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Abstract In this paper, we study squares of bivariate Goppa codes, as they relate to the Goppa code distinguishing
problem for bivariate Goppa codes. Introduced in 2021, multivariate Goppa codes are subfield subcodes of
certain evaluation codes defined by evaluating polynomials in 𝑚 variables. The evaluation codes are augmented
Cartesian codes, a generalization of Reed-Muller codes. Classical Goppa codes are obtained by taking 𝑚 = 1. The
multivariate Goppa code distinguishing problem is to distinguish efficiently a generator matrix of a multivariate
Goppa code from a randomly drawn one. Because a randomly drawn code has a large square, codes with
small squares may be considered distinguishable, revealing structure which facilitates private key recovery in a
code-based cryptosystem.
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1 INTRODUCTION
Code-based cryptosystems originated with the McEliece cryptosystem in 1978 [14], soon followed by the

Niederreiter cryptosystem [16], and are receiving current attention due to their potential to resist attacks facilitated
or sped up by quantum algorithms. The McEliece cryptosystem which relies on binary Goppa codes is the basis
for a current candidates in the fourth round of the NIST Post-Quantum Cryptography Standardization Process.
The Goppa code distinguishing problem established in 2001 by Courtois, Finiasz, and Sendrier [3] is tied to the
security of the McEliece public key cryptosystem [14]. The problem is to efficiently distinguish a generator matrix
of a binary Goppa code from a randomly selected one. Squares of codes, taken with respect to a coordinate-wise
product (sometimes called a Schur, component-wise, or star product), are connected to this problem. Since the
work of Wieschebrink in 2010 [18] as well as that of Márquez-Corbella and Pellikaan [13], squares of codes have
been considered as a tool for potential attacks on the code-based public key cryptosystems; see, for instance, [5], [4].
In particular, the strategy is to exploit the algebraic structure of the code underlying the code-based cryptosystem
(such as the binary Goppa codes in McEleice or Neiderrieter) which may ultimately distinguish the code from
a random one. The first successful application of this approach [18] was the attack on a cryptosystem based on
subcodes of GRS codes [1]. This approach has been successful with high-rate Goppa codes [6], [7].

In this paper, we study squares of bivariate Goppa codes, as an initial step in considering a multivariate Goppa
code distinguishing problem. Because a randomly drawn code has a large square (with high probability) [2,
Theorem 2.3], codes with small squares may be considered distinguishable, revealing structure which facilitates
private key recovery in a code-based cryptosystem. This work is motivated by the introduction of 𝑚-variate Goppa
codes [8] which contain as a special case classical Goppa codes (by taking 𝑚 = 1) as well as the recent work of
Mora and Tillich [15] on the Goppa code distinguishing problem.

The multivariate Goppa code distinguishing problem is to distinguish efficiently a generator matrix of a bivariate
Goppa code from a randomly drawn one. The univariate case was considered recently in Mora and Tillich [15], in
which the authors study squares of alternate codes, a family of subfield subcodes of Reed-Solomon codes which
contain Goppa codes. The multivariate Goppa codes are subfield subcodes of certain evaluation codes defined by
evaluating polynomials in 𝑚 variables. The evaluation codes are augmented Cartesian codes, a generalization of
Reed-Muller codes. Classical Goppa codes are obtained by taking 𝑚 = 1. Here, we make progress toward this
larger goal by studying squares of bivariate Goppa codes. We show that unlike their univariate counterparts, the
associated evaluation codes do not have squares of the same form. However, their dimensions are bounded above
by dimensions of such codes, presenting the possiblity of a distinguisher attack.

This paper is organized as follows. Section 2 reviews basic coding theory terminology as well as the particular
families of codes to be considered in the paper. Section 3 includes the results. A conclusion is given in Section 4.
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2 PRELIMINARIES
In this section, we introduce the code operations and constructions that will be used in the remainder of the paper.

First, we recall some basic definitions and notation. An [𝑛, 𝑘, 𝑑] code𝐶 over F𝑞 is a 𝑘-dimensional subspace of F𝑛𝑞 in
which any two distinct codewords differ in at least 𝑑 coordinates. Its dual is 𝐶⊥ =

{
𝑣 ∈ F𝑛𝑞 : 𝑣 · 𝑐 = 0 for all 𝑐 ∈ 𝐶

}
where 𝑣 · 𝑐 =

∑𝑛
𝑖=1 𝑣𝑖𝑐𝑖 is the standard dot product. A generator matrix for 𝐶 is any matrix which has 𝐶 as its

row space. Often, we take a generator matrix for an [𝑛, 𝑘, 𝑑] code over F𝑞 to be a 𝑘 × 𝑛 matrix whose rows are a
basis for the code as an F𝑞-vector space. The coordinates of a code of length 𝑛 are indexed by elements of the set
[𝑛] := {1, . . . , 𝑛}. The set of nonnegative integers is denoted by N, the set of 𝑚 × 𝑛 matrices over F𝑞 by F𝑚×𝑛

𝑞 , and
F𝑛𝑞 := F1×𝑛

𝑞 .

2.1 CODE OPERATIONS
In this subsection, we review basic operations and make some relevant observations. We will consider codes

over the finite field F𝑞𝑡 with 𝑞𝑡 elements as well as codes over its subfield F𝑞 , so the extension

F𝑞𝑡

| 𝑡
F𝑞

will play a crucial role. Given an [𝑛, 𝑘, 𝑑] code 𝐶 ⊆ F𝑛
𝑞𝑡 , its subfield subcode over F𝑞 is

𝐶 |F𝑞 :=
{
𝑐 ∈ 𝐶 : 𝑐 ∈ F𝑛𝑞

}
= 𝐶 ∩ F𝑛𝑞

which is an [𝑛, ≥ 𝑘 − 𝑡 (𝑛 − 𝑘) , ≥ 𝑑] code over F𝑞 . Another way to produce a code over F𝑞 from one over F𝑞𝑡 is
via the field trace. Recall that the field trace with respect to the extension F𝑞𝑡 /F𝑞 is given by

tr : F𝑞𝑡 → F𝑞
𝑎 ↦→ 𝑎𝑞

𝑡−1 + · · · + 𝑎𝑞
0
.

The trace code of 𝐶 is
tr (𝐶) := {(tr (𝑐1) , . . . , tr (𝑐𝑛)) : (𝑐1, . . . , 𝑐𝑛) ∈ 𝐶} ,

which is an [𝑛, 𝑘 ′, 𝑑′] code over F𝑞 where 𝑘 ≤ 𝑘 ′ ≤ 𝑡𝑘 and 𝑑′ ≤ 𝑑 by [11, Ch. 7. §7.]. Delsarte’s Theorem relates
these two constructions which yield codes over F𝑞 from those over F𝑞𝑡 :

𝐶 |F𝑞 =
(
tr

(
𝐶⊥) )⊥

.

The multivariate Goppa codes are related to tensor products of other codes. The tensor product of an [𝑛1, 𝑘1]
code 𝐶1 with

𝐺1 =

©«
𝑎11 𝑎12 · · · 𝑎1𝑛1

𝑎21 𝑎22 · · · 𝑎2𝑛1
...

...
...

𝑎𝑘11 𝑎𝑘12 · · · 𝑎𝑘1𝑛1

ª®®®®¬
∈ F𝑘1×𝑛1

2

and an [𝑛2, 𝑘2] code 𝐶2 with generator matrix 𝐺2 ∈ F𝑘2×𝑛2
2 is the code with a generator matrix

𝐺1 ⊗ 𝐺2 =


𝑎11𝐺2 𝑎12𝐺2 · · · 𝑎1𝑛1𝐺2
𝑎21𝐺2 𝑎22𝐺2 · · · 𝑎2𝑛1𝐺2

...
...

...

𝑎𝑘11𝐺2 𝑎𝑘12𝐺2 · · · 𝑎𝑘1𝑛1𝐺2


∈ F𝑘1𝑘2×𝑛1𝑛2

2 .

As described in Section 1, coordinate-wise products of codes have played a role in the analysis of some code-
based cryptosystems; this natural operation has also recently been used in secure distributed matrix multiplication
[12]. We note the recent work by Mora and Tillich which collects useful information about these operations [15].

Definition 1. The star product, also called the Schur product or coordinate-wise product, of vectors 𝑢, 𝑣 ∈ F𝑛𝑞 is

𝑢 ★ 𝑣 := (𝑢1𝑣1, . . . , 𝑢𝑛𝑣𝑛) ∈ F𝑛𝑞 .

The star product (or Schur product or coordinate-wise product) of two codes 𝐶 and 𝐶′ over F𝑞 of length 𝑛 over F𝑞
is

𝐶 ★𝐶′ = ⟨𝑐 ★ 𝑐′ : 𝑐 ∈ 𝐶, 𝑐′ ∈ 𝐶′⟩ ,
the F𝑞-span of the coordinate-wise products of codewords of 𝐶 and 𝐶′.
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Notice that the star product of two codes of length 𝑛 is also a code of length 𝑛 over the same alphabet. We are
most interested in the square of a code 𝐶, meaning the star product of a code with itself:

𝐶★2 := 𝐶 ★𝐶.

Given an [𝑛, 𝑘, 𝑑] code 𝐶, its square 𝐶★2 is a code of length 𝑛 and

dim𝐶★2 ≤ min
{
𝑛,

(
𝑘 + 1

2

)}
.

According to the following result given by Cascudo, Cramer, Mirandola, and Zémor in 2015, even more can be
said for random codes.

Proposition 1. [2, Theorem 2.3] Let 𝑛 : N→ N be such that 𝑛 (𝑘) ≥
(𝑘+1

2
)
. Then for some positive real number 𝛿

and 𝑘 large enough,

Pr
[
dimC★2 =

(
𝑘 + 1

2

)]
≥ 1 − 2−𝛿

(
𝑛(𝑘 )−(𝑘+1

2 )
)

where C is chosen uniformly at random from the family of all [𝑛 (𝑘) , 𝑘] codes over F𝑞 whose generator matrices
are in systematic form.

Loosely speaking, Proposition 1 states that a random code 𝐶 over F𝑞 of length 𝑛 with 𝐶★2 ≠ F𝑛𝑞 has dimension
as large as possible, meaning

dim𝐶★2 =

(
𝑘 + 1

2

)
(1)

However, as we will see in Section 3, particular families of linear codes fail to achieve the dimension of the square
given in Equation 1. As such, the square can serve as a distinguisher from a random code. Before establishing this,
we first introduce the code families that will be useful in this paper.

2.2 CODE CONSTRUCTIONS
Each of the codes we consider may be built from an evaluation code, which is the image of a map of the form

ev𝑆,𝜆 : 𝑉 → F𝑛𝑞
𝑓 ↦→ (𝜆1 𝑓 (𝑠1) , . . . , 𝜆𝑛 𝑓 (𝑠𝑛))

where 𝜆 ∈ (F∗𝑞)𝑛,
𝑉 =

{
𝑓 : 𝑆 → F𝑞

}
is a vector space of functions taking values in F𝑞 when evaluated at elements 𝑆 := {𝑠1, . . . , 𝑠𝑛}. For instance, a
[𝑛, 𝑘] generalized Reed-Solomon code

𝐺𝑅𝑆 (𝑆, 𝑘, 𝜆) = ev𝑆,𝜆
(
F𝑞 [𝑥]<𝑘

)
where F𝑞 [𝑥]<𝑘 is the set of polynomials in the indeterminate 𝑥 of degree at most 𝑘 − 1 and 𝑆 ⊆ F𝑞 . The
[𝑞𝑚,∑𝑟

𝑖=0
(𝑚
𝑖

)
, 𝑞𝑚−𝑟 ] Reed-Muller code over F𝑞 is

𝑅𝑀 (𝑟, 𝑚) = 𝑒𝑣F𝑚𝑞 ,1
(
F𝑞 [𝑥1, . . . , 𝑥𝑚]≤𝑟

)
where F𝑞 [𝑥1, . . . , 𝑥𝑚]≤𝑟 is the set of polynomials in the 𝑚 indeterminates of total degree at most 𝑟 and 1 ∈ F𝑛𝑞 is
the all-ones vector.

More generally, we may consider as an evaluation set

𝑆 = 𝑆1 × · · · × 𝑆𝑚 ⊆ F𝑚
𝑞𝑡 ,

a Cartesian product of subsets of the alphabet F𝑞𝑡 . For 𝑖 ∈ [𝑚], let 𝑛𝑖 = |𝑆𝑖 |. For an integer vector 𝑎 ∈ N𝑚,
𝑥𝑎 := 𝑥

𝑎1
1 . . . 𝑥

𝑎𝑚
𝑚 ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚]. Let 𝐿 ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚] be given by 𝐿 (𝑥1, . . . , 𝑥𝑚) :=

∏𝑚
𝑗=1 𝐿

′
𝑗

(
𝑥 𝑗

)
where

𝐿 𝑗

(
𝑥 𝑗

)
:=

∏
𝑠∈𝑆 𝑗

(
𝑥 𝑗 − 𝑠

)
∈ F𝑞𝑡 [𝑥 𝑗 ]

and 𝐿′
𝑗

(
𝑥 𝑗

)
denotes the formal derivative of 𝐿 𝑗

(
𝑥 𝑗

)
.Given

𝑔 := 𝑔1 (𝑥1) · · · 𝑔𝑚 (𝑥𝑚) ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚]
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such that 𝑔 (𝑠) ≠ 0 for all 𝑠 ∈ 𝑆, define a set of exponent vectors

A𝑔 :=
∏
𝑗∈[𝑚]

{0, . . . , 𝑛 𝑗 − 1} \
∏
𝑗∈[𝑚]

{𝑛 𝑗 − deg 𝑔 𝑗 , . . . , 𝑛 𝑗 − 1}

and a set of multivariate polynomials

L
(
A𝑔

)
=

〈
𝑥𝑎 : 𝑎 ∈ A𝑔

〉
⊆ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚] .

These ingredients allow for defining particularly useful evaluation codes, called augmented Cartesian codes [10].

Definition 2. Given 𝑆 ⊆ F𝑞𝑡 and 𝐿, 𝑔 := 𝑔1 (𝑥1) . . . 𝑔𝑚 (𝑥𝑚) ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚] as above, the augmented Cartesian
code defined by 𝑆 and 𝑔 is

𝐴𝐶𝑎𝑟 (𝑆, 𝑔) = ev𝑆,𝜆
(
L

(
A𝑔

) )
where 𝜆𝑖 := 𝐿 (𝑠𝑖 )

𝑔 (𝑠𝑖 ) for all 𝑖 ∈ [𝑛].

Example 1. Let F8 = F2 (𝛼) where 𝛼3 + 𝛼 + 1 = 0. Suppose 𝑆1 =
{
0, 1, 𝛼, 𝛼 + 1, 𝛼2} , 𝑆2 = {0, 1, 𝛼, 𝛼 + 1} ⊆ F8,

𝑔1 (𝑥1) = (𝑥1−𝛼2+𝛼) (𝑥1−(𝛼2+1)) (𝑥1−(𝛼2+𝛼+1)) ∈ F8 [𝑥1], and 𝑔2 (𝑥2) = (𝑥2−𝛼2+𝛼) (𝑥2−(𝛼2+1)) ∈ F8 [𝑥2].
Then 𝑛1 =| 𝑆1 |= 5, 𝑛2 =| 𝑆2 |= 4, deg 𝑔1 = 3, and deg 𝑔2 = 2. As a result,

A𝑔 = [0, 4] × [0, 3] \ [2, 4] × [2, 3] .

Consequently, 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) is a [20, 14] code.
The exponent vectors that give rise to codewords in 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) are pictured in Figure 1 which also gives insight

into the origins of the names of the codes. Here, considering only codewords that arise from evaluating functions
𝑥
𝑎1
1 𝑥

𝑎2
2 with 𝑎1+𝑎2 ≤ 3 is similar to the functions that define a Reed-Muller code. The code featured in this example

is augmented in that there are also codewords from functions 𝑥1𝑥
3
2, 𝑥3

1𝑥2, 𝑥4
2, 𝑥4

1, and 𝑥4
1𝑥2. It also differs from a

Reed-Muller code in that the evaluation set is a proper subset of F2
8.

1

2

3

0 1 2 3 4

Figure 1: Exponents (𝑎1, 𝑎2) ∈ A𝑔 for the augmented Cartesian code in Example 1, meaning those with monomials
𝑥
𝑎1
1 𝑥

𝑎2
2 whose evaluation defines codewords

Remark 1. Observe that for 𝑚 = 2, any set of exponent vectors A𝑔 for an augmented Cartesian code is of the
form 𝐴 \ 𝐵 where 𝐴 and 𝐵 are both boxes, meaning direct products of intervals. This will be a useful fact when
understanding the squares of these codes.

We note that generalized Reed-Solomon codes are augmented Cartesian codes and Reed-Muller codes are
subcodes of augmented Cartesian codes; in fact, these codes were inspired by designing Reed-Muller-type codes
with higher rates [9]. Recall that a classical Goppa code, and more generally an alternate code, is a subfield subcode
of a generalized Reed-Solomon code. Similarly, a multivariate Goppa code is a subfield subcode of an augmented
Cartesian code. More precisely, we have the following definition.

Definition 3. Given 𝑔 = 𝑔1 (𝑥1) . . . 𝑔𝑚 (𝑥𝑚) ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚] and 𝑆 ⊆ F𝑚
𝑞𝑡 such that 𝑔 (𝑠) ≠ 0 for all 𝑠 ∈ 𝑆, the

multivariate Goppa code with defining polynomial 𝑔 and evaluation set 𝑆 is

Γ (𝑆, 𝑔) = 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) |F𝑞 .

In particular, the bivariate Goppa code defined by 𝑔 = 𝑔1 (𝑥1)𝑔2 (𝑥2) is

Γ (𝑆, 𝑔) = 𝑒𝑣𝑆1×𝑆2 ,𝜆

(
A𝑔

)
|F𝑞

where
A𝑔 = [0, 𝑛1 − 1] × [0, 𝑛2 − 1] \ {𝑛1 − deg 𝑔1, 𝑛1 − 1} × {𝑛2 − deg 𝑔2, 𝑛2 − 1} .
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Remark 2. The multivariate Goppa code Γ (𝑆, 𝑔) is a code over F𝑞 of length 𝑛 =| 𝑆 |, dimension 𝑘 satisfying
𝑛 − deg 𝑔 ≤ 𝑘 ≤ 𝑡 (𝑛 − deg 𝑔), and minimum distance at least min{deg 𝑔 𝑗 + 1 : 𝑗 ∈ [𝑚]} [8, Corollary 15].

Multivariate Goppa are intimately related to generalized Reed-Solomon codes.

Lemma 1. [8, Corollary 15] The dual of an multivariate Goppa code defined by 𝑆 = 𝑆1 × 𝑆𝑛 ⊆ F𝑚
𝑞𝑡 and

𝑔 = 𝑔1 (𝑥1) . . . 𝑔𝑚 (𝑥𝑚) ∈ F𝑞𝑡 [𝑥1, . . . , 𝑥𝑚] such that 𝑔 (𝑠) ≠ 0 for all 𝑠 ∈ 𝑆 is

Γ (𝑆, 𝑔)⊥ = tr

(
𝑚⊗
𝑖=1

𝐺𝑅𝑆

(
𝑆 𝑗 , deg 𝑔 𝑗 ,

(
𝑔 𝑗 (𝑠1)−1 , . . . , 𝑔 𝑗 (𝑠𝑛)−1

)))
.

This fact may prove useful in examining the square of the dual of multivariate Goppa codes, as considered in
[15], though we focus our present attention on the bivariate Goppa codes themselves.

3 BOUNDING SQUARES
In this section, we consider squares of bivariate Goppa codes and their relatives, such as the augmented Cartesian

codes from which they arise. To begin, we recall the well-known fact that squares of generalized Reed-Solomon
codes are again generalized Reed-Solomon codes. In particular,

𝐺𝑅𝑆(𝑆, 𝑘, 𝜆)★2 = 𝐺𝑅𝑆(𝑆, 2𝑘 − 1, 𝜆 ★ 𝜆),

as suggested by the facts that

(𝜆1 𝑓 (𝑠1) , . . . , 𝜆𝑛 𝑓 (𝑠𝑛)) ★
(
𝜆′1ℎ (𝑠1) , . . . , 𝜆′𝑛ℎ (𝑠𝑛)

)
=

(
𝜆1𝜆

′
1 𝑓 ℎ (𝑠1) , . . . , 𝜆𝑛𝜆′𝑛 𝑓 ℎ (𝑠𝑛)

)
and for 𝑓 , ℎ ∈ F𝑞 [𝑥]<𝑘 , deg ( 𝑓 ℎ) ≤ 2 (𝑘 − 1) = 2𝑘 − 2. Similarly, the square of a Reed-Muller code 𝑅𝑀 (𝑟, 𝑚)
satisfies

𝑅𝑀 (𝑟, 𝑚)★2 = 𝑅𝑀 (2𝑟, 𝑚)
as demonstrated in [17, Proposition 2]. Similar behavior has been observed for algebraic geometry codes defined
by divisors of degree at least 2𝑔 − 1 on a curve of genus 𝑔 [5].

We now consider the squares of augmented Cartesian codes with 𝑚 = 2.

Lemma 2. The square of an augmented Cartesian code defined by 𝑆 ⊆ F2
𝑞𝑡 and 𝑔 = 𝑔1 (𝑥1)𝑔2 (𝑥2) ∈ F𝑞𝑡 [𝑥1, 𝑥2]

such that 𝑔 (𝑠) ≠ 0 for all 𝑠 ∈ 𝑆 is

𝐴𝐶𝑎𝑟 (𝑆, 𝑔)★2 =

{(
𝜆2

1 𝑓 (𝑠1) , . . . , 𝜆2
𝑛 𝑓 (𝑠𝑛)

)
: 𝑓 ∈ L

(
A′

𝑔

)}
where

A′
𝑔 = [0, 2(𝑛1 − 1)] × [0, 2(𝑛2 − 1)] \ (𝑈 ∪ 𝐿) ,

with
𝑈 := [2(𝑛1 − deg 𝑔1) − 1, 2(𝑛1 − 1)] × [2𝑛2 − deg 𝑔2 − 1, 2(𝑛2 − 1)]

and
𝐿 := [2𝑛1 − deg 𝑔1 − 1, 2(𝑛1 − 1), ] × [2(𝑛2 − deg 𝑔2) − 1, 2(𝑛2 − 1)] .

Proof. We first show that 𝑥𝑎𝑥𝑏 ∈ L
(
A′

𝑔

)
for all 𝑎, 𝑏 ∈ A𝑔. Hence, we must prove that 𝑎 + 𝑏 ∈ A′

𝑔. Suppose not.
Then 𝑎+ 𝑏 ∈ 𝑈 or 𝑎+ 𝑏 ∈ 𝐿. Without loss of generality, we may assume 𝑎+ 𝑏 ∈ 𝑈, meaning (𝑎1 + 𝑏1, 𝑎2 + 𝑏2) ∈ 𝑈.
It follows that 𝑎1 + 𝑏1 ∈ [2(𝑛1 − deg 𝑔1) − 1, 2(𝑛1 − 1)] and 𝑎2 + 𝑏2 ∈ [2𝑛2 − deg 𝑔2 − 1, 2(𝑛2 − 1)]. However, this
contradicts that (𝑎1, 𝑎2), (𝑏1, 𝑏2) ∈ A𝑔, establishing that 𝑎 + 𝑏 ∈ A′

𝑔.

It remains to prove that any 𝑥
𝑎1
1 𝑥

𝑎2
2 ∈ L

(
A′

𝑔

)
can be written as 𝑥

𝑏1
1 𝑥

𝑏2
2 𝑥

𝑏′
1

1 𝑥
𝑏′

2
2 with (𝑏1, 𝑏2), (𝑏′1, 𝑏

′
2) ∈ A𝑔.

Suppose (𝑎1, 𝑎2) ∈ [0, 𝑛1 − 1] × [0, 2(𝑛2 − 1)]. If 𝑎2 ≤ 𝑛2 − 1, then (𝑎1, 𝑎2) ∈ A𝑔 and 𝑥
𝑎1
1 𝑥

𝑎2
2 = 𝑥

𝑎1
1 𝑥

𝑎2
2 𝑥0

1𝑥
0
2. Note

that
𝑥
𝑎1
1 𝑥

𝑎2
2 = 𝑥

𝑎1
1 𝑥

𝑛2−1
2 𝑥0

1𝑥
𝑎2−(𝑛2−1)
2

If 𝑎2 > 𝑛2 − 1, then 𝑎2 − (𝑛2) − 1) ≤ 𝑛2 − 1 and 𝑥
𝑎1
1 𝑥

𝑛2−1
2 , 𝑥0

1𝑥
𝑎2−(𝑛2−1)
2 ∈ A𝑔. A similar argument holds if

(𝑎1, 𝑎2) ∈ [0, 2(𝑛1−1)] × [0, 𝑛2−1]. Finally, suppose that (𝑎1, 𝑎2) ∈ [𝑛1, 2𝑛1−deg 𝑔1−2] × [𝑛2, 2𝑛2−deg 𝑔2−2].
Then

𝑥
𝑎1
1 𝑥

𝑎2
2 = 𝑥

𝑛1−1
1 𝑥

𝑎2−(𝑛2−1)
2 𝑥

𝑎1−(𝑛1−1)
1 𝑥

𝑛2−1
2 .

Noting that 𝑎1−𝑛1+1 ≤ 𝑛1−deg 𝑔1−1 and 𝑎2−𝑛2+1 ≤ 𝑛2−deg 𝑔2−1, we see that 𝑥𝑛1−1
1 𝑥

𝑎2−(𝑛2−1)
2 , 𝑥

𝑎1−(𝑛1−1)
1 𝑥

𝑛2−1
2 ∈

A𝑔, completing the proof. □
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Squares of bivariate Goppa codes

Corollary 1. The square of an augmented Cartesian code with 𝑚 = 2 is an evaluation code, but it is not necessarily
of the form whose subfield subcode defines a bivariate Goppa code.

Example 2. Consider the code 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) from Example 1. According to Theorem 2, 𝐴𝐶𝑎𝑟 (𝑆, 𝑔)★2 = 𝑒𝑣𝑆,𝜆2

(
A′

𝑔

)
where

𝐴′
𝑔 = [0, 8] × [0, 6] \ ([3, 8] × [5, 6] ∪ [6, 8] × [3, 6])

The exponent vectors that give rise to codewords in 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) are pictured in Figure 2. Notice that the
complement

[3, 8] × [5, 6] ∪ [6, 8] × [3, 6]

does not have the box form specified in Remark 1. Hence, the square of the augmented Cartesian code from which
the bivariate Goppa code Γ (𝑆, 𝑔) is obtained is not an augmented Cartesian code that defines a bivariate Goppa
code.

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

Figure 2: Exponents (𝑎1, 𝑎2) ∈ A′
𝑔 for the square of the augmented Cartesian code in Example 1, meaning those

with monomials 𝑥𝑎1
1 𝑥

𝑎2
2 whose evaluation defines codewords in the square

Remark 3. Note that, unlike Reed-Solomon and Reed-Muller codes, the square of an augmented Cartesian code
𝐴 (𝑆, 𝑔) is not necessarily of the same form. Even so, its dimension is bounded above by that of a code of the same
form.

Because the bivariate Goppa codes are subfield subcodes of augmented Cartesian codes, we next consider the
interplay of the square and the subfield subcode operations.

Proposition 2. Given a code 𝐶 over F𝑞𝑡 , (
𝐶 |F𝑞

)★2
⊆

(
𝐶★2

)
|F𝑞

.

Proof. Consider a code 𝐶 over F𝑞𝑡 , and let 𝑛 denote its length. Fix a basis {𝑏1, . . . , 𝑏𝑙} for 𝐶 |F𝑞 . Then 𝑏𝑖 ∈ 𝐶 ∩F𝑛𝑞
for all 𝑖 ∈ [𝑛] . Now suppose 𝑥 ∈

(
𝐶 |F𝑞

)★2
. Hence, 𝑥 =

∑
𝑖, 𝑗∈[𝑙 ] 𝑎𝑖 𝑗

(
𝑏𝑖 ★ 𝑏 𝑗

)
for some 𝑎𝑖 𝑗 ∈ F𝑞 . Clearly, by

construction, 𝑥 ∈ 𝐶★2 and 𝑥 ∈ F𝑛𝑞 by definition. Hence, 𝑥 ∈
(
𝐶★2)

|F𝑞 . □

Remark 4. We note that the containment in Proposition 2 may be strict. Consider, for instance, the code

𝐶 =
〈
(1, 𝛼2)

〉
⊆ F2

9

where F9 = F3 (𝛼) and 𝛼2 + 2𝛼 + 2 = 0. Then

𝐶 = {(1, 𝛼 + 1), (𝛼, 2𝛼 + 1), (𝛼 + 1, 2), (2𝛼 + 1, 2𝛼), (2, 2𝛼 + 2), (2𝛼, 𝛼 + 2), (2𝛼 + 2, 1), (𝛼 + 2, 𝛼), (0, 0)} .
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It follows that
𝐶 |F3 = {(0, 0)}

so that (
𝐶 |F3

)★2
= {(0, 0)}.

However,
(𝛼 + 1, 2) ★ (𝛼 + 1, 2) = (2, 1) ∈ 𝐶★2 ∩ F2

3 =

(
𝐶★2

)
|F3

.

Hence, (
𝐶 |F3

)★2
⫋

(
𝐶★2

)
|F3

.

Theorem 1. The square of a bivariate Goppa code with evaluation set 𝑆 = 𝑆1 × 𝑆2 ⊆ F2
𝑞𝑡 and defining polynomial

𝑔 = 𝑔1 (𝑥1)𝑔2 (𝑥2) ∈ F𝑞𝑡 [𝑥1, 𝑥2] such that 𝑔(𝑠) ≠ 0 for all 𝑠 ∈ 𝑆 is

Γ (𝑆, 𝑔)★2 ⊆
(
𝐴𝐶𝑎𝑟 (𝑆, 𝑔)★2

)
|F𝑞

=

(
𝑒𝑣𝑆,𝜆2

(
L

(
A′

𝑔

)))
|F𝑞

.

Proof. Recall that Γ(𝑆, 𝑔) = 𝐴𝐶𝑎𝑟 (𝑆, 𝑔) |F𝑞 . By Proposition 2, its square satisfies

Γ(𝑆, 𝑔)★2 ⊆
(
𝐴𝐶𝑎𝑟 (𝑆, 𝑔)★2

)
|F𝑞

.

The result now follows from Lemma 2. □

Theorem 1 allows us to provide a bound on the dimension of the square of a bivariate Goppa code.

Corollary 2. The square of the bivariate Goppa code Γ(𝑆, 𝑔) with evaluation set 𝑆 = 𝑆1 × 𝑆2 ⊆ F2
𝑞𝑡 and

defining polynomial 𝑔 = 𝑔1 (𝑥1)𝑔2 (𝑥2) ∈ F𝑞𝑡 [𝑥1, 𝑥2] such that 𝑔(𝑠) ≠ 0 for all 𝑠 ∈ 𝑆 has dimension at most
(2𝑛1 − 1) (2𝑛2 − 1) − 3 deg 𝑔1 deg 𝑔2 − deg 𝑔1.

Proof. Notice that the dimension of Γ(𝑆, 𝑔) is at most | A′
𝑔 |. Then observe that

| A′
𝑔 | = (2𝑛1 − 1) (2𝑛2 − 1)− | 𝑈 | − | 𝐿 \𝑈 |

= (2𝑛1 − 1) (2𝑛2 − 1)
−(2𝑛1 − 2 − 2(𝑛1 − deg 𝑔1 − 1)) (2𝑛2 − 2 − (2𝑛2 − deg 𝑔2 − 1) + 1)
−(2𝑛1 − 2 − (2𝑛1 − deg 𝑔1 − 1) + 1) (2𝑛2 − deg 𝑔2 − 1 − 2(𝑛2 − deg 𝑔2 − 1))

= (2𝑛1 − 1) (2𝑛2 − 1) − 3 deg 𝑔1 deg 𝑔2 − deg 𝑔1.

□

4 CONCLUSION
In this paper, we considered squares of bivariate Goppa codes. We demonstrated that they arise from augmented

Cartesian codes in two variables whose squares are not in general of the same form. By considering the relationship
between the squaring and subfield subcode operations, we obtain a bound on the dimensions of squares of bivariate
Goppa codes. It remains to determine the squares of 𝑚-variate Goppa codes for 𝑚 > 3 as well as to determine their
roles in potential attacks on a code-based cryptosystem.
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