Key to the Korean species of armored scale insects
(Hemiptera: Diaspididae)

Soo-Jung Suh
Plant Quarantine Technology Center/QIA
167, Yongjeon 1-ro, Gimcheon-si,
Gyeongsangbuk-do, South Korea 39660

Date of Issue: February 24, 2017
Key to the Korean species of armored scale insects (Hemiptera: Diaspididae)

Soo-Jung Suh
Plant Quarantine Technology Center/QIA
167, Yongjeon 1-ro, Gimcheon-si,
Gyeongsangbuk-do, South Korea 39660
suhsj97@gmail.com; suhsj97@korea.kr

Abstract. A list of all 80 species of armored scale insects (Hemiptera: Diaspididae) in 30 genera that have been identified or documented in Korea, along with a dichotomous key to separate them, is provided.

Key words. Diaspidids, checklist, identification, indigenous species

Introduction

Armored scale insects (Hemiptera: Diaspididae) are the largest and most diverse family of scale insects, with 2,587 species known worldwide (García et al. 2016). They are highly evolved and specialized plant parasites, and generally have a cryptic way of life because of their small size and limited mobility. The female Diaspididae has two nymphal stages; first-instar nymphs (crawlers) have well-developed legs and are known as the dispersal stage; second-instar nymphs and adult females (third-instar) are legless, wingless, feed on sap, and are covered by a waxy shield incorporating the exuviae of previous instars; adult males (when present) have legs and one pair of wings and do not feed; many reproduce asexually and have no males (Rosen 1990).

Armored scale insects occur in every part of the world where plants grow. There is hardly any country in the world today where diaspidids do not cause serious pest problems, and their success invading new territories has made them a constant quarantine threat in many parts of the world (Rosen 1990). They are one of the most economically important groups of insects found on food crops and ornamental plants.

In the Republic of Korea, armored scale insects such as the Asiatic rose scale, Aulacaspis rosarum Borchsenius and the euonymus scale, Unaspis euonymi (Comstock), are considered major pests because they cause severe damage to trees and shrubs due to their high populations. In addition, more and more non-indigenous armored scale insects such as Aulacaspis yasumatsui Takagi (intercepted 29 times) and Lepidosaphes laterochitinosa Green (intercepted 65 times) are frequently intercepted on imported plants over the past 20 years and are considered to be potential invasive species (Suh 2016c).

Due to their importance, a survey was conducted between 2006 and 2015 to regularly update a list of armored scale insects found in the Republic of Korea. Recent articles (Paik 2000; Suh and Hodges 2007; Lee 2010; Suh 2011, 2013, 2014, 2015, 2016a, 2016b; Yu and Suh 2013; Suh and Evans 2016) in addition to information reported herein, have increased the number of armored scale species known to occur in the Republic of Korea to 80 species belonging to 30 genera.

The purpose of this paper is to provide an identification key to the genera and species of armored scale insects known to occur in Korea, based on characters of the adult female. This information will not only enable researchers to identify the species known to occur in Korea, but also aid in the recognition and early detection of newly introduced species.

Materials and Methods

This paper provides a dichotomous key and a list concerning 80 species of armored scale insects reported from Korea. But during the survey over the past ten years, nine species such as Chionaspis salicis (Linnaeus) and Comstockaspis macroporana (Takagi) were not collected (Table 1), although they have been documented in the Korean fauna of armored scale insects. While developing the key, the author was not able to examine specimens of these species from Korea. Terminology for the morphological structures used in the key follows that of Miller and Davidson (2005).
Results

Table 1 presents a list of the armored scale insects that were collected and reported from the Republic of Korea, along with their regional distribution in Korea. A dichotomous key to the Korean armored scale insects is provided.

Key to armored scale insects of Korea (slide-mounted adult females)

1. Dorsum of pygidium with areolate pattern ... 2
 — Dorsum of pygidium without areolate pattern .. 3

2(1). With perispiracular pores near posterior spiracles; pygidial macroducts short, approximately 5 times longer than width of dermal orifice Pseudaonidia paoniae (Cockerell)
 — Without perispiracular pores near posterior spiracles; pygidial macroducts long, approximately 10 times longer than width of dermal orifice Pseudaonidia duplex (Cockerell)

3(1). Usually occurring on bamboos .. 4
 — Rarely occurring on bamboos .. 9

4(3). Median lobes fused; lacking two-barred macroducts .. Odonaspis secreta (Cockerell) (in part)
 — Median lobes not fused; two-barred macroducts present .. 5

5(4). Median lobes yoked basally, with small space between them; medial lobule of second lobe larger than lateral lobule .. Pinnaspis buxi (Bouché) (in part)
 — Median lobes not basally yoked, separated by space at least a half width of lobe or far apart from each other; medial lobule of second lobe about same size as, or smaller than 1 lateral lobule 6

6(5). Apically toothed marginal plates absent anterior to 2nd lobes; median to 3rd lobes very small and pointed ... Unachionaspis tenuis (Maskell)
 — Apically toothed marginal plates present anterior to 2nd lobes; median, second and third lobes without the above combination of features .. 7

7(6). With less than 10 perivulvar pores on each side of body; occurring on the leaves Kuwanaspis hikosani (Kuwana)
 — With more than 20 perivulvar pores on each side of body; occurring on stems 8

8(7). Abdominal segment 1 with transverse row of macroducts ... Kuwanaspis howardi (Cooley)
 — Abdominal segment 1 without transverse row of macroducts Kuwanaspis pseudoleucaspis (Kuwana)

9(3). With at least one pore near the posterior or anterior spiracles 10
 — Without pores near the spiracles ... 63

10(9). Body elongate, oval, or turbinate; not as described below .. 16
 — Body elongate; head and/or anterior two thoracic segments rectangular in shape, wider than remainder of body .. 11

11(10). With ducts on dorsum of abdominal segment 2 .. 12
 — Without ducts on dorsum of abdominal segment 2 .. 14
12(11). Spines more than 10 on ventral margins of abdominal segments 2 and 3 ..13
— Spines less than 10 on ventral margins of abdominal segments 2 and 3 ..Aulacaspis rosarum Borchsenius

13(12). Only known on Elaeagnus (Elaeagnaceae); median lobes broadly rounded, usually more than 2 times width of second lobes ..Aulacaspis difficilis (Cockerell)
— Only found on Smilax (Smilacaceae); median lobes round, usually less than 1.5 times width of second lobes ..Aulacaspis spinosa (Maskell)

14(11). With usually ducts on dorsum of abdominal segment 6 ..15
— Without ducts on dorsum of abdominal segment 6 Aulacaspis latissima (Cockerell)

15(14). Median lobes narrowly rounded; basal sclerosis or yoke between median lobes produced anteriorly ..Aulacaspis yabunikkei Kuwana
— Median lobes broadly rounded; basal sclerosis or yoke between median lobes, not produced anteriorly ..Aulacaspis rosae (Bouché)

16(10). Pygidium with at least one pair of marginal scleroses indicating the intersegmental junctures of the abdominal segments 6 to 8 Odonaspis secreta (Cockerell) (in part)
— Pygidium without intersegmental scleroses ..17

17(16). Pygidium with more than seven groups of perivulvar pores; dorsum with sclerotized areas and a row of gland spines present from the prothorax to abdominal segment 4 ..Lopholeucaspis japonica (Cockerell)
— Pygidium and dorsum without the above combination of characters ...18

18(17). Median lobes present, yoked basally by an internal sclerosis ..19
— Median lobes present or absent; if present, not yoked basally by an internal sclerosis36

19(18). Median lobes very tightly appressed with a small space between them20
— Median lobes distinctly separate ..25

20(19). Only found on conifers ..Pinnaspis chamaecyparidis Takagi
— Not found on conifers ..21

21(20). Median lobes fused throughout their length, thus forming a single median lobePinnaspis uniloba (Kuwana)
— Median lobes although usually very closely appressed together, separate for at least some distance from the apex, if not to the base ...22

22(21). Median lobes protrude less than or about the same distance as second lobes23
— Median lobes protrude beyond or about the same distance as second lobes24

23(22). With submarginal ducts on dorsum of abdominal segment 5 ..Pinnaspis aspidistrae (Signoret)
— Without submarginal ducts on dorsum of abdominal segment 5 ..Pinnaspis buxi (Bouché) (in part)

24(22). Basal sclerosis of median lobes slender, scarcely produced anteriorly beyond bases of the lobes ..Pinnaspis hkosana Takagi
— Basal sclerosis of median lobes robust, distinctly produced anteriorly beyond bases of the lobes ..Pinnaspis strachani (Cooley)
25(19). With at least a few macroducts on medial or submarginal areas of pygidium; not pupillarial (adult female developing with second-instar nymph exuvium) ..26
— Without macroducts on medial or submarginal areas of pygidium; pupillarial ..

Fiorinia japonica Kuwana

26(25). Setae or gland spines absent between the median lobes ...27
— Setae or gland spines present between the median lobes ...31

27(26). With a series of small dorsal macroducts (wider than microducts in gland spines) on the submedial area of the abdomen ...28
— Without a series of small dorsal macroducts on the submedial area of the abdomen30

28(27). Median lobes strongly divergent, with a straight medial margin; with small dorsal macroducts on the submedial area of abdominal segments 1 to 5 ..29
— Median lobes only slightly divergent, with a rounded medial margin; with small dorsal macroducts on the submedial area of abdominal segments 1 to 4; on many hosts including Salix and Populus (Salicaceae) ..

Chionaspis salicis (Linnaeus)

29(28). With small dorsal macroducts on the submedial area of the prothorax and mesothorax; primarily on Alnus (Betulaceae) ...Chionaspis alnus Kuwana
— Without small dorsal macroducts on the submedial area of the prothorax and mesothorax; on Quercus (Fagaceae) ...Chionaspis saitamaensis Kuwana

30(27). With dorsal macroducts on abdominal segment 6; primarily on Wisteria (Fagaceae)Chionaspis wistariae Cooley
— Without dorsal macroducts on abdominal segment 6; on Acer (Sapindaceae)Chionaspis acer (Takagi and Kawai)

31(26). Body oval or turbinate, length usually less than 1.5 times greatest width32
— Body elongate, length usually 1.5 times or more than greatest width ...33

32(31). Third space usually with 1 gland spine; at least 1 bifurcate or trifurcate gland spine in second, third, or fourth space; antennae with sclerotized projections apically; with 5–22 (10) small macroducts on each side of the metathorax and segment 1; on many hosts ...
Pseudaulacaspis pentagona (Targioni-Tozzetti)
— Third space usually with 2 or more gland spines; simple gland spine in second, third, or fourth space; antennae rounded apically; with 0–15 (5) small macroducts on each side of the metathorax and segment 1; primarily on Prunus (Rosaceae)Pseudaulacaspis prunicola (Maskell)

33(31). With perispiracular pores near posterior spiracles ...34
— Without perispiracular pores near posterior spiracles ...35

34(33). With usually two rows of submarginal macroducts on abdominal segments 2 and 3; with 4–11 pores near anterior spiracles and 1–5 pores near posterior spiracles; found on Zelkova and Ulmus (Ulmaceae) ...Pseudaulacaspis ulmicola Tang
— With one row of submarginal macroducts on abdominal segments 2 and 3; with 13–27 pores near anterior spiracles and 6–10 pores near posterior spiracles; only found on Carpinus (Betulaceae) ...Pseudaulacaspis latiloba (Takagi and Kawai)

35(33). Without a duct on abdominal segment 6; antennae usually widely apart, width between antennae wider than distance between median lobes; only found on Quercus (Fagaceae) ...Pseudaulacaspis kiushiuensis (Kuwana)
— With duct on abdominal segment 6; antennae usually close together, width between antennae narrower than distance between median lobes; found on many hosts ...

Pseudaulacaspis cockerelli (Cooley)

36(18). Median lobes round, with medial margin about the same length as lateral margin39
— Median lobes with lateral margin conspicuously longer than medial margin37

37(36). Pygidium with transverse sclerosis at the base of median lobe; bosses absent from abdomen .
— Pygidium without transverse sclerosis at the base of median lobe; bosses present on abdomen ..Andaspis recurrens Takagi and Kawai

38(37). Pygidial marginal macroducts numbering 5 on each side; without submedian dorsal ducts on the pygidium ..Andaspis crawii Cockerell
— Pygidial marginal macroducts numbering 6 on each side; with submedian dorsal ducts on the pygidium ..Andaspis kashicola (Takahashi)

39(36). Second lobes bilobate with two lobules ..40
— Second lobes simple with one lobule ..59

40(39). Body elongate, body length more than two times maximum width41
— Body turbinate, body length less than two times maximum width56

41(40). Pygidium with three pairs of lobes; third lobes distinct ...42
— Pygidium with two pairs of lobes; if third lobes present, then small and pointed44

42(41). Macroducts present in submarginal and medial areas of abdominal segment 7; third lobes bilobate; not found on grasses ...43
— Macroducts absent from submarginal and medial areas of abdominal segment 7; third lobes simple; only found on grasses ...Duplachionaspis divergens (Green)

43(42). Perivulvar pores absent; second lobes usually protruding beyond the median lobes; head, thorax and first abdominal segment sclerotized in mature females ...Unaspis yanonensis (Kuwana)
— Perivulvar pores present; second lobes not protruding beyond the median lobes; head, thorax and first abdominal segment not sclerotized ...Unaspis euonymi (Comstock)

44(41). Usually occurring on conifers ...45
— Rarely occurring on conifers ..48

45(44). Perivulvar pores in 8 groups, 3 auxiliary groups being present cephalad of usual 5 groups
— Perivulvar pores in 4-5 groups ...46

46(45). With minute spinules on head ...Lepidosaphes okitsuensis Kuwana
— Without minute spinules on head ..47

47(46). With lateral spurs between abdominal segments 1 and 2 ...
— Without lateral spurs between abdominal segments 1 and 2 ..Lepidosaphes pallida (Maskell)
48(44). With lateral spurs or tubercles on metathorax and/or on abdominal segments .. 49
 — Without lateral spurs or tubercles .. 54

49(48). Eye spur like ... Lepidosaphes pinnaeformis (Bouché)
 — Eye not spur like .. 50

50(49). With bosses or cicatrices on dorsal submargin of one or more abdominal segments
 — Without bosses or cicatrices .. 51

51(50). With minute spinules on head .. 52
 — Without minute spinules on head .. 53

52(51). Without lateral spurs on metathorax ... Lepidosaphes tubulorum Ferris
 — With lateral spurs on metathorax .. Lepidosaphes ussuriensis (Borchsenius)

53(51). Cephalothorax elongate, little narrowing anteriorly; thoracic region and first abdominal segment becoming heavily sclerotized dorsally at full maturity .. Lepidosaphes gloverii (Packard)
 — Cephalothorax gradually narrowing anteriorly; thoracic region remaining membranous, but abdominal segments becoming sclerotized dorsally at full maturity .. Lepidosaphes yanagicola Kuwana

54(48). Dorsal macroducts present in a row across median area on abdominal segments 3 and 4; 40 or fewer perivulvar pores .. 55
 — Dorsal macroducts absent from median area on abdominal segments 3 and 4; 87-140 perivulvar pores ... Lepidosaphes towadensis Takagi and Kawai

55(54). Pygidium broadly rounded; median lobes separated by a space narrower than width of one median lobe; on many hosts including Malus, Prunus, and Pyrus (Rosaceae) ... Lepidosaphes conchiformis (Gmelin)
 — Pygidium more or less trapezoidal; median lobes separated by a space as wide as one median lobe; primarily on Camellia (Theaceae) ... Lepidosaphes kamakurensis (Kuwana)

56(40). Submarginal areas of posterior pygidial segments with at least 2 barrel-shaped macroducts ..
 — Submarginal areas of posterior pygidial segments without macroducts ... Carulaspis juniperi (Bouché)

57(56). Submedial macroducts present on abdominal segments 2 to 5; without notches on medial margin of the median lobes; primarily found on cactus .. Diaspis echinocacti (Bouché)
 — Submedial macroducts absent from abdominal segments 2 to 5; with notches on medial margin of the median lobes; rarely found on cactus ... 58

58(57). Submarginal macroducts numbering only two on each side; anterior spiracles with approximately three associated perispiracular pores ... Diaspis boisduvalii Signoret
 — Submarginal macroducts numbering more than two on each side; anterior spiracles with approximately 14 associated perispiracular pores ... Diaspis bromeliae (Kerner)

59(39). Dermal pockets absent between posterior spiracle and body margin ... 60
 — Dermal pockets present between posterior spiracle and body margin .. 61

60(59). Pygidial lobes conical projections (v-shape); pygidial plates exceeding the lobes; pupillarial ... Cryptoparlatorea leucaspis Lindinger
— Pygidial lobes U-shape; pygidial plates not exceeding the lobes; not pupillarial Parlatoria pergandii Comstock

61(59). Eye spur-like, apically pointed .. Parlatoria proteus (Curtis)
— Eye variable, usually low dome-shaped ... 62

62(61). With about 60 perivulvar pores; most plates in spaces between first 3 lobes with 2 microducts .. Parlatoria theae Cockerell
— With about 25 perivulvar pores; most plates in spaces between first 3 lobes with 1 microduct Parlatoria camelliae Comstock

63(9). Median lobes with basal sclerosis ... 79
— Median lobes without basal sclerosis ... 64

64(63). With perivulvar pores .. 65
— Without perivulvar pores ... 75

65(64). Paraphyses conspicuous, most as long as or longer than the length of the median lobes 66
— Paraphyses absent or inconspicuous; all paraphyses shorter than median lobes 69

66(65). Paraphyses ∩-shape between median lobes, between median and second lobes, and between the second and third lobes .. Hypaspidiotus jordani (Kuwana)
— Paraphyses straight-shape between median lobes, between median and second lobes, and between the second and third lobes ... 67

67(66). With at least 1 cluster of macroducts on submarginal areas of prepygidial segments 68
— Without a cluster of macroducts on submarginal areas of prepygidial segments Chrysomphalus dictyospermi (Morgan)

68(67). With a cluster of macroducts on submarginal areas of abdominal segment 2 Chrysomphalus aonidum (Linnaeus)
— With a cluster of macroducts on submarginal areas of abdominal segments 2 and 3 Chrysomphalus bifasciculatus Ferris

69(65). Occurring on conifers .. 70
— Rarely occurring on conifers ... 72

70(69). Second lobes about same size as, or slightly smaller than median lobes, normally same shape as median lobes; anal opening same or narrower than median lobes 71
— Second lobes conspicuously smaller than median lobes, different shape from median lobes; anal opening wider than median lobes Hemiberlesia lataniae (Signoret) (in part)

71(70). Perivulvar pores present in five groups; median lobes and second lobes broadly rounded; with submarginal macroduct on abdominal segment 1 Dynaspidiotus tsugae (Marlatt)
— Perivulvar pores present in four groups; median lobes and second lobes narrowly rounded; without submarginal macroduct on abdominal segment 1 ... Dynaspidiotus pseudomeyeri (Kuwana)

72(69). Anal opening large (wider and longer than median lobes) and separated from bases of median lobes by not more than 2 times than its longitudinal diameter ... Hemiberlesia lataniae (Signoret) (in part)
— Anal opening small (narrower and shorter than median lobes) and separated from bases of median lobes by more than 2 times than its longitudinal diameter .. 73
73(72). Third lobes with well-developed sclerotized point *Selenomphalus distylii* Takagi
— Third lobes simple without a sclerotized point ... 74

74(73). Median lobes closely appressed by less than one-fifth of their width; on *Castanea* and *Quercus* (Fagaceae) ... *Diaspidiotus cryptoxanthus* (Cockerell)
— Median lobes separated by distinct space by more than one-half of their width; primarily on *Camellia* (Theaceae) ... *Diaspidiotus degeneratus* (Leonardi)

75(64). Second and third lobes about same size as median lobes .. 76
— Second and/or third lobes conspicuously smaller than median lobes 77

76(75). Scleroses associated with apophysis anterolaterad of the vulva present on venter of pygidium
— Scleroses associated with apophysis anterolaterad of the vulva absent from venter of pygidium

77(75). Median lobes with lateral and medial notches; simple shaped plates anterior of seta marking abdominal segment 6; usually occurring on *Pinus* (Pinaceae) ... *Diaspidiotus makii* (Kuwana)
— Median lobes with usually lateral notch; bifurcate shaped plates anterior of seta marking abdominal segment 6; occurring on various hosts ... 78

78(77). Anal opening large (wider than median lobes); with marginal macroducts on abdominal segment 3 ... *Comstockaspis macroporana* (Takagi)
— Anal opening small (narrower than median lobes); without marginal macroducts on abdominal segment 3 ... *Comstockaspis perniciosa* (Comstock)

79(63). Plates lateral to third lobe dentate, edges sclerotized, with fleshy processes; dorsal marginal setae on the second and third lobes lanceolate (thick and dorsoventrally flattened) *Octaspidiotus stauntoniae* (Takahashi)
— Plates lateral to third lobe not dentate or sclerotized; dorsal marginal setae on the second and third lobes slender to thick, not flattened ... 80

80(81). Pygidial macroducts long (1.5 times distance between posterior apex of anal opening and base of median lobes), normal; usually occurring on leaves ... 81
— Pygidial macroducts short (less than 0.5 times distance between posterior apex of anal opening and base of median lobes), minute; usually occurring on roots ... 82

81(80). Second lobes normally protruding beyond median lobes *Aspidiotus destructor* Signoret
— Second lobes not protruding beyond median lobes *Aspidiotus cryptomeriae* Kuwana

82(80). With perivulvar pores ... *Rhizaspidotus canariensis* (Lindinger)
— Without perivulvar pores .. *Aspidiella phragmitis* (Takahashi)

Discussion

The purpose of the present work is to provide a checklist and a key for the identification of Korean armored scale insects. This information will aid in the correct identification of each species, which is essential for assessing the threat that each species poses and the management strategy that is to be taken. Armored scale insects have received much attention throughout the world due to the damage caused in economically important food crops and ornamental plants and also to the strong possibility of becoming invasive species with international trades for plants.
Of the nine scale species known to occur only in greenhouses, five species were just found on potted seedlings imported into Korea during the survey. They are considered to have failed to establish in the exterior environments. In addition this work provides correct information on the current status of nine greenhouse diaspidid species.

To date, eighty species of armored scale insects in 30 genera have been recorded from the Republic of Korea. However, it can be expected that more species of armored scale insects are likely to be found in Korea if taxonomic studies continue to be performed.

Acknowledgments

I am grateful to Drs. Gregory A. Evans (USDA/APHIS/NIS, Washington, DC, USA) and Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria (Corpoica), Centro de Investigacion Palmira, Palmira, Valle, Colombia) for reviewing the manuscript. Funding for this project came from QIA.

Literature Cited

Received January 1, 2017; Accepted January 18, 2017.

Review Editor Marcus Guidoti.
Table 1. Checklist of taxa treated in the identification key with distribution data in Korea (Codes for collecting regions in the Republic of Korea are as follows: GG, Gyeonggido; GW, Gangwondo; CB, Chungcheongbukdo; CN, Chungcheongnamdo; GB, Gyengsangbukdo; GN, Gyengsangnamdo; JB, Jeollabukdo; JN, Jeollanamdo; JJ, Jejudo. The nomenclature used here for the Diaspididae follows that of the scale insect database ScaleNet (García et al. 2016). The column headed 'NC' indicates if the species was collected in the Republic of Korea during the survey (2006 to 2015). The asterisk mark (*) indicates 'unknown' (specimens not found outside of greenhouses in the Republic of Korea).

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Distribution within Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andaspis crawii (Cockerell)</td>
<td>●</td>
</tr>
<tr>
<td>Andaspis kashicola (Takahashi)</td>
<td>●</td>
</tr>
<tr>
<td>Andaspis recursens Takagi and Kawai</td>
<td>●</td>
</tr>
<tr>
<td>Aonidiella citrina (Coquillett)</td>
<td>●</td>
</tr>
<tr>
<td>Aonidiella taxus Leonardi</td>
<td>●</td>
</tr>
<tr>
<td>Aspidiella phragmitis (Takahashi)</td>
<td>●</td>
</tr>
<tr>
<td>Aspidiotus cryptomeriae Kwunana</td>
<td>●</td>
</tr>
<tr>
<td>Aspidiotus destructor Signoret</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis difficilis (Cockerell)</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis latissima (Cockerell)</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis rosae (Bouché)</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis rosarum Borchsenius</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis spinosa (Maskell)</td>
<td>●</td>
</tr>
<tr>
<td>Aulacaspis yahuniikuei Kwunana</td>
<td>●</td>
</tr>
<tr>
<td>Carulaspis juniperi (Bouché)</td>
<td>●</td>
</tr>
<tr>
<td>Chionaspis acer (Takahagi and Kawai)</td>
<td>●</td>
</tr>
<tr>
<td>Chionaspis alnii Kwunana</td>
<td>●</td>
</tr>
<tr>
<td>Chionaspis saitamaensis Kwunana</td>
<td>●</td>
</tr>
<tr>
<td>Chionaspis salicis (Linnaeus)</td>
<td>●</td>
</tr>
<tr>
<td>Chionaspis wistariae Cooley</td>
<td>●</td>
</tr>
<tr>
<td>Chrysomphalus aonidum (Linnaeus)</td>
<td>●</td>
</tr>
<tr>
<td>Chrysomphalus bifasciculatus Ferris</td>
<td>●</td>
</tr>
<tr>
<td>Chrysomphalus dictyospermi (Morgan)</td>
<td>●</td>
</tr>
<tr>
<td>Comstockaspis macroporana (Takahagi)</td>
<td>●</td>
</tr>
<tr>
<td>Comstockaspis perniciosa (Comstock)</td>
<td>●</td>
</tr>
<tr>
<td>Cryptoplatarea leucaspis Lindinger</td>
<td>●</td>
</tr>
<tr>
<td>Diaspidiotus cryptoxanthus (Cockerell)</td>
<td>●</td>
</tr>
<tr>
<td>Diaspidiotus degeneratus (Leonardi)</td>
<td>●</td>
</tr>
<tr>
<td>Diaspidiotus makii (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Diaspis boisduvali Signoret</td>
<td>●</td>
</tr>
<tr>
<td>Diaspis bromeliae (Kerner)</td>
<td>●</td>
</tr>
<tr>
<td>Diaspis echinocacti (Bouché)</td>
<td>●</td>
</tr>
<tr>
<td>Diplachionaspis divergens (Green)</td>
<td>●</td>
</tr>
<tr>
<td>Dynaspidiotus pseudomeyeri (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Dynaspidiotus tsugae (Marlatt)</td>
<td>●</td>
</tr>
<tr>
<td>Fiorinia japonica Kwunana</td>
<td>●</td>
</tr>
<tr>
<td>Hemiberlesia latanae (Signoret)</td>
<td>●</td>
</tr>
<tr>
<td>Hyaspisdotus jordani (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Kuwanspis hikosani (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Kuwanspis howardi (Cooley)</td>
<td>●</td>
</tr>
<tr>
<td>Kuwanspis pseudoleucaspis (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Lepidosaphes conchiformis (Gmelin)</td>
<td>●</td>
</tr>
<tr>
<td>Lepidosaphes gloverii (Packard)</td>
<td>●</td>
</tr>
<tr>
<td>Lepidosaphes japonica (Kuwana)</td>
<td>●</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Distribution within Korea</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Lepidosaphes kamakurensis (Kuwana)</td>
<td>GG</td>
</tr>
<tr>
<td>Lepidosaphes okitsuensis Kuwana</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes pallida (Maskell)</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes pini (Maskell)</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes pinnaeformis (Bouché)</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes to wandensis Takagi and Kawai</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes tubulorum Ferris</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes ulmi (Linnaeus)</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes ussuriensis (Borchsenius)</td>
<td></td>
</tr>
<tr>
<td>Lepidosaphes yanagicola Kuwana</td>
<td></td>
</tr>
<tr>
<td>Lopholeucaspis japonica (Cockerell)</td>
<td></td>
</tr>
<tr>
<td>Octaspidiotus staunti (Takahashi)</td>
<td></td>
</tr>
<tr>
<td>Odonaspis secreta (Cockerell)</td>
<td></td>
</tr>
<tr>
<td>Parlatoria camelliae Comstock</td>
<td></td>
</tr>
<tr>
<td>Parlatoria pergandii Comstock</td>
<td></td>
</tr>
<tr>
<td>*Parlatoria proteus (Curtis)</td>
<td></td>
</tr>
<tr>
<td>Parlatoria theae Cockerell</td>
<td></td>
</tr>
<tr>
<td>Pinnaspis aspidistra (Signoret)</td>
<td></td>
</tr>
<tr>
<td>*Pinnaspis buxi (Bouché)</td>
<td></td>
</tr>
<tr>
<td>Pinnaspis chamaeyparidis Takagi</td>
<td></td>
</tr>
<tr>
<td>Pinnaspis hikosana Takagi</td>
<td></td>
</tr>
<tr>
<td>*Pinnaspis strachani (Cooley)</td>
<td></td>
</tr>
<tr>
<td>Pinnaspis uniloba (Kuwana)</td>
<td></td>
</tr>
<tr>
<td>Pseudoaonidia duplex (Cockerell)</td>
<td></td>
</tr>
<tr>
<td>Pseudoaonidia paoniae (Cockerell)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis cockerelli (Cooley)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis kuhsuensis (Kuwana)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis latiloba (Takagi and Kawai)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis pentagona (Targioni-Tozzetti)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis prunicona (Maskell)</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis ulmicola Tang</td>
<td></td>
</tr>
<tr>
<td>Rhizaspidiotus canarium (Lindinger)</td>
<td></td>
</tr>
<tr>
<td>Selenomphalus distylis Takagi</td>
<td></td>
</tr>
<tr>
<td>Unanchoaspis tenuis (Maskell)</td>
<td></td>
</tr>
<tr>
<td>Unaspis euonymi (Comstock)</td>
<td></td>
</tr>
<tr>
<td>Unaspis yanonensis (Kuwana)</td>
<td></td>
</tr>
</tbody>
</table>