The Trichoptera of Panama XIII.
Further new country records for caddisflies
(Insecta: Trichoptera) from the Republic of Panama

Brian J. Armitage
Instituto Conmemorativo Gorgas de Estudio de la Salud
Ave. Justo Arosemena y Calle 35
Apartado Postal N° 0816-02593
Panamá, Republic of Panamá

Steven C. Harris
Department of Biology and Geosciences
Clarion University
Clarion, PA 16214 USA

Roger J. Blahnik
Department of Entomology
University of Minnesota
St. Paul, MN 55108 USA

Robin E. Thomson
Department of Entomology
University of Minnesota
St. Paul, MN 55108 USA

Tomás A. Ríos González
Museo de Peces de Agua Dulce e Invertebrados
Universidad Autónoma de Chiriquí
David, Republic of Panamá

Yusseff Aguirre
Museo de Peces de Agua Dulce e Invertebrados
Universidad Autónoma de Chiriquí
David, Republic of Panamá

Date of issue: January 31, 2020
The Trichoptera of Panama XIII. Further new country records for caddisflies (Insecta: Trichoptera) from the Republic of Panama

Brian J. Armitage
Instituto Conmemorativo Gorgas de Estudio de la Salud
Ave. Justo Arosemena y Calle 35
Apartado Postal N° 0816-02593
Panamá, Republic of Panamá
tobikera89@gmail.com

Steven C. Harris
Department of Biology and Geosciences
Clarion University
Clarion, PA 16214 USA
sharris@clarion.edu

Roger J. Blahnik
Department of Entomology
University of Minnesota
St. Paul, MN 55108 USA
blahn003@umn.edu

Robin E. Thomson
Department of Entomology
University of Minnesota
St. Paul, MN 55108 USA
thom1514@umn.edu

Tomás A. Ríos González
Museo de Peces de Agua Dulce e Invertebrados
Universidad Autónoma de Chiriquí
David, Republic of Panamá
tomas.rios@unachi.ac.pa

Yusseff Aguirre
Museo de Peces de Agua Dulce e Invertebrados
Universidad Autónoma de Chiriquí
David, Republic of Panamá
yusseff1422@gmail.com

Abstract. The Republic of Panama currently includes 414 recorded species of Trichoptera. Herein we add two new genera (Hydroptilidae: Angrisanoia Ozdikmen, 2008 and Mayatrichia Mosely, 1937) and 17 new country records (Philopotamidae: Chimarra (C.) tapanti Blahnik, Wormaldia bolivari Muñoz-Quesada and Holzenthal, and Wormaldia zunigae Muñoz-Quesada and Holzenthal; Hydropsychidae: Centromacronema pygmaeum Botosaneanu; Hydroptilidae: Brysopteryx esparta Harris and Holzenthal, Byrsopteryx solisi Harris and Holzenthal, Costatrichia falsa Santos, Takiya, and Nessimian, Mayatrichia illobia Harris and Holzenthal, Metrichia amplitudinis Bueno-Soria and Holzenthal, Ochrobotrichia boquillas Moulton and Harris, O. conformalis Bueno-Soria and Holzenthal, O. quinealensis Bueno-Soria and Holzenthal, and O. unica Bueno-Soria and Santiago; Leptoceridae: Triaenodes morai Holzenthal and Andersen; Odontoceridae: Marilia kingsolveri Bueno-Soria and Rojas-Ascencio; and, Helicopsycheidae: Helicopsyche alajuela Johanson and Holzenthal and Helicopsyche breviterga Flint) to Panama’s caddisfly fauna. The newly recorded taxa increase Panama’s total known caddisfly fauna to 431 species, distributed among 15 families and 55 genera. These results are part of an ongoing effort to characterize the caddisfly fauna of Panama, and to evaluate the aquatic insect diversity of the country’s major watersheds (cuencas).

Key words. Philopotamidae, Hydropsychidae, Helicopsycheidae, Hydroptilidae, Leptoceridae, Odontoceridae, Central America, Neotropics, species inventory.

Palabras clave. Philopotamidae, Hydropsychidae, Helicopsychidae, Hydroptilidae, Leptoceridae, Odontoceridae, América Central, Neotrópico, inventario de especies.

Introduction

Some of the species recorded in this publication were discovered as a result of general surveys of Panama’s caddisfly fauna. This effort is now formalized in a registered project at the Museo de Peces de Agua Dulce e Invertebrados (MUPADI) of the Universidad Autónoma de Chiriquí (UNACHI) in David, Panama. The publication series (The Trichoptera of Panama) within which this paper is included now serves as the official series for this project. Other species described or recorded in this publication were discovered during work on a new project, initiated in 2017, involving biological surveys of Panama’s national parks. Designated “Proyecto Sistema de Producción Sostenible Conservación de la Biodiversidad (PSPSCB)”, this project is managed by Panama’s Ministerio de Ambiente and, in collaboration with the Instituto Conmemorativo Gorgas de Estudios de la Salud (Gorgas Institute), executed by the Colección Zoológica Dr. Eustorgio Méndez (COZEM). These biodiversity surveys are included under the framework of the “Sistema Nacional de Información y Monitoreo de la Diversidad Biológica”, or National Biological Diversity Information and Monitoring System, to better understand the country’s biodiversity. Primary funding was provided by the World Bank. The various components of this latter project include one on aquatic invertebrates.

Until the last 27 years, the insect order Trichoptera (caddisflies) was poorly known in Panama, both in terms of diversity and distribution. In general, repeated collections were made in a relatively few locations. Aguila (1992) published the first list of caddisflies (Insecta: Trichoptera) from Panama, listing 168 species in 39 genera and 13 families. Through 2014, 6 genera and 78 species were added to Panama’s caddisfly fauna by a cadre of researchers, bringing the total to 246 species distributed among 13 families and 45 genera. Beginning in 2015 and continuing into the current year, Armitage et al. (2015), Harris and Armitage (2015), Muñoz-Quesada and Holzenthal (2015), Bueno-Soria and Barba-Álvarez (2015), Armitage et al. (2016), Armitage and Harris (2018a), and Thomson and Armitage (2018), Armitage et al (2018), Harris and Armitage (2019), Razuri-Gonzalez and Armitage (2019) and Blahnik and Armitage (2019) have added two families, eight genera, and 168 new species and new country records of caddisflies.

Based on specimens collected recently, in this paper we add country records for two genera and 17 species of caddisflies to Panama’s fauna. Thus, the new total of known caddisflies from the Republic of Panama is 431 species distributed among 15 families and 55 genera.
Materials and Methods

Single-night collections were made, in general, using UV-light traps (Calor and Mariano 2012). Multiple-night collections were made employing Malaise traps, as indicated below. Specimens were prepared and examined following standard methods outlined in Blahnik and Holzenthal (2004). Male genitalia were soaked in 5% KOH overnight, and washed in acidified water and alcohol prior to examination under various dissecting scopes.

Specimens listed in this publication will be deposited in COZEM or the authors’ collections. The order of families below follows the classification presented by Holzenthal et al. (2015).

The new species of Angrisanoia Ozdikmen will be described in a forthcoming publication. Citation information for species authorities mentioned in this paper can be found in the Trichoptera Literature Database (http://www.trichopteralit.umn.edu/).

Results

Philopotamidae

Chimarra (C.) tapanti Blahnik, 1998

PANAMA, Chiriquí Province, Cuenca 102, Quebrada Norte, Mount Totumas Biological Reserve, 8.87361°N and 82.690512°W, 1692 m, Malaise trap, B. Armitage, 26-28 December 2017, 1 male.

Distribution. Costa Rica, Panama.

Wormaldia bolivari Muñoz-Quesada and Holzenthal, 2015

PANAMA, Chiriquí Province, Cuenca 108, Quebrada Grande, Boquete, Valle Escondido, 8.78365°N and 82.44429°W, 1147 m, T. Arefina-Armitage, 15 September 2018, 1 male.

Distribution. Panama, Venezuela.

Wormaldia zunigae Muñoz-Quesada and Holzenthal, 2015

PANAMA, Chiriquí Province, Cuenca 108, tributary of Quebrada Grande, Boquete, Valle Escondido, 8.78173°N and 82.44395°W, 1194 m, UV light trap, B. Armitage and T. Arefina-Armitage, 11 March 2018, 1 male; ibid., Quebrada Grande, 8.78365°N and 82.44429°W, 1147 m, T. Arefina-Armitage, 15 September 2018, 1 male.

Distribution. Colombia, Panama.

Hydropsychidae

Centromacronema pygmaeum Botosaneanu, 1993

PANAMA, Bocas del Toro Province, Cuenca 093, Quebrada Martinez, Willie Mazu, 8.79361°N and 82.19392°W, 538 m, Malaise trap, T. Ríos and Y. Aguirre, 5–19 July 2019, 3 males.

Distribution. Panama, Trinidad, Venezuela.

Hydroptilidae

Angrisanoia sp.

Insecta Mundi 0744, January 2020

Distribution (for the genus). Argentina, French Guiana, Panama, Uruguay, Venezuela.

Note. This apparent new species will be described in a future publication with others from Panama’s national parks.

Brysopteryx esparta Harris and Holzenthal, 1994

Distribution. Costa Rica, Panama.

Byrsopteryx solisi Harris and Holzenthal, 1994

Distribution. Costa Rica, Panama.

Costatrichia falsa Santos, Takiya, and Nessimian, 2013

Distribution. Costa Rica, Panama.

Mayatrichia illobia Harris and Holzenthal, 1990

Distribution. Costa Rica, Ecuador, Panama.

Metrichia amplitudinis Bueno-Soria and Holzenthal, 2003

PANAMA, Chiriqui Province, Cuenca 102, Quebrada Norte, Mount Totumas Biological Reserve, 8.873613°N and 82.690512°W, 1692 m, Malaise trap, B. Armitage, 26-28 December 2017, 2 males; ibid., J. Dietrich, 28 January–2 February 2018, 1 male; ibid., 16-20 February 2018, 9 males; ibid., 16-20 March 2018, 1 male.

Distribution. Costa Rica, Panama.

Ochrotrichia boquillas Moulton and Harris, 1997

Distribution. Mexico, Panama, U.S.A.
Ochrotrichia conformalis Bueno-Soria and Holzenthal, 2008

Distribution. Costa Rica, Panama.

Ochrotrichia quinealensis Bueno-Soria and Holzenthal, 1998

Distribution. Costa Rica, Panama.

Ochrotrichia unica Bueno-Soria and Santiago, 1992

Distribution. Colombia, Panama.

Leptoceridae

Triaenodes morai Holzenthal and Andersen, 2004

Distribution. Costa Rica, Nicaragua, Panama.

Odontoceridae

Marilia kingsolveri Bueno-Soria and Rojas-Ascencio, 2004

PANAMA, Chiriquí Province, Cuenca 108, Río Majagua, Banquito de Palmira, 8.68083°N and 82.53250°W, 840 m, Malaise trap, T. Ríos and Y. Aguirre, 28 February-14 March 2019, 1 male.

Distribution. Costa Rica, Panama.
Discussion

The presence of Angrisanoia in Panama represents its northernmost extent. A small genus of microcaddisflies with five described species, it was formerly known only from South America (Venezuela and French Guiana, south to Argentina). Three species are known from French Guiana (2 species) and Venezuela (1 species), and could potentially be found in Panama. This type of dispersal could be assisted by the often strong eastern trade winds, which blow across northern South America and the southern Caribbean Sea to Panama during the dry season (December through April). However, this theory is only weakly supported by known caddisfly taxa (e.g., species shared with Colombia = 46, Venezuela = 45, Guyana = 9, Suriname = 11, French Guiana = 3, and Trinidad and Tobago = 22). It would require intensive and prolonged sampling of Panama’s northeastern Caribbean coast to further substantiate such a distributional mechanism. Additional collections from the coastal areas of Guyana, Suriname, and French Guiana would also be useful.

Mayatrichia is another small genus of microcaddisflies with four described species. Mayatrichia illobia is known from Costa Rica and Ecuador, so its presence in Panama is not unexpected. Two of the other three species of this genus are known from Costa Rica, and the third from Mexico, so the occurrence of additional species of Mayatrichia in Panama would be possible.

The discovery of Ochrotrichia boquillas represents a significant southern range extension. First described from Big Bend National Park (Moulton and Harris 1997), it was subsequently collected from the Edwards Plateau in Texas (Bowles et al. 2007) and the Sierra Tarahumara region of Chihuahua in Mexico (Bueno-Soria et al. 2007). In the latter paper, parsimony analysis of endemicity suggested that the Trichoptera of the Sierra Tarahumara are biotically related to the Neotropical Region, even though that location is technically in the Nearctic Region and associated with the mountains of the southwestern United States. Finding this species in Panama supports that analysis, and suggests that this species could be found, at least historically, throughout Mexico and other parts of Central America.

Whereas Panama shares almost 61% of its caddisfly fauna with Costa Rica, less than 10% of its microcaddisfly species (Trichoptera: Hydroptilidae) are the same (Armitage and Harris 2018b). As this is the largest family in Panama’s fauna and the source of most new increases in species numbers, we propose that there is potential for many more new country records in this family. By the end of 2020, we anticipate, based on new, undescribed species in hand and current trends, that an increase to Panama’s recorded caddisfly fauna will exceed 500 species.

Acknowledgments

We are grateful to the Ministry of Environment, who, through the Sustainable Production System and Biodiversity Conservation Project (PSPSCB), financed the collections in Omar Torrijos National Park (PNGDOTH) and Santa Fe National Park (PNSF), who granted collecting permits for all years
encompassed in this publication, and who granted the special collection permit No. SC / A-27-19 for the Bosque Protector Palo Seco under which Centromacronema pygmaeum was collected. Collections of specimens from the Río Majagua and Quebrada Martínez drainages were made as part of a registered project (code: 1.87-205-000-2019-151-i01) in the VIP–UNACHI (Universidad Autónoma de Chiriquí) for which the first, fifth, and sixth authors are co-investigators. We are grateful for the overall coordination of the entomofaunal portion of the national parks project by Aydeé Cornejo of the Gorgas Institute. We thank Carlos Nieto, Eric Álvarez, and Edgar Pérez for their significant efforts to collect all of the aquatic insect material from the national parks. We express our appreciation to Jeffrey Dietrich of Mount Totumas Cloud Forest and Biological Reserve for collecting specimens and also for facilitating our research. We appreciate the efforts of Tatiana I. Arefina-Armitage for collecting and for editing the manuscript. Finally, we thank Monika Springer of the University of Costa Rica and an anonymous taxonomic researcher for reviewing and improving this manuscript.

Literature Cited

Received November 14, 2019; December 13, 2019.
Review editor David E. Bowles