered} 39.3 \pm 4.20 \\ 34-46.5 \end{gathered}$
Spicules $\mu \mathrm{m}$		$\begin{gathered} 116.2 \pm 3.28 \\ 111.8-120.6 \end{gathered}$				

LONGIDORUS PROFUNDORUM

Hooper, 1966

(Tables III and VII; Figs 7-9, 20-22)

A population of L. profundorum was found in the rhizosphere of an apple, Malus sylvestris Mill, tree at Hinter Schlatt.

Female with medium size body, assuming a closed C posture, when killed. Body very gradually tapering towards the extremities. Lip region continuous with the rest of body, frontally flattened and laterally rounded. Amphidial pouches pocket-like, symmetrically bilobed at the base, with obscure aperture. Vulva slightly posterior to mid-body; vagina strongly muscularized, occupying ca. $2 / 3$ of the corresponding body diameter. Genital system amphidelphic with equally developed branches; long uterus filled with large sperms; a robust, muscularized sphincter separates the uterus from the oviduct which starts with an enlarged portion like a chamber, possibly a vestigial spermatheca; ovaries reflexed with large sperms in the distal portion. Prerectum ca. ten times as long as the anal body width and rectum as long as anal body width. Tail conoid,

Fig. 2 - Patterns of the PCR amplified ITS region of L. elongatus on 2.5\% agarose gel digested with Eco RI (E), Dde I (D), Rsa I (R), Alu I (A), Ava II (Av) and Hinf I (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.
dorsally rounded and ventrally flattened, with bluntly rounded terminus bearing two or three caudal papillae on each side.

Males as numerous as females; more coiled than females in the posterior portion of the body. Spicules ventrally curved, more bent in their terminal part; gubernaculum well sclerotized. Long testes with large sperms in the distal portion. The adanal pair of supplements is preceeded by a row of 13-16 ventromedian supplements. Tail asymmetrical, convex dorsally and deeply concave ventrally, with hemi-elliptical terminus. It bears two or three caudal papillae on each side.

Juveniles clearly separated into four groups (Fig. 8). The first stage juveniles posses a pointed, subdigitate tail; tail is hemi-elliptical in the second, third and fourth juveniles stages.

Morphometrics of this Swiss population of L. profundorum fully agree with those of the original description (Hooper, 1966). The only consistent difference between the Swiss and the British populations occurs in the males because of the spicules which are longer in the Swiss population ($64-79 \mu \mathrm{~m}$ in the British populations).

The identification code for the Swiss population of L. profundorum is: A $3 / 4$, B $2, \mathrm{C} 2 / 3$, D $3, \mathrm{E} 2, \mathrm{~F} 3 / 4, \mathrm{G} 2 / 3, \mathrm{H} 1 / 2$, I 2 , which fits the code proposed by Chen et al., 1997.

The SOD electrofocusing profile of this population of L. profundorum is characterized by a neutral isoform (Fig. 20); esterase activity is detected by a slow-migrating band (Fig. 21).

The PCR product of the ITS region of L. profundorum from Switzerland was ca.> 1800 kb (Table VII) and it was digested by all the restriction enzymes tested, giving the pattern illustrated in Fig. 9.

LONGIDORUS RASKII Lamberti et Agostinelli, 1993

(Tables IV and VII, Figs 10-12, 20-22)
Topotypes were collected at Etoy from the rhizosphere of apple trees.

Fig. 3 - Photomicrographs of L. macrosoma: A-C, female anterior region; D and G male posterior region; E and F , fema posterior region

Table III - Morphometrics of a population of Longidorus profundorum from Switzerland.

Locality	Hinter Schlatt					
Host			Appl			
n	10%	$10{ }^{\circ}$	11 J 1	12 J 2	$6 \mathrm{~J}_{3}$	16 J 4
L (mm)	$\frac{6.9 \pm 0.51}{6-7.7}$	$\begin{gathered} 6.9 \pm 0.61 \\ 6.2-8.2 \end{gathered}$	$\begin{gathered} 1.6 \pm 0.13 \\ 1.4-1.8 \end{gathered}$	$\begin{gathered} 2.4 \pm 0.26 \\ 2.1-3 \end{gathered}$	$\begin{gathered} 3.7 \pm 0.29 \\ 3.3-4 \end{gathered}$	$\begin{gathered} 5.2 \pm 0.48 \\ 4.4-5.9 \end{gathered}$
a	$\begin{gathered} 112.3 \pm 5.83 \\ 102-121.7 \end{gathered}$	$\begin{gathered} 118.2 \pm 6.69 \\ 106.9-131.2 \end{gathered}$	$\begin{gathered} 69.4 \pm 5.64 \\ 62.8-76.6 \end{gathered}$	$\begin{gathered} 77 \pm 3.34 \\ 72.3-84.9 \end{gathered}$	$\begin{array}{r} 86 \pm 3.83 \\ 80-90.2 \end{array}$	$\begin{gathered} 104.5 \pm 5.49 \\ 96-114.9 \end{gathered}$
b	$\begin{gathered} 13.4 \pm 1.26 \\ 11.6-15.2 \end{gathered}$	$\begin{gathered} 13.5 \pm 1.15 \\ 11.5-15 \end{gathered}$	$\begin{gathered} 5.3 \pm 0.58 \\ 4.6-6.7 \end{gathered}$	$\begin{aligned} & 7 \pm 0.63 \\ & 6.2-8.5 \end{aligned}$	$\begin{gathered} 9.6 \pm 1.20 \\ 8.4-11.2 \end{gathered}$	$\begin{gathered} 11.6 \pm 1.21 \\ 10-13.8 \end{gathered}$
C	$\begin{gathered} 145.7 \pm 10.29 \\ 124.5-161 \end{gathered}$	$\begin{gathered} 151 \pm 10.65 \\ 139.170 .8 \end{gathered}$	$\begin{gathered} 33.7 \pm 3.15 \\ 30-40.3 \end{gathered}$	$\begin{aligned} & 56 \pm 3.70 \\ & 52-64.6 \end{aligned}$	$\begin{gathered} 80 \pm 4.48 \\ 72.8-86.2 \end{gathered}$	$\begin{aligned} & 112.1 \pm 8.80 \\ & 97.2-124.7 \end{aligned}$
c^{\prime}	$\begin{gathered} 1 \pm 0.06 \\ 0.9-1.1 \end{gathered}$	$\begin{aligned} & 1 \pm 0.08 \\ & 0.9-1.1 \end{aligned}$	$\begin{gathered} 2.9 \pm 0.16 \\ 2.6-3.1 \end{gathered}$	$\begin{gathered} 1.8 \pm 0.11 \\ 1.6-1.9 \end{gathered}$	$\begin{gathered} 1.4 \pm 0.08 \\ 1.3-1.5 \end{gathered}$	$\begin{gathered} 1.1 \pm 0.05 \\ 1-1.2 \end{gathered}$
V\%	$\begin{gathered} 52 \pm 1.09 \\ 50-54 \end{gathered}$	-	-	-	-	-
Odontostyle $\mu \mathrm{m}$	$\begin{aligned} & 98.7 \pm 2.17 \\ & 95.3-101.2 \end{aligned}$	$\begin{gathered} 97.2 \pm 3.48 \\ 92-102.3 \end{gathered}$	$\begin{aligned} & 57.5 \pm 2.61 \\ & 53.5-61.8 \end{aligned}$	$\begin{gathered} 62 \pm 1.98 \\ 58.8-64.7 \end{gathered}$	$\begin{gathered} 75.5 \pm 2.89 \\ 73.5-80 \end{gathered}$	$\begin{gathered} 85.7 \pm 3.28 \\ 79-91.2 \end{gathered}$
Odontophore $\mu \mathrm{m}$	$\begin{gathered} 66.3 \pm 2.78 \\ 63.5-72.3 \end{gathered}$	$\begin{array}{r} 67.5 \pm 2.19 \\ 63.6-70.6 \end{array}$	$\begin{aligned} & 37.3 \pm 3.07 \\ & 32.3-41.2 \end{aligned}$	$\begin{aligned} & 45.5 \pm 2.65 \\ & 41.2-48.8 \end{aligned}$	$\begin{gathered} 54.6 \pm 3.87 \\ 47-57 \end{gathered}$	$\begin{gathered} 62 \pm 2.78 \\ 58-67.6 \end{gathered}$
Replacement odontostyle $\mu \mathrm{m}$	-	-	$\begin{aligned} & 61.5 \pm 2.37 \\ & 57.6-64.7 \end{aligned}$	$\begin{gathered} 73 \pm 3.09 \\ 68.2-78.2 \end{gathered}$	$\begin{gathered} 87.7 \pm 1.35 \\ 85.3-88.8 \end{gathered}$	$\begin{gathered} 96.8 \pm 3.86 \\ 92-102.3 \end{gathered}$
Oral aperture to guide ring $\mu \mathrm{m}$	$\begin{aligned} & 34 \pm 2.22 \\ & 29.4-37 \end{aligned}$	$\begin{gathered} 37.2 \pm 1.75 \\ 33-38.8 \end{gathered}$	$\begin{gathered} 20.7 \pm 0.65 \\ 20-21.8 \end{gathered}$	$\begin{gathered} 23 \pm 1.40 \\ 21.2-26 \end{gathered}$	$\begin{aligned} & 27 \pm 1.71 \\ & 24-28.8 \end{aligned}$	$\begin{aligned} & 30.4 \pm 1.44 \\ & 27.6-33.5 \end{aligned}$
Tail $\mu \mathrm{m}$	$\begin{aligned} & 47.2 \pm 2.82 \\ & 43.5-52.3 \end{aligned}$	$\begin{gathered} 45.6 \pm 3.65 \\ 40-52 \end{gathered}$	$\begin{gathered} 46.3 \pm 2.93 \\ 42.3-50 \end{gathered}$	$\begin{gathered} 42.4 \pm 3.51 \\ 38.2-50 \end{gathered}$	$\begin{gathered} 45.9 \pm 2.83 \\ 42.3-50 \end{gathered}$	$\begin{gathered} 46.7 \pm 3.92 \\ 38.8-53 \end{gathered}$
J (hyaline portion of (tail) $\mu \mathrm{m}$	$\begin{gathered} 11.7 \pm 0.74 \\ 10.6-13 \end{gathered}$	$\begin{aligned} & 12.3 \pm 1.09 \\ & 11.2-14.5 \end{aligned}$	$\begin{gathered} 11.6 \pm 1.01 \\ 10-13.5 \end{gathered}$	$\begin{gathered} 6.6 \pm 1.12 \\ 5.3-8.8 \end{gathered}$	$\begin{aligned} & 7.5 \pm 1.52 \\ & 6.5-10.6 \end{aligned}$	$\begin{gathered} 8.9 \pm 0.77 \\ 7.6-10 \end{gathered}$
Body diam. at lip region $\mu \mathrm{m}$	$\begin{aligned} & 14 \pm 0.60 \\ & 13-14.7 \end{aligned}$	$\begin{gathered} 14.3 \pm 0.52 \\ 14-15.3 \end{gathered}$	$\begin{gathered} 7.4 \pm 0.28 \\ 7-7.6 \end{gathered}$	$\begin{aligned} & 9 \pm 0.37 \\ & 8.2-9.4 \end{aligned}$	$\begin{gathered} 11 \pm 0.31 \\ 10.6-11.2 \end{gathered}$	$\begin{gathered} 12.3 \pm 0.49 \\ 11.8-13 \end{gathered}$
Body diam. at guide ring $\mu \mathrm{m}$	$\begin{aligned} & 26.6 \pm 0.89 \\ & 25.3-28.2 \end{aligned}$	$\begin{gathered} 27.2 \pm 1.39 \\ 25.3-30 \end{gathered}$	$\begin{gathered} 13.3 \pm 0.44 \\ 13-14 \end{gathered}$	$\begin{gathered} 16 \pm 0.66 \\ 15.3-17.6 \end{gathered}$	$\begin{gathered} 20 \pm 0.80 \\ 18.8-20.6 \end{gathered}$	$\begin{aligned} & 22.7 \pm 0.80 \\ & 21.2-23.5 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	$\begin{aligned} & 51.2 \pm 2.20 \\ & 47.6-55.3 \end{aligned}$	$\begin{gathered} 49 \pm 3.94 \\ 40-54 \end{gathered}$	$\begin{aligned} & 21 \pm 0.66 \\ & 20-22.3 \end{aligned}$	$\begin{gathered} 28.7 \pm 1.82 \\ 26.5-31.8 \end{gathered}$	$\begin{gathered} 39.8 \pm 4.09 \\ 35.3-47 \end{gathered}$	$\begin{gathered} 45.2 \pm 2.51 \\ 41.2-50 \end{gathered}$
Body diam. at midbody or vulva $\mu \mathrm{m}$	$\begin{aligned} & 61.2 \pm 3.92 \\ & 56.5-67.6 \end{aligned}$	$\begin{gathered} 58.2 \pm 5.53 \\ 52.3-69 \end{gathered}$	$\begin{gathered} 22.4 \pm 0.63 \\ 21.2-23.5 \end{gathered}$	$\begin{aligned} & 30.7 \pm 2.20 \\ & 28.2-35.3 \end{aligned}$	$\begin{gathered} 42.6 \pm 4.12 \\ 38.8-50 \end{gathered}$	$\begin{gathered} 49.5 \pm 3.17 \\ 44-53.5 \end{gathered}$
Body diam. at anus $\mu \mathrm{m}$	$\begin{array}{r} 48 \pm 2.03 \\ 44-51.2 \end{array}$	$\begin{gathered} 46.4 \pm 2.18 \\ 43-51.2 \end{gathered}$	$\begin{aligned} & 16 \pm 0.70 \\ & 14.7-17 \end{aligned}$	$\begin{gathered} 24 \pm 2.41 \\ 21.2-30 \end{gathered}$	$\begin{gathered} 34 \pm 2.67 \\ 30.6-38.2 \end{gathered}$	$\begin{gathered} 41 \pm 2.06 \\ 37-44 \end{gathered}$
Body diam. at beginning of $\mathrm{I} \mu \mathrm{m}$	$\begin{aligned} & 31.6 \pm 1.94 \\ & 29.4-35.3 \end{aligned}$	$\begin{gathered} 22.7 \pm 1.87 \\ 20.26 \end{gathered}$	$\begin{gathered} 7.8 \pm 0.54 \\ 7-8.8 \end{gathered}$	$\begin{gathered} 14 \pm 1.30 \\ 12.3-17 \end{gathered}$	$\begin{gathered} 21 \pm 1.42 \\ 19.4-23.5 \end{gathered}$	$\begin{gathered} 25.3 \pm 1.78 \\ 22-28.8 \end{gathered}$
Spicules $\mu \mathrm{m}$	-	$\begin{gathered} 78.9 \pm 2.81 \\ 75-83.8 \end{gathered}$	-	-	-	-

Fig. 4 - Photomicrographs of juveniles of L. macrosoma posterior region: A and B, first stage; C, second stage; D, third stage; E , fourth stage.

Fig. 5 - Scatter diagram plotting body and odontostyle length of individual juveniles and females of L. macrosoma

Morphobiometrics of females and males correspond with the original description (Lamberti and Agostinelli, 1993), with the exception of the female tail length which in these specimens is slightly longer than in paratypes.

Juvenile stages were not reported in the original description. They are morphologically similar to adults and separate into four groups (Fig. 11), all with rounded tail: conoid in the first stage and bluntly rounded in the next three stages (Fig. 10). The identification code of this population of L. raskii totally fits the formula given for this species by Chen et al. (1997), that is: A $3 / 4$, B 3 C 3, D 1 , E 2, F $3 / 4$, G $1 / 2$, H 1, I 2.
L. raskii shows a marked basic SOD isoform (Fig. 20) and various esterase high weight isoforms (Fig. 21).

The PCR product of ITS region was ca. 1600 kb (Table VII) and was digested by the restriction enzymes tested giving the pattern indicated in Fig. 12.

Fig. 6 - Patterns of the PCR amplified ITS region of L. macrosoma on 2.5% agarose gel digested with Eco RI (E), DdeI (D), Rsa I (R), Alu I (A), Ava II (Av) and HinfI (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.

Locality		Etoy				
Host	Apple					
n	59	20^{7}	$14 \mathrm{~J}_{1}$	$11 \mathrm{~J}_{2}$	9 J 3	$10 \mathrm{~J}_{4}$
L (mm)	$\begin{gathered} 7.5 \pm 0.57 \\ 6.7-8 \end{gathered}$	6.6-6.6	$\begin{gathered} 1.6 \pm 0.21 \\ 1.3-1.9 \end{gathered}$	$\begin{gathered} 2.3 \pm 0.34 \\ 1.9-2.9 \end{gathered}$	$\begin{gathered} 3.3 \pm 0.25 \\ 2.9-3.8 \end{gathered}$	$\begin{gathered} 4.9 \pm 0.43 \\ 4.2-5.4 \end{gathered}$
a	$\begin{aligned} & 87.2 \pm 6.07 \\ & 78.5-92.2 \end{aligned}$	81.9-86.3	$\begin{gathered} 54 ? 7 \pm 3.87 \\ 49-59.3 \end{gathered}$	$\begin{aligned} & 62.8 \pm 3.34 \\ & 59.4-68.5 \end{aligned}$	$\begin{aligned} & 70.2 \pm 2.65 \\ & 65.7-73.5 \end{aligned}$	$\begin{gathered} 77 \pm 5.05 \\ 68.6-82.7 \end{gathered}$
b	$\begin{gathered} 13.7 \pm 1.11 \\ 12.4-15.1 \end{gathered}$	11.6-15	$\begin{gathered} 5.9 \pm 1.13 \\ 4.6-8.5 \end{gathered}$	$\begin{gathered} 6.7 \pm 1.19 \\ 5.4-8.6 \end{gathered}$	$\begin{gathered} 8.1 \pm 0.97 \\ 6.4-9.4 \end{gathered}$	$\begin{gathered} 9.8 \pm 1.12 \\ 8.4-12 \end{gathered}$
c	$\begin{gathered} 162 \pm 15.60 \\ 147.2-181.4 \end{gathered}$	150-150	$\begin{aligned} & 47.7 \pm 4.87 \\ & 40.2-54.3 \end{aligned}$	$\begin{aligned} & 64.2 \pm 8.74 \\ & 51.4-78.4 \end{aligned}$	$\begin{gathered} 81 \pm 5.28 \\ 72.8-87.3 \end{gathered}$	$\begin{gathered} 114.2 \pm 10.33 \\ 100-128.6 \end{gathered}$
c^{\prime}	$\begin{gathered} 0.8 \pm 0.06 \\ 0.7-0.8 \end{gathered}$	0.8-0.8	$\begin{gathered} 1.6 \pm 0.19 \\ 1.3-1.8 \end{gathered}$	$\begin{gathered} 1.2 \pm 0.10 \\ 1.1-1.4 \end{gathered}$	$\begin{gathered} 1 \pm 0.05 \\ 1-1.1 \end{gathered}$	$\begin{gathered} 0.8 \pm 0.05 \\ 0.8-0.9 \end{gathered}$
V\%	$\begin{gathered} 53 \pm 2.36 \\ 51-56 \end{gathered}$	-	-	-	-	-
Odontostyle $\mu \mathrm{m}$	$\begin{gathered} 99 \pm 2.87 \\ 95.3-102.3 \end{gathered}$	106-100	$\begin{gathered} 54.3 \pm 1.28 \\ 51.8-56 \end{gathered}$	$\begin{gathered} 58.7 \pm 1.52 \\ 56.5-61.8 \end{gathered}$	$\begin{gathered} 72 \pm 3.89 \\ 64.7-78.2 \end{gathered}$	86 ± 3.80
Odontophore $\mu \mathrm{m}$	$\begin{gathered} 66 \pm 1.19 \\ 64.7-67.6 \end{gathered}$	68-67.6	$\begin{gathered} 39.2 \pm 2.67 \\ 35-42.3 \end{gathered}$	$\begin{aligned} & 44.4 \pm 2.22 \\ & 41.8-48.8 \end{aligned}$	$\begin{gathered} 54.4 \pm 1.53 \\ 52.3-56 \end{gathered}$	$\begin{gathered} 66.6 \pm 3.55 \\ 62-70.6 \end{gathered}$
Replacement odontostyle $\mu \mathrm{m}$	-	-	$\begin{aligned} & 59 \pm 2.90 \\ & 53-64.7 \end{aligned}$	$\begin{gathered} 70.3 \pm 2.11 \\ 67.6-73.5 \end{gathered}$	$\begin{gathered} 86.6 \pm 3.48 \\ 80.6-90.6 \end{gathered}$	$\begin{gathered} 101 \pm 3.66 \\ 94-106 \end{gathered}$
Oral aperture to guide ring $\mu \mathrm{m}$	$\begin{gathered} 35.6 \pm 1.43 \\ 34-37 \end{gathered}$	34.7-35.3	$\begin{gathered} 19.4 \pm 1.51 \\ 17-23.5 \end{gathered}$	$\begin{aligned} & 22.3 \pm 1.13 \\ & 20.6-24.7 \end{aligned}$	$\begin{gathered} 26.3 \pm 0.99 \\ 24.7-27.6 \end{gathered}$	$\begin{gathered} 30 \pm 1.38 \\ 27.6-32.3 \end{gathered}$
Tail $\mu \mathrm{m}$	$\begin{gathered} 46.6 \pm 3.92 \\ 44-52.3 \end{gathered}$	44-44	$\begin{aligned} & 32.5 \pm 3.19 \\ & 27.6-38.8 \end{aligned}$	$\begin{gathered} 36 \pm 3.42 \\ 30.6-41.2 \end{gathered}$	$\begin{gathered} 40.3 \pm 2.62 \\ 36-44 \end{gathered}$	$\begin{aligned} & 43.3 \pm 3.25 \\ & 38.2-47.6 \end{aligned}$
J Chyaline portion of tail) $\mu \mathrm{m}$	$\begin{gathered} 15.6 \pm 1.43 \\ 14-17 \end{gathered}$	10.6-11	$\begin{gathered} 5.8 \pm 0.70 \\ 5-7 \end{gathered}$	$\begin{gathered} 6.6 \pm 0.52 \\ 6-7.6 \end{gathered}$	$\begin{gathered} 8.8 \pm 0.71 \\ 7.6-10 \end{gathered}$	$\begin{gathered} 11 \pm 1.53 \\ 8.8-14 \end{gathered}$
Body diam. at lip region $\mu \mathrm{m}$	$\begin{aligned} & 17 \pm 0.71 \\ & 16-17.6 \end{aligned}$	18.2-18.8	$\begin{gathered} 8.5 \pm 0.39 \\ 7.6-8.8 \end{gathered}$	$\begin{gathered} 9.9 \pm 0.57 \\ 9-10.6 \end{gathered}$	$\begin{gathered} 12 \pm 0.56 \\ 11.2-13 \end{gathered}$	$\begin{gathered} 14.5 \pm 0.63 \\ 13-15.3 \end{gathered}$
Body diam. at guide ring $\mu \mathrm{m}$	$\begin{gathered} 31.2 \pm 1.87 \\ 28.8-33 \end{gathered}$	30.6-32.4	$\begin{gathered} 14 \pm 0.92 \\ 13-16.5 \end{gathered}$	$\begin{gathered} 17 \pm 0.93 \\ 15.3-18.2 \end{gathered}$	$\begin{gathered} 21 \pm 0.83 \\ 19.4-22.3 \end{gathered}$	$\begin{aligned} & 26 \pm 1.71 \\ & 22-27.6 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	$\begin{array}{r} 68.4 \pm 5.27 \\ 60.6-72.3 \end{array}$	70.6-67	$\begin{gathered} 25.6 \pm 2.74 \\ 23-31.8 \end{gathered}$	$\begin{gathered} 33 \pm 3.56 \\ 28.8-39.4 \end{gathered}$	$\begin{gathered} 43 \pm 2.41 \\ 40.6-48.8 \end{gathered}$	$\begin{gathered} 57.2 \pm 2.98 \\ 53-61.8 \end{gathered}$
Body diam. at midbody or vulva $\mu \mathrm{m}$	$\begin{gathered} 86.3 \pm 3.36 \\ 85.5-91.2 \end{gathered}$	80.6-76.5	$\begin{gathered} 28.3 \pm 2.91 \\ 25.3-34 \end{gathered}$	$\begin{gathered} 35.8 \pm 4.12 \\ 31.2-44 \end{gathered}$	$\begin{gathered} 46.8 \pm 2.20 \\ 44-51.8 \end{gathered}$	$\begin{gathered} 64.2 \pm 3.37 \\ 58.8-68.8 \end{gathered}$
Body diam. at anus $\mu \mathrm{m}$	$\begin{gathered} 62.4 \pm 2.14 \\ 60-64.7 \end{gathered}$	53-54	$\begin{gathered} 20.2 \pm 2.63 \\ 17-24.7 \end{gathered}$	$\begin{gathered} 28.7 \pm 3.38 \\ 25.3-35.3 \end{gathered}$	$\begin{gathered} 38 \pm 2.00 \\ 35.3-41.8 \end{gathered}$	$\begin{gathered} 51.4 \pm 3.57 \\ 46.5-57 \end{gathered}$
Body diam, at beginning of $\mathrm{J} \mu \mathrm{m}$	$\begin{gathered} 44.4 \pm 2.22 \\ 41.2-46 \end{gathered}$	30.6-34	$\begin{aligned} & 13.3 \pm 1.11 \\ & 12.3-15.3 \end{aligned}$	$\begin{gathered} 17.8 \pm 1.36 \\ 16-20.6 \end{gathered}$	$\begin{aligned} & 25.8 \pm 1.21 \\ & 23.5-27.6 \end{aligned}$	$\begin{aligned} & 34.6 \pm 4.40 \\ & 26.5-41.2 \end{aligned}$
Spicules $\mu \mathrm{m}$		96-93.5				

Fig. 7 - Photomicrographs of L. profundorum: A, female anterior region; B, female postrerior region; C, male posterior region; D-G, tail of first, second, third and fourth juvenile stages, respectively.

Fig. 8 - Scatter diagram plotting body and odontostyle length of individual juveniles and females of L. profindorum.

LONGIDORUS ARTHENSIS Brown, Grunder, Hooper, Klingler et Kunz, 1994

(Tables V and VII; Fig 13, 14, 20-22)

Specimens of females and males L. arthensis were found at Arth (topotypes) in the rhizosphere of cherry trees and at Horgen, in the rhizosphere of a pear tree. Morphobiometrically they fit the original description (Brown et al., 1994); the population from Horgen has specimens with the mean body length slighlty longer than that of the paratypes. Also, juveniles of the first stage have a mucronate tail, corresponding with the original description of the species. The identification code of the Horgen population is: A 3/4, B 3, C 3, D $1, \mathrm{E} 2, \mathrm{~F} 3 / 4, \mathrm{G} 2 / 3, \mathrm{H} 1 / 2$, I 2 (Chen et al., 1997).
L. arthensis is characterized by active neutral and faint basic SOD isoform (Fig. 20) and by two central esterase isoforms (Fig. 21).

The PCR product of the ITS region was ca. 1700 kb (Table VII) and was digested by the restriction enzymes tested giving the pattern indicated in Fig. 14.

LONGIDORUS HELVETICUS sp.n.
 (Tables VI and VII; Figs 15-22)

Female babitus curved in an open C when killed. Body of large size, tapering towards the extremities. Cuticle smooth in appearance, ca. $2.5 \mu \mathrm{~m}$ thick along body, except at the vulva level where it is $3 \mu \mathrm{~m}$ thick. Lip region hemi-elliptical broadly rounded laterally, continuous with the rest of the body. Amphidial pouches pocketlike, large, extending backwards almost to the guide ring, not lobed at the base. Odontostyle, odontophore and guide ring typical of the genus. Muscular posterior bulb of the oe-

Table V-Morpbometrics of a population of Longidorus arthensis from Switzerland.

Locality Host	Horgen Pear
n	10 우
L (mm)	$\begin{aligned} & 6.3 \pm 0.63 \\ & 5.8-7.6 \end{aligned}$
	$\begin{array}{r} 103.4 \pm 10.72 \\ 87-118.6 \end{array}$
	$\begin{array}{r} 14 \pm 1.49 \\ 11.9-15.7 \end{array}$
	$\begin{gathered} 148.3 \pm 15.75 \\ 128-184 \end{gathered}$
	$\begin{aligned} & 1.0 \pm 0.09 \\ & 0.9-1.1 \end{aligned}$
V\%	$\begin{aligned} & 50 \pm 1.22 \\ & 48-52 \end{aligned}$
Odontostyle $\mu \mathrm{m}$	$\begin{array}{r} 106.5 \pm 4.77 \\ 98-111.8 \end{array}$
Odontophore $\mu \mathrm{m}$	$\begin{aligned} & 68.4 \pm 2.38 \\ & 64.5-70.6 \end{aligned}$
Oral aperture to guide ring $\mu \mathrm{m}$	$\begin{aligned} & 34.9 \pm 2.13 \\ & 32.3-38.2 \end{aligned}$
Tail $\mu \mathrm{m}$	$\begin{array}{r} 42.9 \pm 2.26 \\ 40-46.5 \end{array}$
J (hyaline portion of tail) $\mu \mathrm{m}$	$\begin{gathered} 14.1 \pm 1.39 \\ 12-16 \end{gathered}$
Body diam. at lip region $\mu \mathrm{m}$	$\begin{array}{r} 17.1 \pm 1.02 \\ 16-19.4 \end{array}$
Body diam. at guide ring $\mu \mathrm{m}$	$\begin{aligned} & 27.4 \pm 1.91 \\ & 23.5-30 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	$\begin{array}{r} 51 \pm 4.01 \\ 45.9-59.4 \end{array}$
Body diam. at vulva $\mu \mathrm{m}$	$\begin{aligned} & 61.8 \pm 4.95 \\ & 57.6-73.5 \end{aligned}$
Body diam. at anus $\mu \mathrm{m}$	$\begin{aligned} & 43.1 \pm 2.30 \\ & 38.8-47 \end{aligned}$
Body diam. at beginning of $\mathrm{J} \mu \mathrm{m}$	$\begin{aligned} & 28.6 \pm 3.90 \\ & 20.6-34 \end{aligned}$

Fig. 9 - Patterns of the PCR amplified ITS region of L. profundorum on 2.5% agarose gel digested with EcoRI (E), DdeI (D), RsaI (R), Alui (A), Avall (Av) and Hinfi (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.
sophagus representing $1 / 4$ to $1 / 5$ of the oesophagus total length; it measures $110-130 \mu \mathrm{~m}$ long and $30-40 \mu \mathrm{~m}$ wide and contains three glandular nuclei: the dorsal gland nucleus in the anterior third and the two subventral gland nuclei just behind the middle region of the bulb; oesophageal intestinal valve large, bluntly conoid. Vulva slightly posterior to mid-body; vagina thick-walled occupying from $1 / 2$ to $2 / 3$ of the corresponding body width; genital system amphidelphic with two equally developed branches, 700 to $950 \mu \mathrm{~m}$ long: uteri large, well muscularized, containing many oblong sperms measuring $5.5-6.5 \times 2-3 \mu \mathrm{~m}$; a sphincter separates the uterus from the oviduct, which starts with a chamber-like structure; ovaries reflexed, containing large oocytes. Prerectum 450-680 $\mu \mathrm{m}$ long; rectum $1 / 2$ to $2 / 3$ anal body width. Tail bluntly rounded with two caudal papillae on each side.

Males as numerous as females, with the posterior region more coiled than in female. Spicules robust, ventrally curved, gubernaculum wedge-shaped. Testes paired very long with sperms in the distal portion. Adanal pair of supplement preceeded by a row of $15-17$ ventro-

Fig. 10 - Photomicrographs of L. raskii: A, female anterior region; B, female posterior region; C, male posterior region; D-G, tail of first, second, third and fourth juvenile stages, respectively.

Fig. 11 - Scatter diagram plotting body and odontostyle length of individual juveniles and females of L. raskii.

Fig. 12 - Patterns of the PCR amplified ITS region of L. raskii on 2.5\% gel digested with Eco RI (E), Dde I (D), Rsa I (R), Ahu I (A), Ava II (Av) and Hinf I (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.
median supplements. Tail bluntly rounded, convex dorsally and concave ventrally, bearing two caudal pores on each side.

Juveniles similar to adults, separated into four developmental stages (Fig. 18); the first
stage has a digitate tail with a long mucro; second, third and fourth juvenile stages have bluntly rounded tails.

Type habitat and locality: rhizosphere of cherry trees, Prunus avium L., at Gersau, Camenzind, in the Province of Lucerne, Switzerland.

Specimens of L. belveticus were also found at Roch D'Or, Seewen and Randen in Fagus sylvatica L. forests and at Arth in the rhizosphere of cherry trees mixed with L. arthensis or L. macrosoma.

Diagnosis: Longidorus helveticus sp.n. is characterized by body length of ca. 8 mm ; odontostyle length of ca. $135 \mu \mathrm{~m}$; hemi-elliptical lip region continuous with the rest of the body; pocket-like not-lobed amphidial pouches; amphidelphic equally developed female genital branches; almost mid-body vulva; bluntly rounded tail; presence of males; and mucronated tail in the first juvenile stage.

Table VI - Morphometrics of a population of Longidorus helveticus sp.n. from Switzerland.

Locality Host	Gersau, Camenzind Cherry Paratypes						
n h	holotype 9	27 \%	230	20 J 1	27 J 2	23 J 3	43 J 4
L (mm)	7.6	$\begin{gathered} 7.8 \pm 0.77 \\ 6.2-9.3 \end{gathered}$	$\begin{gathered} 7.3 \pm 0.65 \\ 6.0-8.6 \end{gathered}$	$\begin{gathered} 1.8 \pm 0.25 \\ 1.4-2.2 \end{gathered}$	$\begin{gathered} 2.7 \pm 0.33 \\ 2.2-3 ; 5 \end{gathered}$	$\begin{gathered} 4.0 \pm 0.34 \\ 3.3-4.5 \end{gathered}$	$\begin{gathered} 5.7 \pm 0.73 \\ 4.4-7.3 \end{gathered}$
a	71	$\begin{aligned} & 71.1 \pm 5.07 \\ & 62.1-80.5 \end{aligned}$	$\begin{gathered} 75.6 \pm 6.26 \\ 63.3-89.6 \end{gathered}$	$\begin{gathered} 48.8 \pm 3.05 \\ 44-55.3 \end{gathered}$	$\begin{gathered} 52 \pm 3.48 \\ 44.6-58.6 \end{gathered}$	$\begin{gathered} 57.4 \pm 4.64 \\ 48-67.4 \end{gathered}$	$\begin{aligned} & 65.3 \pm 5.17 \\ & 53.6-75.7 \end{aligned}$
b	13.6	$\begin{gathered} 14.3 \pm 2.19 \\ 10.8-19.9 \end{gathered}$	$\begin{gathered} 12.8 \pm 1.38 \\ 11-16.7 \end{gathered}$	$\begin{gathered} 5.7 \pm 1.19 \\ 4-8.4 \end{gathered}$	$\begin{array}{r} 7.1 \pm 1.37 \\ 5.4-10.2 \end{array}$	$\begin{gathered} 9 \pm 1.47 \\ 6.7-12.3 \end{gathered}$	$\begin{aligned} & 11 \pm 2.13 \\ & 8.2-17.7 \end{aligned}$
c	161.4	$\begin{gathered} 200.3 \pm 29.46 \\ 150.4-260 \end{gathered}$	$\begin{array}{r} 176.8 \pm 21.12 \\ 144.8-216.4 \end{array}$	$\begin{gathered} 35.2 \pm 4.16 \\ 28.3-43.1 \end{gathered}$	$\begin{gathered} 72.8 \pm 9.57 \\ 60.6-95.6 \end{gathered}$	$\begin{gathered} 103.1 \pm 12.79 \\ 76.7-123 \end{gathered}$	$\begin{gathered} 144.3 \pm 18.96 \\ 100.9-184 \end{gathered}$
c^{\prime}	0.7	$\begin{gathered} 0.6 \pm 0.05 \\ 0.5-0.7 \end{gathered}$	$\begin{gathered} 0.7 \pm 0.05 \\ 0.6-0.8 \end{gathered}$	$\begin{gathered} 1.8 \pm 0.17 \\ 1.5-2.1 \end{gathered}$	$\begin{gathered} 0.9 \pm 0.09 \\ 0.8-1.1 \end{gathered}$	$\begin{gathered} 0.7 \pm 0.08 \\ 0.6-0.9 \end{gathered}$	$\begin{gathered} 0.7 \pm 0.05 \\ 0.6-0.8 \end{gathered}$
V\%	50	$\begin{gathered} 52 \pm 1.82 \\ 48.3-56.7 \end{gathered}$	-	-	-	-	-
Odontostyle $\mu \mathrm{m}$	145.3	$\begin{gathered} 135.4 \pm 5.34 \\ 127-145.5 \end{gathered}$	$\begin{gathered} 136.5 \pm 5.88 \\ 125-146.7 \end{gathered}$	$\begin{aligned} & 80.2 \pm 3.18 \\ & 73.7-87.5 \end{aligned}$	$\begin{gathered} 87.7 \pm 3.19 \\ 81.1-94.4 \end{gathered}$	$\begin{aligned} & 108.2 \pm 3.71 \\ & 99.5-115.2 \end{aligned}$	$\begin{aligned} & 123.2 \pm 4.92 \\ & 111.5-134.8 \end{aligned}$
Odontophore $\mu \mathrm{m}$	82	$\begin{gathered} 89.5 \pm 5.10 \\ 76-98.2 \end{gathered}$	$\begin{gathered} 90.5 \pm 3.20 \\ 85-97.5 \end{gathered}$	$\begin{gathered} 52 \pm 2.37 \\ 48.4-55.6 \end{gathered}$	$\begin{gathered} 65.3 \pm 3.91 \\ 59.1-72 \end{gathered}$	$\begin{gathered} 75.5 \pm 3.14 \\ 70-81.6 \end{gathered}$	$\begin{aligned} & 80.7 \pm 3.53 \\ & 72.5-86.4 \end{aligned}$
Replacement odontostyle $\mu \mathrm{m}$	-	-	-	$\begin{gathered} 86.8 \pm 2.52 \\ 82.2-92 \end{gathered}$	$\begin{gathered} 108 \pm 3.84 \\ 100.8-116.7 \end{gathered}$	$\begin{gathered} 123.1 \pm 2.98 \\ 116.5-129.5 \end{gathered}$	$\begin{gathered} 136 \pm 4.16 \\ 128.3-146 \end{gathered}$
Oral aperture to guide ring $\mu \mathrm{m}$	44	$\begin{gathered} 42 \pm 1.54 \\ 39-46 \end{gathered}$	$\begin{aligned} & 42.8 \pm 2.16 \\ & 39.4-46.7 \end{aligned}$	$\begin{aligned} & 22.4 \pm 1.01 \\ & 20.5-23.8 \end{aligned}$	$\begin{gathered} 27.4 \pm 1.32 \\ 25.3-31.1 \end{gathered}$	$\begin{aligned} & 32.5 \pm 1.73 \\ & 29.7-36.1 \end{aligned}$	$\begin{gathered} 36.8 \pm 1.85 \\ 33-40.1 \end{gathered}$
Tail $\mu \mathrm{m}$	47	$\begin{gathered} 39.2 \pm 3.94 \\ 31.7-46.6 \end{gathered}$	$\begin{gathered} 41.8 \pm 3.70 \\ 37.2-51.5 \end{gathered}$	$\begin{gathered} 51.3 \pm 3.50 \\ 43.8-58 \end{gathered}$	$\begin{gathered} 37.5 \pm 2.82 \\ 32-43.5 \end{gathered}$	$\begin{gathered} 39.3 \pm 3.34 \\ 34.1-45.6 \end{gathered}$	$\begin{gathered} 39.7 \pm 3.33 \\ 33.7-47 \end{gathered}$
J Chyaline portion of tail) $\mu \mathrm{m}$	19.4	$\begin{gathered} 17.3 \pm 1.54 \\ 12.8-20.3 \end{gathered}$	$\begin{aligned} & 16.1 \pm 1.60 \\ & 13.3-20.8 \end{aligned}$	$\begin{gathered} 22.6 \pm 2.38 \\ 17.5-28.2 \end{gathered}$	$\begin{aligned} & 9.9 \pm 1.53 \\ & 7.3-13.5 \end{aligned}$	$\begin{aligned} & 12.6 \pm 1.64 \\ & 10.1-15.9 \end{aligned}$	$\begin{aligned} & 14.8 \pm 1.61 \\ & 12.2-20.4 \end{aligned}$
Body diam. at lip region $\mu \mathrm{m}$	21.8	$\begin{gathered} 21.6 \pm 0.86 \\ 19.7-23.7 \end{gathered}$	$\begin{gathered} 22.3 \pm 0.87 \\ 20.6-24 \end{gathered}$	$\begin{aligned} & 9.9 \pm 0.34 \\ & 9.3-10.7 \end{aligned}$	$\begin{gathered} 13.2 \pm 0.70 \\ 11.5-14.3 \end{gathered}$	$\begin{gathered} 16.4 \pm 0.99 \\ 14.6-18 \end{gathered}$	$\begin{gathered} 19 \pm 0.88 \\ 17.3-21 \end{gathered}$
Body diam. at guide ring $\mu \mathrm{m}$	42.4	$\begin{gathered} 44 \pm 2.05 \\ 38.1-49.1 \end{gathered}$	$\begin{gathered} 44.1 \pm 1.88 \\ 40-49.7 \end{gathered}$	$\begin{gathered} 19 \pm 0.79 \\ 17.3-20.5 \end{gathered}$	$\begin{aligned} & 25.7 \pm 1.01 \\ & 23.3-27.5 \end{aligned}$	$\begin{gathered} 32.4 \pm 1.88 \\ 29-36 \end{gathered}$	$\begin{aligned} & 38.4 \pm 1.97 \\ & 34.1-42.7 \end{aligned}$
Body diam. at base of oesophagus $\mu \mathrm{m}$	e 79.5	$\begin{gathered} 88.6 \pm 7.52 \\ 73.3-105.6 \end{gathered}$	$\begin{gathered} 84.1 \pm 8.04 \\ 74.2-108 \end{gathered}$	$\begin{gathered} 35 \pm 3.25 \\ 28.5-40.4 \end{gathered}$	$\begin{gathered} 47.2 \pm 4.41 \\ 38.3-54.7 \end{gathered}$	$\begin{gathered} 63 \pm 6.04 \\ 50.8-70.7 \end{gathered}$	$\begin{gathered} 75.8 \pm 5.93 \\ 61.4-89.1 \end{gathered}$
Body diam. at midbody or vulva $\mu \mathrm{m}$	- 107	$\begin{aligned} & 109.1 \pm 6.74 \\ & 97.1-123.5 \end{aligned}$	$\begin{gathered} 97.2 \pm 5.71 \\ 87.8-112 \end{gathered}$	$\begin{aligned} & 37.2 \pm 5.13 \\ & 27.7-46.8 \end{aligned}$	$\begin{aligned} & 52.5 \pm 7.07 \\ & 41.8-67.7 \end{aligned}$	$\begin{gathered} 70.5 \pm 8.32 \\ 54-85.7 \end{gathered}$	$\begin{aligned} & 87.4 \pm 9.31 \\ & 66.7-103.7 \end{aligned}$
Body diam. at anus $\mu \mathrm{m}$	67.6	$\begin{gathered} 64.8 \pm 3.76 \\ 58-72.1 \end{gathered}$	$\begin{gathered} 60.1 \pm 2.95 \\ 55.7-66.1 \end{gathered}$	$\begin{gathered} 28.2 \pm 3.24 \\ 23.5-35.8 \end{gathered}$	$\begin{aligned} & 40.7 \pm 3.21 \\ & 35.1-47.2 \end{aligned}$	$\begin{aligned} & 52.8 \pm 3.85 \\ & 44.6-58.7 \end{aligned}$	$\begin{gathered} 60.4 \pm 3.64 \\ 53.4-68.8 \end{gathered}$
Body diam. at beginning of J $\mu \mathrm{m}$	47.6	$\begin{aligned} & 46.7 \pm 3.35 \\ & 40.7-53.3 \end{aligned}$	$\begin{gathered} 38.7 \pm 1.52 \\ 35.6-41.5 \end{gathered}$	$\begin{gathered} 18 \pm 1.24 \\ 15.5-20.8 \end{gathered}$	$\begin{gathered} 26.3 \pm 2.56 \\ 21.7-31.8 \end{gathered}$	$\begin{aligned} & 35.7 \pm 3.72 \\ & 29.3-41.4 \end{aligned}$	$\begin{aligned} & 41.8 \pm 2.92 \\ & 36.2-48.2 \end{aligned}$
Spicules $\mu \mathrm{m}$			$\begin{gathered} 111.6 \pm 4.38 \\ 104-118 \end{gathered}$				

Fig. 13 - Photomicrographs of L. arthensis: A and B , female anterior region; C, female posterior region; D, male posterior region.

Relationships: L. belveticus sp.n. is very similar to L. macrosoma Hooper, 1961 from which it differs in its shorter body (L. macrosoma generally longer than 9 mm), much lower a ratio value ($105-115$ in L. macrosoma) and frontally rounded lip region (flat/slightly depressed in L. macrosoma). Moreveor, the hyaline portion of the tail of the first stage juveniles of L. belveticus is much longer in the corresponding juveniles of L. macrosoma (ca. 12 in L. macrosoma from Liestal).
L. belveticus also resembles L. poessneckensis Altherr, 1974, L. picenus Roca, Lamberti et Agostinelli, 1985 and L. nevesi Macara, 1986.

However, compared with L. poessneckensis (Sturhan and Loof, 2001), L. belveticus has lower a ratio value ($a=104$ in L. poessneckensis), higher c ratio value ($\mathrm{c}=179$ in L. poessneckensis), frontally rounded lip region (flat or depressed in L. poessneckensis), anterior vulva ($\mathrm{V}=55$ in L. poessneckensis) and first stage ju-

Fig. 14 - Patterns of the PCR amplified ITS region of L. arthensis on 2.5% agarose gel digested with Eco RI (E), $D d e 1$ (D), Rsal (R), Alu I (A), Ava II (Av) and HinfI (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.
veniles with digitate tail (rounded in L. poessneckensis).

Compared to L. picenus (Roca et al., 1985), L. belveticus has a longer body (6.8 mm in $\mathrm{L} . \mathrm{pi}$ cenus), higher c ratio value ($c=179$ in $\mathrm{L} . \mathrm{pi}$ cenus), and amphidial pouches not lobed (bilobed in L. picenus).

Finally, L. belveticus differs from L. nevesi (Macara, 1986) in its less pointed lip region (an-
teriorly tapering abruptly in L. nevesi), amphidial pouches not lobed (deeply bilobed in L. nevesi), lower value of the a ratio ($a=85$ in L. nevesi), higher value of the c ratio ($\mathrm{c}=180$ in L. neves i) and digitate first stage juvenile tail (conoid in L. nevesi).

The following codes are proposed for L. helveticus sp.n., according to the polytomous key for Longidorus (Chen et al., 1997; Loof and

Fig. 15 - Longidorus belveticus sp.n.: A, female anterior region; B and C, female posterior region; D, male posterior region; E-H, fourth, third, second and first juvenile stages respectively; I, babitus.

Fig. 16 - Photomicrographs of L belveticus sp.n.: A and B, female anterior region; C and D, female posterior region; E, male posterior region.

Chen, 1999): A $5 / 6$, B $4 / 5$, C $3 / 4$, D 1 , E 4, F 3/4, Gr H 1, I 2.

The SOD electrofocusing profile and the esterase stain of L. belveticus sp.n. is characterized by three typical major bands. (Figs 20 and 21).

The PCR product of the ITS region of L. belveticus sp.n. was 2000 kb (Table VII) and it was digested by all the restriction enzymes tested, giving the pattern indicated in Fig. 19.

Type material: holotype female, 10 female, 10 male and juveniles paratypes in the collection of the Istituto di Nematologia Agratia del Consiglio Nazionale delle Ricerche, Bari, Italy; 10 female, 10 male and juveniles paratypes in the collection of the Swiss Federal Research Station, Wädenswil, Switzerland; 5 female and 5 male paratypes in the collection of the CABI Bioscience Centre, Egham, United Kingdom; 5
female and 5 male paratypes in the United States Department of Agriculture Nematode Collection, Beltsville, Maryland, United States of America.

Discussion

From previous and more recent nematode surveys undertaken in Switzerland it appears that these six species of Longldorus are common and widespread in orchards and forests and often occur in mixed populations.

Some of them are more or less active vectors of plant viruses i.e. L. elongatus, L. macrosoma and L. arthensis (Taylor and Brown, 1997), or might cause damage to fruit trees e.g. L. raskdt, L. macrosoma, L. belveticus. To help identifica-

Fig. 17 - Photomicrographs of juveniles of L. belveticus sp. th posterior region: A, first stage; B , second stage; C , third stage; D, fourth stage.
tion the codes from the polytomous key of Chen et al., (1997) are compared:

	A	B	C	D	E	F	G	H	I
L. elongatus	3	2	$2 / 3$	3	2	3	2	2	$1 / 2$
L. macrosoma	$5 / 6$	$4 / 5$	$3 / 4$	3	4	5	$2 / 3$	1	2
L. profundor.	$3 / 4$	2	$2 / 3$	3	2	$3 / 4$	$2 / 3$	$1 / 2$	2
L. raskii	$3 / 4$	3	3	1	2	$3 / 4$	$1 / 2$	1	2
L. arthensis	$3 / 4$	3	3	1	2	$3 / 4$	$2 / 3$	$1 / 2$	2
L. belveticus	$5 / 6$	$4 / 5$	$3 / 4$	1	4	$3 / 4$	1	1	2

The main discriminants among them are: L. elongatus is the only species in which males are not common: they were never found during our survey; L. elongatus and L. profundorum have a diameter at lip region less than $16 \mu \mathrm{~m}$ (B2), but the former has cylindrical lip region, ca $90 \mu \mathrm{~m}$ long odontostyle and $1.2 c^{\prime}$ ratio and the latter tapering lip region, ca $100 \mu \mathrm{~m}$ long odontostyle and $1.0 \mathrm{c}^{\prime}$ ratio; L. helveticus and L. macrosoma
are the only two species with a non-lobed amphidial pouch (E4) and with an odontostyle longer than $120 \mu \mathrm{~m}$ (A 5/6); but the first has a body length of ca. 7.8 mm (F 3/4) and the second more than 9 mm (F5); finally, L. arthensis differs from L. raskii in its body length (6.5 vs 7.5 mm), c' value (1.0 vs 0.8) and vulva position ($\mathrm{V}=50$ vs 53).
L. arthensis, L. raskii, L. macrosoma, L. profundorum, L. elongatus, and L. belveticus are clearly distinguished by either IEF SOD isozyme profiles (Fig. 20) or n-PAGE esterase profile (Fig. 21). L. arthensis and L. profundorum show major analogies although they could be identified by a finer analysis. L. raskii displays electrophoresis profiles very different from the other five species tested, thus suggesting a more marked phylogenetical distance with respect to those species. L. arthensis, L. macrosoma, and L. elongatus are generally characterized by very active neutral SOD isoforms and faint basic

Fig. 18 - Scatter diagram plotting body and odontostyle length of individual juveniles and females of L. belveticus sp.n.

Fig. 19 - Patterns of the PCR amplified ITS region of L. helveticus sp.n. on 2.5% agarose gel digested with $E c o \mathrm{RI}$ (E), Dde I (D), Rsa I (R), Alu I (A), Ava II (Av) and HinfI (H). The size in base pairs (bp) was estimated from 100 bp DNA ladder.
bands, whilst L. raskii shows only a marked basic isoform. This latter species is specifically characterzied by consistent esterase isoforms with high molecular weight. The new species L. belveticus, is unequivocally identified by a typical three major band profile either by SOD or

Fig. 20 - Isoelectrofocusing of Longidorus spp. extracts carried out by Phast System equipment. a) mixed population of L. elongatus and L. helveticus, b) L. arthensis, c) L. raskii; cl) L. macrosoma; e) L. profundorum; f) L. elongatus, g) L. belveticus sp.n. Mini-gels ($5 \times 4.2 \mathrm{~cm}$) were stained for SOD activity, then, gels were dried and scanned. Their digital images were turned into negatives and printed on high quality photo paper. SOD bands appear black over a white background.
by esterase staining. A mixed population sample from Horgen shares bands of L. elongatus and L. belveticus.

The amplified fragments of the ITS region of the six Longidorus species indicate (Fig. 22) that their sizes are approximately 1.6 kb for L.

TABLE VII - Estimated restriction fragment sizes (bp) of PCR amplified ITS of six species of Longidorus from Switzerland.

Enzymes	L. belveticus	L. profundorum	L. macrosoma	L. arthensis	L. elongatus	L. raskii
ND	2000	1800	2000	1700	1600	1600
Ah I	$720,450,400,230$	850,880	1300,350	$750,380,320,220$,	$450,430,380,280$	$1000,260,150$
				180		
Ava II	$950,800,260$	1350,550	2000	1500,250	950,450	1600
Dde I	$480,430,250$	$400,300,250,220$,	$530,500,420,330$	$450,390,350,180$,	$550,430,200,180$	$490,420,200,180$
		180,150		150		1600
Eco RI	1100,950	1500,280	1200,950	1700	1100,480	
Rsa I	$570,440,400,380$,	$1200,380,260$	$750,500,380$	$870,680,320$	$650,640,250$	$620,380,320,230$
HinfI	$680,500,320,290,730,560,230,180$	$900,500,280$	$570,400,280$	$660,320,230,220$	$500,380,280,180$	
	280					

Fig. 21 - Native - PAGE of Longidorus spp. extracts carried out by Phast System equipment. a) mixed population of L. elongatus and L. belveticus; b) L. arthensis; c) L. raskii; d) L. macrosoma; e) L. profundorum; f) L. elongatus; g) L. belveticus sp.n. Mini-gels ($5 \times 4.2 \mathrm{~cm}$) were stained for esterase activity, then dried and scanned. Esterase bands appear black on a white background

Fig. 22 - Agarose gel of amplified products obtained from L. belveticus (1), L. profundorum (2), L. macrosoma from Liestal (3), L. macrosoma from Horgen (4), L. raskii (5), L. arthensis (6), L. elongatus (7), L. macrosoma from Arth (8), L. macrosoma from Arth, Wiget (9) and L. arthensis (10) from Arth, Wiget DNAs. The size in base pairs (bp) was estimated from 100 bp DNA ladder.
raskii and L. elongatus, 1.7 kb for L. arthensis, 1.8 for L. profundorum and 2.0 kb for L. macrosoma and L. belveticus. However, L. elongatus and L. raskii; and L. macrosoma and L. belveticus are distinguished by specific differences in the restriction patterns (Table VII). There was no restriction site for $E c o \mathrm{RI}$ in L. arthensis and L. elongatus and for Ava II in L. macrosoma and L. raskii.

Specimens collected at Arth clearly indicated that they constituted a mixed population of L. macrosoma and L. arthensis.

Literature cited

Braasch H., Burgemeister W. and Pastrik K. H., 1995. Differentiation of three Bursapbelenchus species by means of RAPD-PCR. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 47:310-314.
Brown D. J. F., Grunder J., Hooper D. J., Klingler J. and Kunz P., 1994. Longidorus arthensis sp.n. (Nematoda: Longidoridae) a vector of cherry rosette disease caused by a new nepovirus in cherry trees in Switzerland. Nematologica, 40: 133-149.
Buser A., 1990. Untersuchungen über die Pfeffingerkrankheit der Susskirche und deren Vektor Longidorus macrosoma. Dissertation. Eidgenossiche Technische Hochschule Nr. 9194, Zürich, 204 pp.
Chen Q., Hooper D. J., Loof P. A. A. and Xu J., 1997. A revised polytomous key for the identification of species of the genus Longidorus Micoletzky, 1922 (Nematoda: Dorylaimoidea). Fundamental and Applied Nematology, 20: 15-28.
Coolen W. A. and D'Herde C. J., 1977. Extraction de Longidorus et Xiphinema spp. du sol par centrifugation utilisant du silica colloidal. Nematologia Mediterranea, 5: 195-206.
Crozzoli R., Lamberti F., Molinari S., Agostinelli A., He Y., Moens M., Greco N., RAdicci V. and Brown D. J. F., 2000. Longidorus edmundsi (Nematoda, Dorylaimida), a new record for South America. Nematologia Mediterranea, 28: 213-220.
Duncan L. W., Inserra R. N., Thomas W. K;, Dunn D., Mustika I., Frisse L. M., Mendes M. I, Morris K. and Kaplan D. T., 1999. Molecular and morphological analysis of isolates of Pratylencbus coffeae and closely related species. Nematropica, 29: 68-80.
Gurao P., Moya A. and Cenis J. L., 1995. Optimal use of random amplified polymorphic DNA in estimating the genetic relationships of four major Meloidogyne spp. Genetics, 85: 547-551.
Hooper D. J., 1961. A redescription of Longidorus elongatus (de Man, 1876) Thorne \& Swanger, 1936 (Nematoda, Dorylaimidae) and descriptions of five new species of Longidorus from Great Britain. Nematologica, 6 : 237-257.
Hooper D. J., 1966. Longidorus profundorum n. sp. (Nematoda: Dorylaimidae). Nematologica, 11 (1965): 489495.

Hooper D. J., 1973. Longidorus elongatus. C.I.H. Descriptions of plant parasitic nematodes. Set 2, N. $30,4 \mathrm{pp}$.
Irdani T., Caroppo S. and Ambrogion L., 1996. Distinzione a livello molecolare di nematodi del legno di pino appartenenti al genere Bursaphelenchus. Nematologia Mediterranea, 23 (Supplemento, 1995), 99-106.
Klingler J., Guentzel O. and Kunz P., 1983. Xiphinema and Longidorus Arten (Nematoda) im Schweizerischen

Mittelland. Vierteljabresschrift der Naturforschenden Gesellschaft Zurich, 128: 89-114.
Kuinglerr I., Kunz P. and Hauri H. P., 1985 a. Die Verbreitung des Vektornematoden der Pfeffingerkrankeit im Kirschenanbaugebiet der Nordwestschweiz Schweizerische Zeitschrift fur Obst-u. Weinbau, 121: 782-789.
Klingler J., Valootton R. and Guentzel O., 1985 b. Provisional atlas of the plant parasitic nematodes of Switzerland. Scottish Crop Research Institute, Dundee, 34 pp.
Lamberti F. and Agostinelli A., 1993. Longidorus raskii sp.n. (Nematoda: Dorylaimida) from Switzerland. Nematologia Mediterranea, 21: 243-246.
Lamberti F., Molinari S., De Luca F., Agostinelli A. and Di Vito M., 1999a. Longidorids (Nematoda, Dorylaimida) from Syria with description of Longidorus pauli sp.n. and Paralongidorus halepensis sp.n. with SOD isozymes and PCR-RFLP profiles. Nematologia Mediterranea, 27: 63-78.
lamberti F., Sabova' M., De luca F., Mounari S., Agostinelli A., Coiro M. I. and Valocka' B., 1999b. Phenotypic variations and genetic characterization of Xiphinema populations from Slovakia (Nematoda: Dorylaimida). Nematologia Mediterranea, 27: 261-275.
Loor P. A. A. and Chen Q., 1999. A revised polytomous key for the identification of species of the genus Longidorus Micoletzky, 1922 (Nematoda: Dorylaimoidea). Supplement 1. Nematology, 1:55-59.
Macara A. M., 1986. Two new species of Longidorus (Ne-
matoda: Longidoridae) associated with forest plants in Portugal. Nematologica, 31 (1985): 410-423.
Molinari S., 2001. Polymorphism of esterase isozyme zymograms of Meloidogyne populations detected by phastsystem. Nematologia Mediterranea, 29: 63-66.
Molinari S., De lucia F., lamberti F. and De Girogi C., 1997. Molecular methods for the identification of longidorid nematodes. Nematologia Mediterranea, 25: 44-61.
Molinari S., Evans K., Rowe J. and Russed M., 1996. Identification of Heterodera cysts by SOD isoenzyme electrophoresis profiles. Annals of Applied Biology, 129. 361-368.
Roca F., Lamberti F. and Agostinelli A., 1985. Three new species of Longidorus (Nematoda, Dorylaimida) from Italy. Nematologia Mediterranea, 12 (1984): 187-200.
Schmitz B., Burgermeister W. and Braasch H., 1998. Molecular genetic classification of central European Meoidogyne chitwoodi and M. fallax populations. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 50: 310-317.
Soltis D. E., Hanfler C. H., Darrow D. C. and Gastony G. J., 1983. Starch gel Elecrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers and staining schedules. American Fern Journal, 73: 9-27.
Sturhan D. and Loof P. A. A., 2001. Redescription of Longidorus poessneckensis Altherr, 1974 (Nematoda: Dorylaimida). Russian Journal of Nematology, 9: 43-49.
Taylor C. E. and Brown D. J. F., 1997. Nematode vectors of plant viruses. CAB International Wallingford, Oxon, United Kingdom. 286 pp.

