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Abstract
We study of cryptography and average-case complexity through the lens of what we call computational category
theory, wherein we consider category-theoretic objects and relationships endowed with computational hardness
properties. We show that such a computational category-theoretic approach provides many novel insights into the
mathematical structure inherent to certain cryptographic primitives and reductions in average-case complexity:

• We show how to model cryptographic primitives as computational category-theoretic diagrams, where each
such diagram is described using category-theoretic objects and relationships endowed with computational
hardness properties. This yields a novel approach to understanding the mathematical structure that is inherent
to any given primitive.

• We also prove that any “hard” family of problems with a certain type of randomized self-reduction implies
the existence of a monoid equipped with a natural notion of one-wayness, thus demonstrating that some
mathematical structure is inherent to the existence of these kinds of randomized self-reductions.

• We further extend these observations to a certain family of collision-resistant hash functions (CRHFs): we
show that any CRHF where preimage resistance is reducible to collision resistance with a particular type of
reduction also implies a one-way monoid. These statements prove that even certain Minicrypt primitives with

“good” reductions also imply mathematical structure, which is (to our knowledge) a novel type of proof.
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1 INTRODUCTION
The study of theory of cryptography has in recent years focused on the “space exploration” aspect of research:

in other words, what can we build from believable assumptions? This has led to some tremendous results: fully
homomorphic encryption [38] and indistinguishability obfuscation (iO) [35, 50] are two of the more notable
examples. We have a great deal of knowledge about what is (theoretically) possible, and it is not inconceivable to
believe that we are approaching the limits of this kind of study, at least for classical models of computation. For
instance, we have plausible candidates for iO constructions, but we know that virtual-black box (VBB) obfuscation
is impossible [14]; there is only a small gap in our knowledge here of what is possible and what is not.

On the other hand, much less work has been done simplifying constructions from a theoretical perspective.
While there have been some notable exceptions (e.g. the conceptually simpler FHE scheme presented in [39]), most
work and researchers in theory have focused on constructions of cryptographic primitives with novel properties.
There has seemingly been even less work done that is focused on the “whys” of cryptography: why can we build
constructions from some assumptions but not from others, for instance? While cryptographic separations and
reductions between primitives can partially answer these questions (and we discuss these in more detail later), we
still do not find many such results intuitive.

Ultimately, we think that simplifying the underlying principles of theoretical cryptography and understanding
why things work the way they do are two of the more neglected areas in cryptographic research. We believe that
improving the community’s knowledge in these areas would make cryptography more understandable and would
benefit practitioners, who often struggle to understand difficult theoretical concepts, which sometimes causes critical
mistakes [44]. The machine learning community has an entire subfield focused on explainable AI [26], and we think
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that addressing cryptographic understandability could have a similar impact on things like, say, real-world privacy as
explainable AI has had on algorithmic bias.

These are obviously very large problems, and we cannot hope to address them in a single paper. In fact, where
should we even begin? Our starting point will be how general theoretical computer scientists attempt to address
“why” things are they way they are: complexity theory.

Complexity Theory. The study of complexity theory has enabled computer scientists to understand why certain
problems are hard, and why others are easy. From the original works on NP completeness [24, 52] to more recent
works on fine-grained complexity [70], complexity theory has helped explain why some results are seemingly
optimal, and some goals are most likely impossible.

With some notable exceptions [47, 28, 17, 1, 2, 23] [33], most complexity theory results focus primarily on
worst case complexity. But for many applications where complexity theory might be helpful worst case complexity
isn’t especially illuminating: we need average case complexity. Cryptography is perhaps the most notable example.
For instance, rather than investigating whether there exists a secure key exchange protocol or constructing a function
family where some functions are one-way, cryptographers are usually more interested in actually realizing secure
key exchange protocols or one-way functions with concrete parameters. But there are many other practical examples
(such as industrial SAT solvers [60, 27]) where average case complexity is significantly more important than worst
case complexity, and it wouldn’t be too much of a stretch to call average case complexity the more “practical” form
of complexity theory.

There have been a number of recent results that focus on average-case complexity recently, and some of them
have exciting applications to cryptography. For instance, there has been a line of work [9, 45, 66] culminating in a
proof that shows the equivalence of the existence of one-way functions and mildly hard-on-average Kolmogorov
complexity [54], in a way extending [40], and an exciting recent work extending this to time-bounded Kolmogorov
Complexity [55]. To our knowledge, this is the first (and only) characterization of cryptographic primitives in terms
of natural, complexity-theoretic assumptions. However, all of these works focus exclusively on one-way functions
and completely leave open the problem of naturally characterizing public-key cryptography in a complexity-theoretic
way.

In fact, there is almost no complexity-theoretic style of work that focuses on public key primitives. While there
has been extensive work on black-box impossibility results in cryptography [49, 14, 63, 13, 57, 30, 36] which
has substantially helped cryptographers understand how certain primitives are related, these results have generally
been distinct and there has been no way to unify the intuition behind all of these black-box separations. It would
be interesting if we could analyze the relationship between cryptographic primitives in some other way than by
black-box reductions or separations.

Categorizing Cryptoprimitives by Structure. The idea of separating public-key cryptography from symmetric-
key cryptography using mathematical structure has been around for quite some time: Barak mentions this in “The
Complexity of public-key cryptography" [12]. As he puts it, “... it seems that you can’t throw a rock without hitting
a one-way function” but public-key cryptography is somehow “special.” Barak implicitly argues that there is some
mathematical structure inherent in public-key cryptography: “One way to phrase the question we are asking is to
understand what type of structure is needed for public-key cryptography.” But putting any formal rigor behind this
statement has so far been difficult.

There have been some works which show connections between particular mathematical structures and cryp-
togrpahy. Hohenberger showed that pseudo-free groups had numerous cryptographic applications [46] which led
to several follow-up works [65, 22]. Other works [51, 8] focused on buliding cryptography from “hard” group
actions and some papers focusing on Braid group cryptography have led to interesting observations onmathematical
structure and cryptography [34, 5].

There have been a few works [7, 6] focused more directly on the categorization of cryptographic primitives by
mathematical structure: informally speaking, the authors of these papers show that certain primitives in the world of
Minicrypt [47] (i.e., one-way functions, weak unpredictable functions, and weak pseudorandom functions) that are
homomorphic between the input space (or the key space if it exists) and the output space directly imply the existence
of many cryptographic primitives. The power of the homomorphism–essentially, the amount of mathematical
structure in the primitive–dictates the power of the cryptographic primitives that can be built: group-homomorphic
weak PRFs directly imply essentially any cryptoprimitive that one could build from the DDH assumption, while
ring-homomorphic weak PRFs imply more powerful constructions such as fully homomorphic encryption (FHE) [38].
This enables the authors to divide the world of Cryptomania [47] into “continents" based on mathematical structure.

A drawback of these works is that they are purely constructive: they establish that simple primitives endowed
with extra structure can be used to build powerful cryptographic primitives, but what we would ideally like to
know is if mathematical structure is inherently implied by these powerful cryptographic primitives and thus, strictly
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necessary. But these works do provide a hint towards a possible solution for a complexity-theoretic treatment of
public key primitives and assumptions: perhaps mathematical structure is the key.

Analyzing Cryptographic Reductions. Another topic that has received even less complexity-theoretic treatment
than public-key cryptography is the structural requirements of cryptographic reductions [31, 32] (or characterizations
of problems with cryptographic reductions)1. It is obviously highly desirable to base the hardness of cryptographic
primitives on problems that have proofs of average-case hardness [20]. Proofs of average-case hardness could take
a number of forms: some assumptions (such as Learning With Errors [62]) reduce average-case hardness from
some worst-case problem. Other assumptions (such as DDH) employ a randomized self-reduction, showing that an
adversary that can solve a random instance of a problem can be used to solve any arbitrary instance of the problem.

Currently, many commonly used, practically efficient symmetric-key primitives (e.g., SHA or AES) lack such
cryptographic reductions. While it would be desirable to replace these primitives with similarly efficient symmetric-
key primitives with reductions (or find reductions for these practically used primitives), basing symmetric-key
cryptography on assumptions with known average-case reductions results in much less efficient constructions [41].
A natural question to ask is the following: can we build symmetric-key primitives as efficient (and probably
as mathematically unstructured) as those used in practice today, such that these efficient primitives also have
average-case reductions? In other words, what kinds of hard problems permit average-case reductions?

An alternative line of work [10, 43, 42, 58, 48] focuses on showing limits on the power of certain restricted classes
of reductions. In particular, there exist works [29, 3, 4, 16, 15] that have examined the implications of average-case
reductions on the structure of the underlying hard problems. However, the view of “structure” taken by these works
is somewhat different compared to our view of “structure”; in particular, these works view “structure” from a
complexity-theoretic perspective (e.g., whether a certain problem is in AM ∩ coAM), while we view “structure”
from a more algebraic perspective. Concretely, we are interested in what kind of algebraic structure is implied by
certain classes of average-case reductions, and what kind of mathematical tools can we rely on to formally study
such implications?

Cryptography in a Nutshell. All of this discussion leads us to the following core observation: almost all
commonly studied public-key cryptographic primitives can be viewed primarily as a combination of two central
objects: mathematical structure and average-case complexity. In other words, if we ignore the semantics (i.e.
the application for which a cryptographic construction is designed) and just examine what is required from the
perspective of both (mathematical) structure and cryptographic security, we believe that there is a simple unifying
viewpoint to the study of public-key cryptographic constructions through the lens of mathematical structure and
average-case complexity.

This is how we arrived at computational category theory. Category theory is essentially the primary way in
which mathematical structure is examined, and attaching computational assumptions to mathematically structured
primitives, as we will show later, gives us cryptographic primitives. So we believe that the term “computational
category theory” captures the objects we work with in the study of theoretical cryptography.

We are not arguing that this is the only way to study the relationship between mathematical structure and
cryptography. We have to bend standard category theoretic conventions in order to make our computational
definitions work, and there might be other, better ways that allow for more concise definitions and relationships.
But we think, as a whole, this area merits study and this notion of computational category theory is an entirely
reasonable starting point.

1.1 CATEGORY THEORY
If we are going to analyze the mathematical structure of various cryptographic objects, then we will need to

incorporate the appropriate tools from mathematics. Category theory, informally, is the branch of mathematics
focused on studying mathematical structure through the lens of collections of objects, arrows between them, and
higher-order relations on these collections of objects and arrows. The basic object in category theory is a category,
which is represented as a set of objects and (directed) arrows between objects in the set.2

Functors are maps between categories that preserve structure: functors preserve identity morphisms (i.e., arrows)
and composition of morphisms between categories. In other words, a functor 𝑇 : 𝐶 → 𝐵 between two categories 𝐶
and 𝐵 has the property that, for the identity arrows 1𝐶 and 1𝐵, 𝑇 (1𝐶 ) = 1𝐵, and for arbitrary arrows 𝑔 and 𝑓 , we
have 𝑇𝑔 ◦𝑇 𝑓 = 𝑇 (𝑔 ◦ 𝑓 ), assuming the composite arrow 𝑔 ◦ 𝑓 exists (it doesn’t necessarily have to, as in the case of
forgetful functors). We can similarly define natural transformations as structure preserving maps between functors.

1There has been some category theoretic work on composing reductions; we discuss that later.
2We make a number of simplifying assumptions about category-theoretic concepts in this section (e.g. we assume categories are finite). In the

body of the paper, we take a much more rigorous approach and spell out all of our assumptions.
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We cannot comprehensively discuss category theory in this paper; for that, we refer the reader to the classic text
of Mac Lane [56] or the more recent book of Leinster [53]. We will use almost no complicated or non-basic category
theory in this paper, so a reader with even rudimentary knowledge of category theory should be able to understand
the content. However, we do define all of the primitives from category theory that are integral to our constructions
formally in section 3, and we encourage a reader totally unfamiliar category theory to peruse through those.

1.2 OUR CONTRIBUTIONS
In this work, we formalize a notion of “computational category theory” and show that it can be used to make

several novel observations about cryptography and average-case complexity. This framework and these observations
have the potential to be useful in the study of cryptography and average-case complexity in a wide variety of different
ways.

Modeling Cryptographic Primitives as Diagrams. Our first contribution is formally showing how to model
cryptographic primitives as computational category-theoretic diagrams. We view “data” in the form of (potentially
structured) categories, and computational primitives as functors3. These “computational” functors are endowed
with particular hardness properties that let us model cryptographic primitives. As mentioned earlier, this yields a
novel approach to understanding the mathematical structure inherent to any given primitive. We formally show
how to model cryptoprimitives like key exchange, signatures, and identity-based encryption in this computational
category-theoretic framework.

The Structure of Randomized Self-Reductions. Our computational category-theoretic framework can also be
used in the context of average-case complexity. We prove that any “hard” family of problems (i.e., a one-way function)
with a Levin-style4 randomized self-reduction implies the existence of a monoid equipped with a natural notion of
one-wayness. A long-standing goal in cryptography has been to construct an efficient symmetric-key encryption
primitive (e.g., AES) with a randomized self-reduction (so that we can have more confidence in its security).
Our work here shows that any such primitive with a Levin randomized self-reduction must imply mathematically
structured hardness. Since mathematically structured primitives tend to be less efficient than unstructured ones, our
work here calls into question whether or not such a construction is possible.

CRHFs and Structure. We can extend our result on Levin-style randomized-self reductions to collision-resistant
hash functions (CRHFs). Informally speaking, suppose we have a CRHF 𝐻 such that any adversary A that breaks
the collision resistance of 𝐻 can also be used to break the one-wayness of 𝐻. We show that such an 𝐻 also implies
the existence of a one-way monoid. Our result implies that constructing CRHFs with powerful hardness reductions
is likely going to require that the CRHF 𝐻 is mathematically structured.

1.3 OTHER RELATED WORKS
A number of previous works have attempted to connect category theory and cryptography or security. The work

of Pavlovic [61] shows how to categorically model an encryption scheme. Pavlovic uses different formalization
methods than we do (while significantly more rigorous from a category-theoretic point of view, it is difficult to
see how to generalize his formalism to different cryptographic primitives beyond encryption – our goal here is a
general framework that encompasses most commonly used cryptographic primitives), and we think it is interesting
future work to apply more category-theoretic rigor to our analysis here. Other interesting uses of category theory
include modeling attackers [11], modeling composable security [21, 68], and even mapping finite state machines to
zk-SNARK constructions [37].

1.4 PAPER OUTLINE
The rest of the paper is organized as follows. In Section 2, we present an overview of our results on diagramming

cryptographic primitives. and the necessary structure for key exchange and some discussion on why we choose
category theory. The technical core of our paper begins with Section 3, which presents preliminary background
material. In Section 4, we formally show how to model cryptographic primitives as computational category-theoretic
diagram. In Section 5, we explain our findings on the relationship between average-case reductions and mathematical
structure. Finally, in Section 6 we offer directions for future work.

3A category theorist might disagree with this formulation on first sight, but we explain our rationale for this model later.
4We formally define this later in the paper.
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2 TECHNICAL OVERVIEW

In this section, we provide an overview of how to formally model cryptosystems using computational category-
theoretic diagrams. We start with the simple example of two-party non-interactive key exchange, which is illustrative
of more complicated protocols.

Informally, key exchange is a protocol between two participants, who we will call Alice and Bob. Given some
(randomly) generated public parameters, Alice and Bob each generate some “key share” message which we call 𝑠𝐴
and 𝑠𝐵, respectively, and post this to some sort of public message board. They can then at any time “download” each
others’ public keys. From these shares (and using any “secret” randomness they may have sampled in the course of
the protocol), Alice and Bob both can generate a final key 𝑘 . Informally speaking, security requires that, given the
initial public parameters, and the key shares 𝑠𝐴 and 𝑠𝐵, no adversary can (efficiently) determine the final shared key
𝑘 .

We formally outline below all of the components of a two-party non-interactive key exchange protocol:
• Setup : 1𝜆 × 𝑅 → 𝑃𝑃.5
• Gen𝐴 : 𝑃𝑃 × 𝑅𝐴→ 𝑆𝐴.
• Gen𝐵 : 𝑃𝑃 × 𝑅𝐵 → 𝑆𝐵.
• Combine𝐴 : 𝑃𝑃 × 𝑅𝐴 × 𝑆𝐵 → 𝐾 .
• Combine𝐵 : 𝑃𝑃 × 𝑅𝐵 × 𝑆𝐴→ 𝐾 .

In the above description, 𝜆 is a security parameter6, and 𝑅, 𝑅𝐴 and 𝑅𝐵 denote certain efficiently sampleable
“randomness spaces." In addition, we need to capture the correctness of the key exchange, ensuring that Alice and
Bob can compute the same secret key using two different sequences of computation. This (informally) necessitates
the following requirement:

Combine𝐵 (pp, 𝑟𝐵,Gen𝐴 (pp, 𝑟𝐴)) = Combine𝐴 (pp, 𝑟𝐴,Gen𝐵 (pp, 𝑟𝐵)) ,

where pp ∈ 𝑃𝑃, 𝑟𝐴 ∈ 𝑅𝐴, 𝑟𝐵 ∈ 𝑅𝐵.

This requirement will be immediately familiar to a category theoretician: it means that Gen𝐴, Gen𝐵, Combine𝐴,
and Combine𝐵 form a commutative square. We can represent this using a category-theory style diagram:

1𝜆 × 𝑅 𝑃𝑃 𝑆𝐴

𝑆𝐵 𝐾

Gen𝐵 (·, rB)

Gen𝐴(·, rA)

Combine𝐵 (pp, rB, ·)

Combine𝐴(pp, rA, ·)

Setup

We now explicitly formalize this requirement: let 𝑃𝑃, 𝑅𝐴, 𝑅𝐵, 𝑆𝐴, 𝑆𝐵 and 𝐾 be categories that are sets without
any non-identity arrows. Also, let Setup, Gen𝐴, Gen𝐵, Combine𝐴, and Combine𝐵 be functors (more specifically,
bifunctors or trifunctors) mapping between the categories, with the property that the square diagram implied by
the correctness of the key exchange protocol commutes. We note that some of these categories must be efficiently
sampleable in order for our above key exchange formalization to actually work. We defer a more detailed discussion
on handling such sampleability requirements to Section 4.

It turns out that we can model essentially any cryptographic primitive/protocol as such a collection of categories
and functors.7 In general, certain “objects” in our cryptosystems – messages, data, keys, randomness, etc. – are
modeled as categories, and computations are modeled as functors. As we showed with key exchange, most of the
transformations from cryptographic system to category-theoretic diagram are pretty straightforward.

Finally, we must address how to model security on these cryptographic/category theoretic diagrams. A natural
first approach (mirroring [7]) might be to endow functors with hardness derived from Minicrypt primitives. For

5We assume that the public parameters implicitly incorporate the security parameter.
6We typically consider our diagrams of categories as an instance of an ensemble of categories indexed by the security parameter.
7We leave this statement intentionally vague, and refer the reader to section 4 for a comprehensive discussion on what can and cannot be

modeled. Our argument that we can model “everything” is not formal–among other things, we would have to formally define a cryptosystem
before we could attempt this–but we find it convincing.
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instance, if Gen𝐴 and Gen𝐵 are modeled as one-way functions, and Combine𝐴 and Combine𝐵 are modeled as weak
pseudorandom functions (with the key 𝑟𝐴 and 𝑟𝐵, respectively), could we prove security of the key exchange protocol?
Unfortunately (and analogously to why key exchange follows from the computational Diffie-Hellman assumption,
but not discrete log), this does not work: we need to define security assumptions that take into account the fact that
the functors may be correlated. So our assumption for key exchange follows naturally: given appropriately sampled
key shares 𝑠𝐴 ∈ 𝑆𝐴 and 𝑠𝐵 ∈ 𝑆𝐵, determining the corresponding final 𝑘 should be hard. We note that it is simple to
deduce a hardness assumption for key exchange, but it can be more difficult for complicated primitives.

However, we can rigorously define cryptographic assumptions in a general way using our framework. We
explain this in full detail in section 4. We further note that our paper is focused on the traditional classical model
of computation. However, it is seemingly simple to extend to, say, quantum computation, where none of our
observations on mathematical structure would need to change, but we would need to allow superposition queries in
some cases.

Computational Category-Theoretic Modeling of More Primitives. In Section 4, we exemplify our approach
by (informally) showing how to model identity-based encryption (IBE) [67, 18], multi-round two-party key exchange,
and digital signatures. We present these examples to validate the fact that our framework is generic enough to model
most of the commonly used cryptographic primitives, and makes it possible to compare such primitives in terms of
their inherent mathematical structure.

Why Category Theory? A natural and immediate question to ask is why we chose to use category theory to
model cryptographic primitives. We split this up into two questions, which we then answer:

1. Why is it useful and interesting to model cryptoprimitives and reductions as algebraically structured primitives?

2. Why are category-theoretic notations the right ones for these formalizations?

On (1). There are many good reasons to abstract out cryptoprimitives using mathematical frameworks that
ignore “crypto semantics,” and we outline many of them at various places in the paper. In particular, we think
these mathematical diagrams make it much easier to see the relationship between cryptographic assumptions and
cryptoprimitives: they can act as sort of a “narrow waist” between the two (like TCP/IP for the internet). Once it is
shown that a computational category-theoretic diagram is sufficient for a cryptoprimitive, then all that is needed to
instantiate that cryptoprimitive is show that an assumption is structured enough to securely realize the diagram. In
this paper, we focus on a particular application of this approach, namely showing that certain cryptoprimitives can
only be built from certain classes of mathematical assumptions (our proof that key exchange requires a certain kind
of algebraic structure is an example of this). We hope that computational category-theoretic formulations also have
other future applications, including making it easier to build cryptoprimitives from new assumptions and showing
new separations (perhaps “unconditional” query-based proofs in the style of generic-group model impossibility
results could be used).

Looking ahead, we also believe that modelling reductions (or, more accurately, primitives with certain types of
reductions) using these mathematical frameworks provides new insights into their structural requirements, and may
yield interesting observations for building OWFs or other Minicrypt primitives with “good” reductions (and it may
be extended further–see our comments on Pessiland in Section 5).

On (2). An astute reader might point out that sets and functions can also be used to describe our results. In fact, they
can be also used to explain basic category theoretic concepts; MacLane [56] in his textbook introduces categories
from a set-theoretic framework. Perhaps our thought process for writing this paper will help explain why we chose
category-theoretic concepts. The starting point for this work was [7], but [7] is not expressive enough to let us prove
more general equivalence results. After trying to figure out how to best express cryptoprimitives in a mathematical
way, we found basic category theoretic concepts to be a natural choice for describing the abstractions that we develop
in this paper, while not departing too far from the more standard semantics with which cryptographers are familiar.
There probably exists a spectrum of choices for potentially re-phrasing our results, ranging from more classical
category-theoretic concepts to more commonly used cryptographic jargon, but we feel that our choice can be seen as
a good tradeoff point between these two extremes.

For example, as we discussed in the introduction, [7] showed that endowing, among other things, a weak PRF
with a (group) homomorphism between the input space and output space allows us to build “most” primitives that
can be built from the DDH assumption. This is easy to model with our category-theoretic notation: a weak PRF is
a single functor, and we can model a group-homomorphic weak PRF as a bifunctor from a group and a set (the
set being the key space) to a group. Since the functor preserves structure, we don’t have to go into any of the
details about the homomorphism. This category-theoretic approach also lets us succinctly express the relationship
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between public-key encryption and (group) homomorphic encryption: if we start with a category-theoretic diagram
that represents PKE and simply make the message and ciphertext spaces groups, then we get group homomorphic
encryption. This would be substantially more cumbersome to define without functors.

If we look ahead again, we use a substantial amount of category theory in section 5 to describe reductions. In
particular, our observation that reductions are essentially just adjunctions endowed with computational hardness
properties seems like a powerful simplification to us.

Why Structure-Preserving Functors? It might seem like a departure from standard conventions in category
theory to use ostensibly structure-preserving functors for mapping between categories with no arrows (i.e., structure).
The more conventional approach would be to represent all objects in a single category, and transformations between
these objects as arrows. Unfortunately, this conventional approach does not suffice for modeling certain “structured"
cryptographic primitives, e.g., primitives with homomorphisms. For instance, the discrete log assumption could
be modeled as a “one-way functor” 𝐷 : 𝐾 × 𝑋 → 𝑌 for some categories 𝐾, 𝑋 , and 𝑌 . But this representation
is somewhat incomplete because it doesn’t fully convey the mathematical structure inherent to the discrete log
assumption over groups.

A more appropriate category-theoretic modeling of the discrete log assumption over some cyclic group G of
prime order 𝑝 is a functor of the form 𝐷 : G × Z𝑝 → G. Since 𝐷 is a functor, it preserves all of the relevant
structure, and allows us to accurately model the mathematical structure inherent to the discrete log assumption. This
exemplifies the fact that our computational category-theoretic framework is capable of modeling structured hardness
assumptions using simple category-theoretic tools.

In fact, we can subsume essentially the entire framework of [7] and [6] by using functors. For instance, if 𝐹
is a functor endowed appropriately with weak pseudorandomness properties, G is a group, and 𝐾 is an arbitrary
set, then 𝐹 : G × 𝐾 → G can be used to precisely describe an input-homomorphic weak PRF, which is the main
building block of [7]. Groups and homomorphic primitives are used extensively in cryptography, so we use separate
categories for various objects in the cryptosystems – and functors between them – to formally capture such structured
relationships.

3 PRELIMINARIES
We start by defining some basic concepts in category theory. We use slightly modified definitions from the

classic MacLane text [56] and note that many of the things we define have multiple equivalent definitions. We note
that MacLane defines categories as any interpretation of the category axioms within set theory and uses the notion
of metacategory to handle classes and other collections that cannot be modelled as sets. Since we are only working
with finite collections in this work, this is a restriction that does not impact us in any way. In other words, we will be
exclusively working with small categories in this paper and thus will sometimes refer to the objects in a category as
a set.

Typically in category theory, categories and functors are denoted with uppercase letters, and elements of a
category and arrows are denoted with lowercase letters. We will use lowercase letters to sometimes denote functors
when it is clear we are not using arrows, as this will help us avoid notation conflicts with some cryptographic
primitives (e.g. a hash function “𝐻”).

Definition 1 (Directed Graph). A directed graph is a set 𝑂 of objects, a set 𝐴 of arrows, and two functions:

𝑑𝑜𝑚 : 𝐴→ 𝑂, 𝑐𝑜𝑑 : 𝐴→ 𝑂

In a graph, we say that the set of composable pairs of arrows is the set

𝐴 × 𝐴 : {⟨𝑔, 𝑓 ⟩ ∈ 𝐴 such that 𝑑𝑜𝑚 𝑔 = 𝑐𝑜𝑑 𝑓 }

and call this the “product over 𝑂.”

We can now define a category. Informally, a category is just a directed graph where “identity arrows” exist and
all of the arrows compose “nicely” when they are composable.

Definition 2 (Category). A category is a directed graph with two additional functions:

Identity Composition

𝑖𝑑 : 𝑂 → 𝐴 ⊙ : 𝐴 × 𝐴→ 𝐴

𝑐 → 𝑖𝑑𝑐 ⟨𝑔, 𝑓 ⟩ → 𝑔 ⊙ 𝑓
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where we may also write 𝑔 ⊙ 𝑓 as 𝑔 𝑓 such that

𝑑𝑜𝑚 (𝑖𝑑 𝑎) = 𝑐𝑜𝑑 (𝑖𝑑 𝑎) = 𝑎
𝑑𝑜𝑚 (𝑔 ⊙ 𝑓 ) = 𝑑𝑜𝑚 𝑓

𝑐𝑜𝑑 (𝑔 ⊙ 𝑓 ) = 𝑐𝑜𝑑 𝑔

for all objects 𝑎 ∈ 𝑂 and all composable arrows ⟨𝑔, 𝑓 ⟩ ∈ 𝐴 × 𝐴 such that the unit and associativity laws hold. In
other words, for two pairs of composable arrows ⟨ℎ, 𝑔⟩ and ⟨𝑔, 𝑓 ⟩ we have

ℎ ⊙ (𝑔 ⊙ 𝑓 ) = (ℎ ⊙ 𝑔) ⊙ 𝑓

and for all arrows 𝑓 : 𝑎 → 𝑏 and 𝑔 : 𝑏 → 𝑐 we have

𝑖𝑑𝑏 ⊙ 𝑓 = 𝑓 𝑔 ⊙ 𝑖𝑑𝑏 = 𝑔.

For cryptographers who aren’t used to category theory, it can be useful to think of a category as a set with some
structure indicated by the arrows. With categories in mind, we can define functors.

Definition 3 (Functor). A functor is a morphism of categories. For categories 𝐶 and 𝐵, a functor 𝑇 : 𝐶 → 𝐵 with
domain 𝐶 and codomain 𝐵 consists of two related functions, both of which are denoted by 𝑇: the object function,
which assigns to each object 𝑐 ∈ 𝐶 an object 𝑇𝑐 ∈ 𝐵, and the arrow function which assigns to each arrow 𝑓 : 𝑐 → 𝑐′

an arrow 𝑇 𝑓 : 𝑇𝑐 → 𝑇𝑐′ of 𝐵 such that the following holds:

𝑇 (𝑖𝑑𝑐) = 𝑖𝑑𝑇𝑐 and 𝑇 (𝑔 ⊙ 𝑓 ) = 𝑇𝑔 ⊙ 𝑇 𝑓 .

We emphasize that the latter equation only has to hold whenever the composite 𝑔 ⊙ 𝑓 is defined in 𝐶.

In other words, a functor is a mapping between categories that preserves the internal structure of the categories.
We can also consider structure preserving mappings of functor to functor. These are called natural transformations.

Definition 4 (Natural Transformation). Given two functors 𝑆, 𝑇 : 𝐶 → 𝐵, a natural transformation 𝜏 : 𝑆 → 𝑇 is a
function which assigns to each object of 𝑐 ∈ 𝐶 an arrow 𝜏𝑐 = 𝜏𝑐 : 𝑆𝑐 → 𝑇𝑐 of 𝐵 in such a way that every arrow
𝑓 : 𝑐 → 𝑐′ in 𝐶 yields a commutative diagram as follows:

𝑐

𝑐′

𝑆𝑐 𝑇𝑐

𝑆𝑐′ 𝑇𝑐′

𝑆 𝑓

𝜏𝑐

𝑇 𝑓

𝜏𝑐′

𝑓

When this holds, we say that 𝜏𝑐 is natural in 𝑐.

In section 5, we note some similarities between complexity-theoretic reductions and adjunctions, so we define these
next.

Definition 5 (Adjunction). Let 𝐴 and 𝑋 be categories. An adjunction from 𝑋 to 𝐴 is a triple ⟨𝐹, 𝐺, 𝜓⟩ : 𝑋 → 𝐴

where 𝐹 : 𝑋 → 𝐴 and 𝐺 : 𝐴 → 𝑋 are functors while 𝜓 is a function which assigns to each pair of objects
(𝑥, 𝑎) ∈ 𝑋 × 𝐴 a bĳection between the respective morphism sets; concretely

𝜓 = 𝜓𝑥,𝑎 : 𝐴 (𝐹𝑥, 𝑎) � 𝑋 (𝑥, 𝐺𝑎) ,

where 𝐴 (𝐹𝑥, 𝑎) and 𝑋 (𝑥, 𝐺𝑎) denote the respective morphism sets.
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4 REPRESENTING CRYPTOSYSTEMS AS COMMUTATIVE DIAGRAMS
WITH HARDNESS

In this section, we discuss how to represent cryptographic primitives as computational category theoretic
“diagrams." In general, a cryptographic primitive/protocol is a collection of probabilistic polynomial-time algorithms
with certain correctness and security requirements. At a high level, we try to capture the “core" correctness
requirements of cryptographic primitives by modeling them as diagrams, where each such diagram consists of a
collection of: (1) categories and (2) functors acting as maps between these categories. In addition, we attempt to
capture the security requirements of these primitives by modeling these as natural hardness assumptions associated
with the various functors.

One of the key observations is that these “diagrams” should be agnostic to the underlying purpose of the
cryptosystem, and only dependent on the mathematical structure and security properties around that structure
necessary for the scheme.

4.1 EXAMPLE-1: NON-INTERACTIVE KEY EXCHANGE
It is perhaps best to start with an example rather than immediately going to technical details. So, we exemplify our

approach of using computational category theoretic tools to model cryptographic primitives using (two-party) non-
interactive key exchange (NIKE). We begin by describing what a NIKE protocol is. Informally, it is a single round
protocol executed between a pair of probabilistic polynomial-time algorithms (sometimes informally referred to as
“parties") 𝐴 and 𝐵 that have access to some common public parameters. At a high level, the protocol proceeds as
follows:

• Party 𝐴 uses the public parameters (say, pp) to generate a secret state 𝑟𝐴 and a message 𝑠𝐴, and transmits 𝑠𝐴
to party 𝐵.

• Simultaneously, party 𝐵 uses the public parameters pp to generate a secret state 𝑟𝐵 and a message 𝑠𝐵, and
transmits 𝑠𝐵 to party 𝐴.

• Party 𝐴 uses the message 𝑠𝐵 received from party 𝐵 together with its own secret state 𝑟𝐴 to locally compute a
secret key (say, 𝑘𝐴𝐵).

• Similarly, party 𝐵 uses the message 𝑠𝐴 received from party 𝐴 together with its own secret state 𝑟𝐵 to locally
compute a secret key (say, 𝑘𝐵𝐴).

We note that this is an unusual definition of key exchange: Alice and Bob send their shares to each other rather
than posting them to some sort of public “message board” and then “downloading” each other’s shares. However,
we do note that our definition of key exchange here is exactly equivalent to standard key exchange. The protocol is
exactly equivalent if Alice and Bob post 𝑠𝐴 and 𝑠𝐵, respectively, in steps one and two above, and then download each
others’ shares in steps three and four. We chose this definition because it more easily generalizes to multi-round key
exchange, on which we spend a substantial amount of time later in the paper.

Correctness (Informal). The “core" correctness requirement of a NIKE protocol is that both parties 𝐴 and 𝐵
compute the same final secret key, i.e., we have 𝑘𝐴𝐵 = 𝑘𝐵𝐴 = 𝑘 , even though each party used a difference sequence
of local computations to arrive at this final key.

Security (Informal). At the same time, the security requirement of a NIKE protocol is that no (efficient) adversarial
“third" party that observes the transcript of messages exchanged between party 𝐴 and party 𝐵 should be able to
compute the final secret key 𝑘 , except with negligible probability. An even stronger requirement that is often
considered in the cryptographic literature is that the adversary should be able to distinguish the secret key 𝑘 from a
uniformly random bit-string of the same length, except with negligible probability.

Computational Category-Theoretic Representation of NIKE. We now formulate a potential approach for
modeling the correctness requirement of a (two-party) NIKE protocol using a computational category-theoretic
representation. The key observation here is that the correctness requirement for NIKE (namely, that two parties
can compute the same secret key using two different sequences of computation) naturally yields a “commutative"
diagram, represented as a collection of nodes and edges:

• At a high level, the nodes (equivalently, “categories") in this diagram are used to represent the sets from which
the public parameters, the messages exchanged by the parties, and their own internal randomness/secret states
are sampled.
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• On the other hand, the edges (equivalently,“functors") in this diagram are used to represent the sequence of
function computations that parties 𝐴 and 𝐵 follow to arrive at the final secret key.

We make the high-level description of our computational category-theoretic representation for two-party NIKE
more explicit below.

Categories/Sets. As mentioned earlier, our category-theoretic representation for NIKE consists of “categories,"
which are essentially the sets from which the public parameters, the messages exchanged by the parties, and their
own internal randomness/secret states are sampled. More specifically, let 𝑃𝑃, 𝑅, 𝑆𝐴, 𝑆𝐵, 𝑅𝐴, 𝑅𝐵, and 𝐾 denote
sets (equivalently, small categories), where:

• We let 𝑃𝑃 denote the set of public parameters and 𝑅 denote the set of possible random coins used by the setup
algorithm to output some public parameters from the set 𝑃𝑃.

• We also let 𝑆𝐴 and 𝑆𝐵 (resp., 𝑅𝐴 and 𝑅𝐵) denote the set of possible output shares (resp., the set of possible
secret states) for the parties 𝐴 and 𝐵, respectively.

• Finally, we let 𝐾 denote the set of possible final keys that the parties 𝐴 and 𝐵 could agree on at the end of the
NIKE protocol.

Functors. Our category-theoretic representation for NIKE additionally consists of “functors". These are used to
represent the sequence of function computations that parties 𝐴 and 𝐵 follow to arrive at the final secret key. At a
high level, these functors act as “maps" between the sets/categories described above. Concretely, we consider the
following functors:

• Setup : 1𝜆 × 𝑅 → 𝑃𝑃 (𝜆 being a security parameter).

• Gen𝐴 : 𝑃𝑃 × 𝑅𝐴→ 𝑆𝐴.

• Gen𝐵 : 𝑃𝑃 × 𝑅𝐵 → 𝑆𝐵.

• Combine𝐴 : 𝑃𝑃 × 𝑅𝐴 × 𝑆𝐵 → 𝐾 .

• Combine𝐵 : 𝑃𝑃 × 𝑅𝐵 × 𝑆𝐴→ 𝐾 .

From Correctness to a Commutative Diagram. In order to model the correctness requirement for NIKE, we
need to impose the following correctness requirement on these functors: for any pp ∈ 𝑃𝑃, any 𝑟𝐴 ∈ 𝑅𝐴 and any
𝑟𝐵 ∈ 𝑅𝐵, we have

Combine𝐴 (pp, 𝑟𝐴,Gen𝐵 (pp, 𝑟𝐵)) = Combine𝐵 (pp, 𝑟𝐵,Gen𝐴 (pp, 𝑟𝐴)) ,

Observe that this correctness requirement naturally yields the following commutative diagram.
We present a subsequent discussion on how this approach of modeling cryptographic primitives as commutative

diagrams naturally generalizes/extends to other well-studied cryptographic primitives.

Modeling Security Requirements. So far, our category-theoretic representation of NIKE captures only correctness
requirements. Modeling security requires us to additionally endow the functors in the commutative diagram with
certain additional “hardness" properties. For example, the indistinguishability security requirement of NIKE8

naturally yields the following indistinguishability-style hardness requirement on the functors described in Figure 1
above:

For any security parameter 𝜆 ∈ N, any pp← 𝑃𝑃, any 𝑟𝐴← 𝑅𝐴 and any 𝑟𝐵 ← 𝑅𝐵, letting

𝑠𝐴 = Gen𝐴 (pp, 𝑟𝐴) , 𝑠𝐵 = Gen𝐵 (pp, 𝑟𝐵) , 𝑘𝐴𝐵 = Combine𝐴 (pp, 𝑟𝐴, 𝑠𝐵) ,

the following holds for any probabilistic polynomial time algorithm A:

| Pr[A(pp, 𝑠𝐴, 𝑠𝐵, 𝑘𝐴𝐵) = 1] − Pr[A(pp, 𝑠𝐴, 𝑠𝐵, 𝑘 ′𝐴𝐵) = 1] |< negl(𝜆),

where 𝑘 ′
𝐴𝐵
← 𝐾 is a key sampled from 𝐾 by computing the key exchange diagram with “fresh” randomness.

8Obviously, key exchange requires only unpredictability, not indistinguishability, but we assume indistinguishability here for the purposes of
explanation.
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1𝜆 × 𝑅 𝑃𝑃 𝑆𝐴

𝑆𝐵 𝐾

Gen𝐵 (·, kB)

Gen𝐴(·, rA)

Combine𝐵 (pp, kB, ·)

Combine𝐴(pp, rA, ·)

Setup

Figure 1: A computational category-theoretic diagram for NIKE.

Remark 1. Note that this indistinguishability-security requirement that we impose on the collection of functors

(Gen𝐴,Gen𝐵,Combine𝐴,Combine𝐵),

naturally endows certain hardness assumptions on the individual functors themselves. In particular, each of these
functors should be one-way on the (uniformly random) inputs 𝑟𝐴 and 𝑟𝐵 for the overall security requirement to hold.

Remark 2. In the aforementioned security definition, we assumed that there exist algorithms that can efficiently
sample from the uniform distribution over the sets 𝑃𝑃, 𝑅𝐴 and 𝑅𝐵. While this is true for many NIKE protocols in
practice, it need not be true for any NIKE protocol.

4.2 MODELING CRYPTOGRAPHIC PRIMITIVES IN COMPUTATIONAL CATEGORY THE-
ORY

We generalize the ideas exemplified in the above modeling of NIKE to define a system for modeling cryptographic
primitives and protocols in terms of computational category-theoretic notions. Our approach will typically involve
two stages: (1) modeling the correctness requirement of the cryptographic primitive as a diagram composed of
category-theoretic entities (primarily categories and functors) with certain commutative properties, and (2) modeling
the security requirement(s) of the primitive by endowing the relevant functors with appropriate hardness properties.
Somewhat more concretely, our approach can be described as follows:

• We model cryptographic entities that are either stored locally by parties/algorithms or output/transmitted as
messages to other parties as categories. We typically focus on the category of sets in the sense that almost all
of the categories that we consider consist of categories that can be modeled as sets. Examples of entities
that we model as categories include public parameters, public/private keys, messages, ciphertexts, etc. These
categories serve as “nodes" in our diagram-based models of primitives.

• We model computations (either public or private) on these categories as functors. Each functor typically take
as input objects belonging to one or more “input categories", and outputs an object belonging to an “output
category". These functors serve as the “edges" connecting various categories or “nodes" in our diagram-based
models of primitives.

Remark 3. On the surface, our approach here would seem to violate common conventions of category theory. The
conventional approach would be to represent all sets of cryptographic entities as objects in the same category, and
to represent the computations between such objects as “arrows". Why are we using functors when they do not
initially seem necessary? This is because the earlier approach does not suffice for modeling certain “structured"
cryptographic primitives. In particular, certain primitives need maps between sets that preserve some form of
mathematical structure (for instance, any homomorphic encryption scheme requires a homomorphism-preserving
map between the plaintext set and the ciphertext set). It seems difficult to efficiently capture such structure-preserving
maps using only arrows between objects in the same category. On the other hand, functors are structure-preserving
by definition, which enables us to naturally capture such mathematically structured primitives. Hence, we opt for a
computational category-theoretic approach that models primitives using functor-based representations.
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Remark 4. When modeling cryptographic primitives, we need to make some assumptions on whether or not a given
category supports efficient representations and/or efficiently sampleable distributions. Note we do not necessarily
require all categories to have efficient representation and/or sampleability. We specify these properties for categories
explicitly as and when we require them.

Modeling Cryptographic Assumptions. Essentially any cryptographic primitive is associated with certain
security properties. In order to model such security requirements, we need to be able to model cryptographic
assumptions in a computational category-theoretic manner. At a high level, we model two kinds cryptographic
assumptions - decisional and computational. Below, we provide an informal description of what the computational
category-theoretic counterparts of these assumptions look like. We make these descriptions more formal subsequently.

• Decisional Assumption: Given a collection of categories (C1, . . . , C𝑁 ) and a collection of functors of the
form ( 𝑓1, . . . , 𝑓𝑄), where each functor 𝑓𝑞 is a map of the form:

𝑓𝑞 : C𝑖1 × C𝑖2 × . . . × C𝑖ℓ → C𝑗 ,

for some 𝑖1, . . . , 𝑖ℓ , 𝑗 ∈ [𝑁], a decisional assumption over the ensemble

((C1, . . . , C𝑁 ), ( 𝑓1, . . . , 𝑓𝑄)),

is typically a statement of the following form: for any security parameter 𝜆 ∈ N and for any:

– vector of “public objects" xpublic and a vector of “private objects" xprivate (where xpublic and xprivate consist
of objects sampled from certain well-defined distributions over one or more of the categories in the
aforementioned ensemble), and

– vector of “left challenge-oracle objects" y (where y consists of objects from a “left distribution" over
one or more of the categories in the aforementioned ensemble, obtained by evaluating a subset of the
functors in the aforementioned ensemble on some subset(s) of the objects in xpublic and xprivate), and

– vector of “right challenge-oracle objects" z (where z consists of objects from a “right distribution" over
one or more of the categories in the aforementioned ensemble, obtained by evaluating a potentially
different subset of the functors in the aforementioned ensemble on some subset(s) of the objects in xpublic
and xprivate),

and for any probabilistic polynomial time algorithm A, we have

| Pr[A(xpublic, y) = 1] − Pr[A(xpublic, z) = 1] |< negl(𝜆).

• Computational Assumption: Given a collection of categories (C1, . . . , C𝑁 ) and a collection of functors of
the form ( 𝑓1, . . . , 𝑓𝑄), where each functor 𝑓𝑞 is a map of the form:

𝑓𝑞 : C𝑖1 × C𝑖2 × . . . × C𝑖ℓ → C𝑗 ,

for some 𝑖1, . . . , 𝑖ℓ , 𝑗 ∈ [𝑁], a decisional assumption over the ensemble

(C1, . . . , C𝑁 ), ( 𝑓1, . . . , 𝑓𝑄),

is typically a statement of the following form: for any security parameter 𝜆 ∈ N and for any:

– vector of “public objects" xpublic and a vector of “private objects" xprivate (where xpublic and xprivate consist
of objects sampled from certain well-defined distributions over one or more of the categories in the
aforementioned ensemble), and

– vector of “target objects" y (where y consists of objects from a “target distribution" over one or more of
the categories in the aforementioned ensemble, obtained by evaluating a subset of the functors in the
aforementioned ensemble on some subset(s) of the objects in xpublic and xprivate), and

and for any probabilistic polynomial time algorithm A, we have

Pr[A(xpublic) = y] < negl(𝜆).
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Modeling Cryptographic Assumptions with Oracles. We can also support decisional/computational cryp-
tographic assumptions where the probabilistic-polynomial time adversary has oracle-access to certain functor
evaluation circuits that are “hardwired" with the private inputs. We note here that the security of many well-studied
cryptographic primitives rely on cryptographic assumptions that must hold even when the adversary has access to
such oracles.

Consider, for example, the well-studied notion of indistinguishability-based security for public-key encryption
schemes against chosen-ciphertext attacks (often abbreviated as CCA security) [25], which requires encryptions of
any arbitrary pair of messages to be computationally indistinguishable, even in the presence of a decryption oracle
that can be used on all messages except the challenge pair. This oracle essentially allows the adversary to evaluate a
decryption circuit hardwired with the secret decryption key on ciphertexts of its choice (modulo certain restrictions).
From a computational category-theoretic point of view, a decryption key is an example of a “private object" sampled
from the category/set of all possible keys. Hence, in order to model such cryptographic primitives, our computational
category-theoretic framework should be able to model cryptographic assumptions where the adversary might have
oracle-access to certain functor evaluation circuits hardwired with the private inputs. Similar requirements arise in
the context of security definitions for advanced cryptographic primitives such as collusion-resistant identity-based
encryption (IBE) [67, 18] and functional encryption [19].

Below, we provide an informal description of what the computational category-theoretic counterparts of these
oracle-based assumptions look like.

• Decisional Assumption with Oracle(s): Given a collection of categories (C1, . . . , C𝑁 ) and a collection of
functors of the form ( 𝑓1, . . . , 𝑓𝑄), where each functor 𝑓𝑞 is a map of the form:

𝑓𝑞 : C𝑖1 × C𝑖2 × . . . × C𝑖ℓ → C𝑗 ,

for some 𝑖1, . . . , 𝑖ℓ , 𝑗 ∈ [𝑁], a decisional assumption over the ensemble

(C1, . . . , C𝑁 ), ( 𝑓1, . . . , 𝑓𝑄),

is typically a statement of the following form: for any security parameter 𝜆 ∈ N and for any:
– vector of “public objects" xpublic and a vector of “private objects" xprivate (where xpublic and xprivate consist

of objects sampled from certain well-defined distributions over one or more of the categories in the
aforementioned ensemble), and

– vector of “left challenge-oracle objects" y (where y consists of objects from a “left distribution" over
one or more of the categories in the aforementioned ensemble, obtained by evaluating a subset of the
functors in the aforementioned ensemble on some subset(s) of the objects in xpublic and xprivate), and

– vector of “right challenge-oracle objects" z (where z consists of objects from a “right distribution" over
one or more of the categories in the aforementioned ensemble, obtained by evaluating a potentially
different subset of the functors in the aforementioned ensemble on some subset(s) of the objects in xpublic
and xprivate),

and for any probabilistic polynomial time algorithm A, we have

| Pr[AO(xprivate , · ) (xpublic, y) = 1] − Pr[AO(xprivate , · ) (xpublic, z) = 1] |< negl(𝜆),

where O(xprivate, ·) (informally) represents a “global" oracle that allows the adversary to see certain “allowed"
evaluations of a subset of the functors in the aforementioned ensemble on some subset(s) of the objects in
xprivate and any other objects of the adversary’s choice.

• Computational Assumption with Oracle(s): Given a collection of categories (C1, . . . , C𝑁 ) and a collection
of functors of the form ( 𝑓1, . . . , 𝑓𝑄), where each functor 𝑓𝑞 is a map of the form:

𝑓𝑞 : C𝑖1 × C𝑖2 × . . . × C𝑖ℓ → C𝑗 ,

for some 𝑖1, . . . , 𝑖ℓ , 𝑗 ∈ [𝑁], a decisional assumption over the ensemble

(C1, . . . , C𝑁 ), ( 𝑓1, . . . , 𝑓𝑄),

is typically a statement of the following form: for any security parameter 𝜆 ∈ N and for any:
– vector of “public objects" xpublic and a vector of “private objects" xprivate (where xpublic and xprivate consist

of objects sampled from certain well-defined distributions over one or more of the categories in the
aforementioned ensemble), and
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– vector of “target objects" y (where y consists of objects from a “target distribution" over one or more of
the categories in the aforementioned ensemble, obtained by evaluating a subset of the functors in the
aforementioned ensemble on some subset(s) of the objects in xpublic and xprivate), and

and for any probabilistic polynomial time algorithm A, we have

Pr[AO(xprivate , · ) (xpublic) = y] < negl(𝜆),

where O(xprivate, ·) again (informally) represents a “global" oracle that allows the adversary to see certain
“allowed" evaluations of a subset of the functors in the aforementioned ensemble on some subset(s) of the
objects in xprivate and any other objects of the adversary’s choice.

To summarize, the computational category-theoretic model of a cryptographic primitive consists of a collection
of categories, a collection functors acting as (structure-preserving) maps between these categories, and one or
more assumptions modeled as hardness properties endowed on the functors, typically described using either an
“indistinguishability" experiment or as an “unpredictability" experiment against probabilistically polynomial-time
adversaries. Our definitions and abstractions are designed to be generic enough to model essentially any well-known
cryptographic primitive/protocol.

In addition to (two-party)NIKE, we exemplify the generality and usefulness of our framework by showing how to
model two more well-studied cryptographic primitives, namely identity-based encryption (IBE) [67, 18] and digital
signatures [64, 59]. We think these examples offer good evidence that our models are generic enough to model
pretty much any cryptosystem. In an ideal world, we could formally prove that our definitions and abstractions could
be used to model any cryptosystem, but, as we have mentioned before, this would require a rigorous definition of a
cryptosystem. It will be similarly difficult to argue that any definition of a cryptosystem is a correct one (because
it encompasses all uses of cryptography in practice), so we do not attempt this and hope that our examples are
convincing.

4.3 MORE EXAMPLES OF MODELING CRYPTOGRAPHIC PRIMITIVES
In this subsection, we present some more examples of cryptographic primitives that can be modeled using our

computational category-theoretic framework.

4.3.1 IDENTITY-BASED ENCRYPTION (IBE)
In this subsection, we show how to model identity-based encryption (IBE) [67, 18] in our computational

category-theoretic framework. For readers not familiar with IBE, we first recall its formal definition.

Definition 6. (Identity-Based Encryption (IBE)). An IBE scheme over an identity space ID and message space
M is a tuple of PPT algorithms (Setup,Ext,Enc,Dec) defined as follows:

• Setup(1𝜆): Given the security parameter 𝜆, outputs the public parameter pp and the master secret-key msk.

• Ext (pp,msk, id): Given the public parameter pp, the master-secret-key msk and an identity id ∈ ID, outputs
a secret-key skid.

• Enc (pp, id ∈ ID,m): Given the public parameter pp, an identity id ∈ ID and a message m ∈ M, outputs
a ciphertext ct.

• Dec (skid, ct): Given a secret key skid and a ciphertext ct, outputs a decrypted message m′.

The following correctness and security properties must be satisfied:
• Correctness: If (pp,msk) ← Setup

(
1𝜆

)
, then for all id ∈ ID and all m ∈ M, it holds with over-

whelming probability over the randomness of Ext and Enc that if skid ← Ext (pp,msk, id) and ct ←
Enc (pp, id ∈ ID,m), then we have:

Dec (skid, ct) = m.

• Anonymous-IND-CPA Security: For 𝑏 ∈ {0, 1}, define the experiment Exptano-cpa
𝑏

between a challenger and
an adversary A as in Figure 2. An IBE scheme (Setup,Ext,Enc,Dec) is said to be anonymous-IND-CPA-
secure if for all PPT adversariesA, the views of the adversary in Exptano-cpa

0 and Exptano-cpa
1 are computationally

indistinguishable.
We now show how to model anonymous-IND-CPA-secure IBE in our computational category-theoretic framework.
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Experiment Exptano-cpa
𝑏

:
1. The challenger samples (pp,msk) ← Setup(1𝜆) and provides pp to A.
2. The adversary A adaptively issues key-generation queries. For each query identity id, the challenger responds with

skid ← Ext (msk, id) .

3. The adversary A outputs identity-message pairs
(
id∗0,m

∗
0

)
and

(
id∗1,m

∗
1

)
, such that id∗

𝑏∗ ≠ id for each identity id
queried previously and each 𝑏∗ ∈ {0, 1}. The challenger responds to the adversary A with the ciphertext

ct← Enc
(
pp, id∗

𝑏
,m∗

𝑏

)
.

4. The adversaryA continues to adaptively issue key-generation queries, subject to the aforementioned restrictions. The
challenger responds as above.

Figure 2: Experiment for the Anonymous CPA security of IBE

Categories/Sets. As in the modeling of two-party NIKE, our computational category-theoretic modeling of IBE
uses a collection of sets/categories. More concretely, let 𝑃𝑃, 𝑀𝑆𝐾 , 𝑅Setup, 𝐼𝐷, 𝑆𝐾 , 𝑅Ext, 𝑀 , 𝐶𝑇 , and 𝑅Enc denote
sets/categories, where:

• We let 𝑃𝑃 and 𝑀𝑆𝐾 denote the set of public parameters and master private keys, respectively. We let 𝑅Setup
denote the set of possible random coins used by the setup algorithm to output some public parameter and
some master secret key.

• We let 𝐼𝐷 denote the space of all identities and 𝑆𝐾 denote the space of all possible secret keys corresponding
to identities in 𝐼𝐷. We also let 𝑅Ext denote the set of possible random coins used by the extraction algorithm
to generate the master secret key corresponding to some identity id ∈ 𝐼𝐷.

• Finally, we let 𝑀 and 𝐶𝑇 denote the set of possible messages and ciphertexts, respectively. We also let
𝑅Enc denote the set of possible random coins used by the encryption algorithm to generate a ciphertext
corresponding to some message in 𝑀 and some identity in 𝐼𝐷.

Functors. Our category-theoretic representation for IBE additionally consists of functors. As in our modeling of
NIKE, these functors are used to represent “maps" between the sets/categories described above. Concretely, we
consider the following functors:

• Setup : 1𝜆 × 𝑅Setup → 𝑃𝑃 × 𝑀𝑆𝐾 (𝜆 being a security parameter).

• Ext : 𝑃𝑃 × 𝑀𝑆𝐾 × 𝐼𝐷 × 𝑅Ext → 𝑆𝐾 .

• Enc : 𝑃𝑃 × 𝐼𝐷 × 𝑀 × 𝑅Enc → 𝐶𝑇 .

• Dec : 𝑆𝐾 × 𝐶𝑇 → 𝑀 .

Correctness. In order to model the correctness requirement for IBE, we need to impose the following correctness
requirement on these functors: for any 𝑟Setup ∈ 𝑅Setup, any id ∈ 𝐼𝐷, any 𝑟Ext ∈ 𝑅Ext, any m ∈ 𝑀 and any 𝑟Enc ∈ 𝑅Enc,
letting

(pp,msk) = Setup(1𝜆, 𝑟Setup), skid = Ext(pp,msk, id, 𝑟Ext), ct = Enc(pp, id,m, 𝑟Enc),

where pp ∈ 𝑃𝑃, msk ∈ 𝑀𝑆𝐾 , skid ∈ 𝑆𝐾 , and ct ∈ 𝐶𝑇 , we have

Dec(skid, ct) = m.

Observe that this correctness requirement naturally yields the following diagram. Note that the multiple arrows from
𝑆𝐾𝐼𝐷 represent the possibility of decryption with each of the keys. We use the “+” symbol in the diagram to indicate
that the decryption functor takes as input a tuple consisting of a secret key and a ciphertext, and outputs a message.
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1𝜆 × 𝑅 𝑃𝑃 𝐶𝑇

𝑆𝐾𝐼𝐷 + 𝑀

Setup Enc(·, id,m)

Ext(·,msk, id)

Dec(·, ·)

Modeling Security Requirements. We now model the anonymous-IND-CPA security requirement of IBE using
the following decisional assumption with oracles:

For any security parameter 𝜆 ∈ N, any 𝑟Setup ← 𝑅Setup, any id0, id1 ∈ 𝐼𝐷, any m0,m1 ∈ 𝑀 , and uniformly sampled
𝑟Enc,0, 𝑟Enc,1 ← 𝑅Enc, letting

(pp,msk) = Setup(1𝜆, 𝑟Setup),

and for any probabilistic polynomial time algorithm A, letting

𝜖𝑏 = Pr[AOExt (msk, · ) (pp,Enc(pp, id𝑏,m𝑏, 𝑟Enc,𝑏)) = 1],

for 𝑏 ∈ {0, 1}, the following holds:
| 𝜖0 − 𝜖1 |< negl(𝜆),

subject to the restriction that for any identity id such that the adversary A makes an oracle query of the form
OExt (msk, id), we have id ≠ id∗0 and id ≠ id∗1.

Remark 5. Note that this is an example of a decisional assumption with oracles that we model using our category-
theoretic framework. In particular, one can view this assumption as a special instance of the generic description
regarding how to model any decisional assumption with oracles that we presented earlier.

Remark 6. In the aforementioned security definition, we assumed that there exist algorithms that can efficiently
sample from the uniform distribution over the sets 𝑅Setup, 𝑅Ext (inside the oracle OExt) and 𝑅Enc. While this is true
for many IBE schemes in practice, it need not be true for any IBE scheme and this assumption was made purely for
simplicity of exposition. We can equivalently present a more rigorously formal security definition for IBE in the
computational category-theoretic setting where these distributions could be non-uniform.

4.3.2 DIGITAL SIGNATURES
In this subsection, we show how to model digital signatures [64, 59] in our computational category-theoretic

framework. We first recall the formal definition for digital signatures.

Definition 7. (Digital Signatures). A digital signature scheme over a message spaceM is a tuple of PPT algorithms
(Setup,Sign,Ver) defined as follows:

• Setup(1𝜆): Given the security parameter 𝜆, outputs the (secret) signing key sk and the (public) verification
key vk.

• Sign (sk,m): Given the signing key sk and a message m ∈ M, outputs a signature 𝜎.

• Ver (vk,m, 𝜎): Given the verification key vk, a message m ∈ M, and a signature 𝜎, output either 1 (indicating
successful verification) or 0 (indicating failed verification).

The following correctness and security properties must be satisfied:
• Correctness: If (sk, vk) ← Setup

(
1𝜆

)
, then for all m ∈ M, it holds with overwhelming probability that:

Ver (vk,m,Sign(sk,m)) = 1.
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Experiment Expteu-cma:
1. The challenger samples (sk, vk) ← Setup(1𝜆) and provides vk to A.
2. The adversary A adaptively issues signing queries. For each query message m, the challenger responds with

𝜎 ← Sign (sk,m) .

3. Eventually, the adversaryA outputs a message-signature pair (m∗, SIG∗) such that no signing query was issued byA
on m previously.

We say that A wins if Ver(vk,m∗, SIG∗) = 1.

Figure 3: Existential Unforgeability against Chosen-Message Attacks

• Existential Unforgeability against Chosen-Message Attacks: Define the experiment Expteu-cma
𝑏 between a

challenger and an adversaryA as in Figure 3. A signature scheme (Setup,Sign,Ver) is said to be existentially
unforgeable against chosen-message attacks if for all PPT adversaries A, the probability that A wins in the
experiment Expteu-cma is negligible.

We now show how to model any digital signature scheme that is existentially unforgeable against chosen-message
attacks in our computational category-theoretic framework.

Categories/Sets. As in the modeling of two-party NIKE and IBE, our computational category-theoretic modeling
of digital signatures uses a collection of sets/categories. More concretely, let 𝑆𝐾 , 𝑉𝐾 , 𝑅Setup, 𝑀 , Σ and 𝑅Sign denote
sets/categories, where:

• We let 𝑆𝐾 and 𝑉𝐾 denote the set of signing keys and verification keys, respectively. We let 𝑅Setup denote the
set of possible random coins used by the setup algorithm to output a signing and verification key pair.

• We let 𝑀 and Σ denote the space of all messages and signatures, respectively. We also let 𝑅Sign denote the set
of possible random coins used by the signing algorithm to generate a signature in Σ corresponding to some
message in 𝑀 .

Functors. We consider the following functors:
• Setup : 1𝜆 × 𝑅Setup → 𝑆𝐾 ×𝑉𝐾 (𝜆 being a security parameter).

• Sign : 𝑆𝐾 × 𝑀 × 𝑅Sign → Σ.

• Dec : 𝑉𝐾 × 𝑀 × Σ→ {0, 1}.

Correctness. We model the correctness requirement for digital signatures as follows: for any 𝑟Setup ∈ 𝑅Setup, any
m ∈ 𝑀 , and any 𝑟Sign ∈ 𝑅Sign, letting

(sk, vk) = Setup(1𝜆, 𝑟Setup),

where sk ∈ 𝑆𝐾 , and vk ∈ 𝑉𝐾 , we have

Ver(vk,m,Sign(sk,m, 𝑟Setup)) = 1.

Observe that this correctness requirement naturally yields the following diagram.

1𝜆 × 𝑅 𝑆𝐾 Σ

{0, 1}

Setup Sign(·, 𝑚)

Ver(vk, 𝑚, ·)
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Modeling Security Requirements. We now model the notion of existential unforgeability against chosen-message
attacks using the following computational assumption with oracles:

For any security parameter 𝜆 ∈ N, and any 𝑟Setup ← 𝑅Setup, letting

(pk, vk) = Setup(1𝜆, 𝑟Setup),

and for any probabilistic polynomial time algorithm A, letting

𝜖𝑏 = Pr[AExt(msk, ·,𝑟Ext ) (pp,Enc(pp, id𝑏,m𝑏, 𝑟Enc,𝑏)) = 1],

for 𝑏 ∈ {0, 1}, the following holds:

Pr[AOSign (sk, · ) (vk) = (m∗, SIG∗) ∧ Ver(vk,m∗, SIG∗) = 1] < negl(𝜆),

subject to the restriction that for any message m such that the adversary A makes an oracle query of the form
OSign (sk,m), we have m ≠ m∗.

Remark 7. Note that this is an example of a computational assumption with oracles that we model using our
category-theoretic framework. In particular, one can view this assumption as a special instance of the generic
description regarding how to model any computational assumption with oracles that we presented earlier.

Remark 8. In the aforementioned security definition, we again assumed that there exist algorithms that can
efficiently sample from the uniform distribution over the sets 𝑅Setup and 𝑅Sign (inside the oracle OSign). Once again,
this assumption was made purely for simplicity of exposition; we can equivalently present a more rigorously formal
security definition for digital signatures in the computational category-theoretic setting where these distributions
could be non-uniform.

4.4 SUMMARY AND DISCUSSIONS
The aforementioned discussions on IBE and digital signatures serve to exemplify our two-step approach for

modeling cryptographic primitives (this was described earlier but we re-iterate it for ease of understanding):
(1) modeling the correctness requirement of the cryptographic primitive as a diagram composed of category-theoretic
entities (primarily categories and functors) with certain commutative properties, and (2) modeling the security
requirement(s) of the primitive by endowing the relevant functors with appropriate hardness properties. In general,
the computational category-theoretic model of a cryptographic primitive will consist of a collection of categories, a
collection functors acting as maps between these categories, and one or more cryptographic assumptions modeled as
hardness properties endowed on the functors, typically described using either an “indistinguishability" experiment
or as an “unpredictability" experiment against probabilistically polynomial-time adversaries.

We note here that our approach for modeling of cryptographic primitives and cryptographic assumptions is
rather generic. For example, our notion of a decisional/computational category-theoretic security assumption allows
proving very generic statements of the form: it is hard for a probabilistic polynomial-time adversary to distinguish
between collections of objects that were sampled from two different distributions over a collection of categories,
or it is hard for a probabilistic polynomial-time adversary to predict the output of a certain sequence of functor
computations over objects sampled from a certain distributions over a collection of categories. It is possible that one
could use our framework to model cryptographic primitives/protocols that are not particularly useful for real-world
applications.

However, we do not view this generality of our framework as a drawback; we intentionally opt for a general
framework that allows us to encompass as many cryptographic primitives as possible. It also turns out that this
general approach provides very meaningful insights into the mathematical structure that might be inherent to a
cryptographic primitive in general (as opposed to concrete instantiations of this primitive from concrete hardness
assumptions). This is beneficial in terms of inferring/arguing lower bounds on the “amount of structure" necessary
to realize certain primitives. In the next section, we present a more in-depth analysis of this observation in the
context of two-party NIKE.

5 REDUCTIONS AND MATHEMATICAL STRUCTURE
In this section, we use a computational category-theoretic approach to show that certain types of complexity-

theoretic reductions (namely, Levin reductions) imply mathematical structure.9 More concretely, we show that

9We focus exclusively on Levin reductions in this section; extending these arguments to Turing reductions or other, more general, types of
reduction is interesting future work. We formally define our exact notion of reduction later in this section.
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the existence of a language (or a set of language instances) with a randomized self-reduction implies a one-way
monoid. We then leverage this result to show that a similar mathematical structure is implied by certain families
of collision-resistant hash functions. In particular, we show that any (sufficiently compressing) function with
collision resistance that is (Levin) reducible from one-wayness also implies a one-way monoid. This latter result has
interesting implications on the efficiency of provably secure constructions of CRHFs.

5.1 MODELING LANGUAGES AS CATEGORIES
We start by defining a category-theoretic style of representation around NP languages and associated problems.

In particular, we model an NP language using what we call a bipartite category (i.e., the category can be split into
two sets such that all arrows go between the two sets–the natural analogy is a bipartite graph) with two subcategories
which we will call 𝑋 and 𝑊 . 𝑋 will contain objects that we refer to as “language instances” and 𝑊 will contain
objects that we refer to as “witnesses.” For any 𝑥 ∈ 𝑋 and 𝑤 ∈ 𝑊 , we will have an arrow from 𝑥 → 𝑤 and 𝑤 → 𝑥 if
and only if 𝑤 is a witness for a particular language instance 𝑥. We call the arrows from 𝑋 to𝑊 “solving arrows”
and the arrows from𝑊 to 𝑋 “verifying arrows.” We formalize this category-theoretic notion with the following
definition:

Definition 8 (Language Category). Let 𝐶 be a bipartite category with two subcategories 𝑋 and𝑊 , and let 𝐿 be a
language. We say that 𝐶 is a language category if there are no arrows between elements of 𝑋 , no elements between
elements of𝑊 , and a pair of arrows going back and forth between two elements 𝑥 ∈ 𝑋 and 𝑤 ∈ 𝑊 if and only if 𝑤
represents a valid witness for the language instance represented by 𝑥.

We note that, as a reader may suspect, to our knowledge this is an entirely new definition and reflects the use of
the category rather than any particular underlying structure.

Remark 9. Note that if it is possible to efficiently tell whether or not a verifying arrow exists from some 𝑤 ∈ 𝑊 to
an 𝑥 ∈ 𝑋 , then we recover the class NP with this description. We will focus almost entirely on languages in NP in
this section, so we assume that such arrows can be efficiently determined unless we explicitly state otherwise.

5.2 CATEGORY-THEORETIC MODELING OF REDUCTIONS
We model (Levin) reductions as functors between language categories (plus some extra supplemental information).

As a warm-up, we will begin by discussing single-instance reductions. We eventually move to reductions between
sets of language instances (families of problems), and finally randomized reductions.

Single Instance Reductions. Informally speaking, a reduction between two language instances allows generating a
witness for the first language instance given a witness for the second language instance. More precisely, a reduction
between a language instance 𝑥1 and a language instance 𝑥2 is an efficiently computable mapping from the set of
witnesses of 𝑥2 to the set of witnesses of 𝑥1. Note that this mapping does not need to be one-to-one. However, the
reduction should allow us to convert any possible witness for 𝑥2 into a witness for 𝑥1.

From a category theory perspective, suppose we have two set elements 𝑥1 and 𝑥2 ∈ 𝑋 that represent language
instances, with arrows to and from all of the set elements representing their witnesses 𝑤 ∈ 𝑊 . Let C1 denote the
category containing the element 𝑥1, the witness set𝑊 , and the appropriate arrows, and C2 be the same for 𝑥2. We
model a reduction as an efficiently computable functor 𝑔 from C2 to C1. Note that since the functor 𝑔 preserves
structure, it maps arrows (corresponding to witness/language instance pairs) in C2 to arrows in C1. Since we only
have one language instance in each category (𝑥1 ∈ C1 and 𝑥2 ∈ C2), the functor 𝑔 must map witnesses in C2 to valid
witnesses in C1, meaning that if we can find a witness for 𝑥2, then the functor 𝑔 can be used to find one for C1.

Reductions Between Families of Problems. Single language instance reductions unfortunately are not very useful
or interesting. They are really more of an equivalence relation between problems than what a complexity theorist or
certainly a cryptographer would consider to be a reduction. However, maps between two sets of language instances
(or families of problems, if we use the language of cryptography) are critical for cryptography and complexity
theory. It turns out that we can think of these reductions between set/families as collections of reductions between
individual problems and continue to view reductions as (structure-preserving) functors–we just need to keep track
of the “source" instance in the reduction. However, this necessitates the use of another functor for the “forward”
direction of the reduction that composes “naturally” with the functor 𝑔.

Once again, consider two language categories C1 = {𝑋1,𝑊1} and C2 = {𝑋2,𝑊2}. Note that our “forward”
direction functor 𝑓 should not be able to efficiently map the entire category C1 → C2, as this would enable mapping
solutions in the “forward” direction. So we restrict 𝑓 to be a functor between the (sub)categories 𝑋1 and 𝑋2. In the
“reverse" mapping, 𝑔 still maps from C2 to C1, which induces a (sub)functor 𝑔̃ from 𝑋2 to 𝑋1.
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Figure 4: A Computational Category-Theoretic View of a Single Instance Reduction

When |𝑋1 | = |𝑋2 | and the reduction is one-to-one (i.e. the reduction maps every instance 𝑥1 ∈ 𝑋1 to a unique
𝑥2 ∈ 𝑋2), then we can model the reduction using a set of two efficiently computable functors 𝑓 : 𝑋1 → 𝑋2 and
𝑔 : C2 → C1 (and the corresponding (sub)functor 𝑔̃ : 𝑋2 → 𝑋1), with the property that

𝑓 ◦ 𝑔̃ (𝑥 ∈ 𝑋) = 𝑥.

In category-theoretic terms, this implies the existence of an adjunction between the categories C1 and C2 defined by
the functor 𝑓 and the (sub)functor 𝑔̃.

Informally, an adjunction is a pair of functors mapping between two categories in opposite directions in a
“natural” way. The adjunction is defined as a triple ( 𝑓 , 𝑔̃, 𝜓). 𝑓 and 𝑔̃ are called the adjoint functors, and 𝜓 is a
function which assigns to each pair of objects 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2 a bĳection of sets

𝜓 : 𝑋1 (𝑔̃ (𝑥2) , 𝑥1) � 𝑋2 (𝑥2, 𝑓 (𝑥1))

which is natural in 𝑥1 and 𝑥2 (the arrows in the categories compose associatively with the functions). We refer
to [56] for a full definition and treatment of adjunctions and adjoint functors. We also state a rigorous definition of
an adjunction in section 3.

However, if we think back to our reduction, it is not necessarily the case that our reduction will be one-to-one. In
practice, this comes up quite frequently: we cannot usually just forget what the original instance of the problem
was in our reduction! In our functor definitions, this would correspond to a functor needing multiple outputs on a
single input, which is obviously not well-defined. So we can define a reduction to be a set of functors 𝑓 : 𝑋 → 𝑋 ′

and 𝑔 : 𝐶′ × 𝑋 → 𝐶. Note that the extra input 𝑥 ∈ 𝑋 to 𝑔 allows us to “remember” which problem instance we
originally started with, and then make sure we get back to the original problem instance.

Unfortunately, this means that we cannot model a reduction exactly as an adjunction. However, the intuition
certainly applies, and it is probably possible to define a more complicated form of adjunction that could handle this
case. We leave this as future work for more experienced category theorists.

Randomized Reductions Between Families of Problems. We now focus on randomized reductions between
families of problems. Note that our previous reduction definitions have been entirely deterministic: any language
instance 𝑥 ∈ 𝑋1 always maps to the same language instance 𝑥′ ∈ 𝑋2. This may not be a reasonable restriction in
practice; in particular, it does not allow us to model typical reductions in complexity theory and cryptography. In
order to additionally model the randomness in each reduction, we add an additional “randomness" category to our
model. Each object in the “randomness” category induces a different (deterministic) reduction between the two
families of problems. We formalize this notion in the following definition.

Definition 9 (Category-Theoretic Randomized Reduction). Let C1 := {𝑋1,𝑊1} and C2 := {𝑋2,𝑊2} be language
categories as defined in Definition 8. Let 𝑅 be a category representing randomness. We define a category-theoretic
randomized reduction as a pair of efficiently computable functors:

𝑓 : 𝑋1 × 𝑅 → 𝑋2, 𝑔 : C2 × 𝑅 × 𝑋1 → C1.

Informally speaking, for a given randomness object 𝑟 ∈ 𝑅, the functor 𝑓 (·, 𝑟) is a deterministic mapping between
problem instances of the form

𝑓 (·, 𝑟) : 𝑋 → 𝑋 ′.
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The functor 𝑔 allows us to map witnesses in𝑊2 back to witnesses in𝑊1 in a structure-preserving way so that any
valid witnesses generated in𝑊2 will map back to valid witnesses in𝑊1 of our original language instances. Note that
we use the same category 𝑅 in both the forward and reverse directions. This is because computing the “reverse”
direction of a reduction might require some of the randomness used in the “forward” direction, so we need to give 𝑔
access to all of the randomness used by 𝑓 . Of course, 𝑔 could use some additional randomness objects that are not
required by 𝑓 ; for simplicity, we assume that 𝑓 ignores these randomness objects (for some reductions, 𝑅 may also
be split into subcategories)).

5.3 CATEGORY-THEORETIC MODELING OF RANDOMIZED SELF REDUCTIONS
We now use the aforementioned category-theoretic modeling of (Levin) reductions to show that certain

randomized self reductions have some inherent mathematical structure. We assume here that languages have
efficient algorithms for sampling a random (instance,witness) tuple. This restricts the languages to the world of
Minicrypt [47], but still gives us an interesting class of languages to study, especially since one of our primary goals
is to study reductions with cryptographic applications. On the other hand, assuming that languages have efficient
algorithms for sampling random instances but not witnesses places us in the world of Pessiland [47]. As we observe
subsequently, Pessiland does not support interesting notions of average-case hardness in any case.

From a category-theoretic point of view, we encompass this sampleability assumption by incorporating a
“sampling" functor 𝑆 : 𝑅̂ → 𝑋 ×𝑊 that takes in randomness 𝑟 ← 𝑅̃ and outputs a valid problem instance and
witness tuple (𝑥, 𝑤). It is slightly against standard category theory conventions to call 𝑆 a functor since we do
not anticipate using the structure of the randomness set 𝑅̃ in any way, but we will do so anyway because we will
compose it with proper functors. We formalize this below.

Definition 10 (Language Instance Sampling Functor). Let C := {𝑋,𝑊} be a language category, and let 𝑅̂ be a
category representing randomness. We define a language instance sampling functor as a functor

𝑆 := 𝑅̂ → 𝑋 ×𝑊

that takes as input some random coins 𝑟 and outputs an instance-witness tuple of the form (𝑥, 𝑤) so that there exist
arrows between 𝑥 and 𝑤 in the corresponding language category C.

Note that the above definition formalizes the fact that we can efficiently sample a (instance, witness) pair for a
language. With this in mind, we are ready to define a randomized self-reduction.

Definition 11 (Randomized Self Reduction). A randomized self reduction is a randomized reduction as formalized
in Definition 9 where the categories C1 and C2 are identical. More concretely, let C = {𝑋,𝑊} be a language
categories as defined in Definition 8 and let 𝑅 be a category representing randomness. We define a category-theoretic
randomized self reduction as a pair of efficiently computable functors:

𝑓 : 𝑋 × 𝑅 → 𝑋, 𝑔 : C × 𝑅 × 𝑋 → C.

with the additional requirement that, for every 𝑥 ∈ 𝑋 , sampling 𝑟 ← 𝑅 and computing 𝑓 (𝑥, 𝑟) results in a
distribution statistically close to the output distribution of 𝑆.

This is very similar to definition 9 except for the fact that we map from 𝐶 to itself (and, by corollary, 𝑋 to itself)
and have an additional requirement on the output distribution of 𝑓 .

Let’s now examine the structure of randomized self-reductions more closely. 𝑅 defines two functors that are
automorphisms (in different directions): one, from 𝑋 → 𝑋 in the forward direction, and one, from C ← C, in the
opposite direction. Each “reduction” can be defined by some 𝑟 ∈ 𝑅. We explained before that these functors 𝑓 and 𝑔
defined something similar to an adjunction earlier. Here, we have the special case that they map to and from the
same category.

From Randomized Self Reduction to One-Way Monoid Action. We now use our category-theoretic modeling
to show that any randomized self reduction that fits our model implies a one-way monoid action. We begin by
describing the monoid in this implication.

Let 𝑅 be a category representing randomness as in Definition 11 with compact representation. We define
the randomness concatenation monoid 𝑀𝑅 to be the monoid such that elements of 𝑀𝑅 are concatenations of
string-representations of objects in 𝑅, and the monoid operation is concatenation. 𝑀𝑅 also has a special element
𝑒𝑀 = 𝜀, which is an empty string and represents the identity element with respect to string concatenation. We
note here that string concatenation (more precisely, concatenation of elements of any finite set) is known to be a
monoid [56].
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The Monoid Action. Consider a randomized self-reduction parameterized by a tuple of functors ( 𝑓 , 𝑔) as in
Definition 11 on a language category 𝐶 := {𝑋,𝑊} with randomness space 𝑅. We define the action★ : 𝑀𝑅 × 𝑋 → 𝑋

in the following way:
★(𝑒𝑀 = 𝜀, 𝑥) := 𝑥,

★(𝑚𝑅 = (𝑟ℓ ∥ . . . ∥𝑟1), 𝑥 ∈ 𝑋) := 𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑟1) 𝑟2) . . . 𝑟ℓ)︸                               ︷︷                               ︸
ℓ−times

.

Note that 𝑚𝑅 represents the randomness used in many different reductions concatenated together. The operation
★ decomposes the randomness from all of the reductions into randomness for many single reductions, and then
applies them in sequence to a problem instance. So ★ essentially just computes one or more of the “forward”
directions of the reduction.

Lemma 1. (𝑀𝑅, 𝑋,★) is a monoid action.

Proof. As already mentioned, 𝑀𝑅 is a monoid by the fact that string concatenation (more precisely, concatenation
of elements of any finite set) is known to be a monoid [56]. Also, the action satisfies identity by definition. Finally,
it is immediate to see that for any 𝑚1, 𝑚2 ∈ 𝑀𝑅 and any 𝑥 ∈ 𝑋 ,

𝑚2 ★ (𝑚1 ★ 𝑥) = (𝑚2∥𝑚1) ★ 𝑥.

To see this, choose positive integers ℓ and ℓ′, and let 𝑚1 = 𝑎ℓ ∥ . . . ∥𝑎1 and 𝑚2 = 𝑏ℓ′ ∥ . . . ∥𝑏1 for all 𝑎𝑖 , 𝑏𝑖 ∈ 𝑅. Note
that both of these operations equate to

𝑔 (. . . 𝑔 (𝑔 (. . . 𝑔 (𝑥, 𝑎1) , . . . 𝑎ℓ) , 𝑏1) . . . 𝑏ℓ′ )

□

Distributional One-Way Monoid Action. We now show that (𝑀𝑅, 𝑋,★) is what we call a distributional one-way
monoid action.

Definition 12 (Distributional One-Way Monoid Action). A monoid action (𝑀, 𝑋,★) such that the set 𝑋 supports
efficient representation, and such that the “action operation"★ is efficiently computable is said to satisfy distributional
one-wayness with respect to some efficiently sampleable distribution D𝑀 over 𝑀 with respect to some security
parameter 𝜆 if for any 𝑔 ← D𝑀 , any 𝑥 ∈ 𝑋 and any probabilistic polynomial-time adversary A, we have

Pr[A(𝑥, 𝑔 ★ 𝑥) = 𝑔′ such that 𝑔′ ★ 𝑥 = 𝑔 ★ 𝑥.] < negl(𝜆).

Lemma 2. Consider a randomized self-reduction parameterized by a tuple of functors ( 𝑓 , 𝑔) as in Definition 11 on
a language category 𝐶 := {𝑋,𝑊} with randomness space 𝑅. Let (𝑀𝑅, 𝑋,★) be the monoid action as described
above. Also, assume that there exists another sampling functor 𝑆 : 𝑅̂ → 𝑋 ×𝑊 that takes in randomness 𝑟 ← 𝑅̂

and outputs a random valid problem instance and witness tuple (𝑥, 𝑤). Then the monoid action (𝑀𝑅, 𝑋,★) satisfies
distributional one-wayness as per Definition 12.

Proof. Suppose that the monoid action (𝑀𝑅, 𝑋,★) does not satisfy distributional one-wayness as per Definition 12.
In other words, suppose there exists an adversary A that breaks the distributional one-wayness of (𝑀𝑅, 𝑋,★). We
present a reduction that uses this adversary to construct an algorithm that, given a problem instance 𝑥 ∈ 𝑋 , outputs a
valid witness 𝑤 for 𝑥 with non-negligible probability. This reduction is sufficient to prove Lemma 2.

The reduction is relatively straightforward. Given a problem instance 𝑥 ∈ 𝑋 , we sample an instance of randomness
𝑟 ∈ 𝑅̂ and compute 𝑆 (𝑟) = (𝑥′, 𝑤′). We then give the adversary A the tuple of set elements (𝑥, 𝑥′) as the challenge
in the distributional one-wayness experiment as described in Definition 12. By assumption, the adversary A breaks
the distributional one-wayness of (𝑀𝑅, 𝑋,★) and hence, with non-negligible probability, outputs a monoid element
𝑚𝑅 ∈ 𝑀𝑅 such that 𝑚𝑅 ★ 𝑥 = 𝑥

′.
We now proceed as follows. We first compute a decomposition of this monoid element 𝑚𝑅 into elements of 𝑅.

Then, given an equality 𝑚𝑅 = 𝑟ℓ ∥𝑟ℓ−1∥ . . . ∥𝑟2∥𝑟1, we first re-trace the “forward" sequence

𝑓 (. . . 𝑓 ( 𝑓 (𝑥, 𝑟1) , 𝑟2) . . . , 𝑟ℓ)

making sure to note down the corresponding problem instance 𝑥′
𝑖
∈ 𝑋 at every step. This just ensures we have all

of the necessary information to compute the reduction in the “reverse” direction (we discussed this earlier in our
definition of a randomized self-reduction).

Given this, we can then trace the “backward" sequence to compute the tuple

(𝑥, 𝑤) = 𝑔
(
. . . 𝑔

(
𝑔
(
{𝑥′, 𝑤′} , 𝑟ℓ , 𝑥′ℓ

)
, 𝑟ℓ−1, 𝑥

′
ℓ−1

)
. . . 𝑟1, 𝑥

′
1
)

which, by the correctness of 𝑔, gives us a valid witness 𝑤 for 𝑥. This completes the proof of Lemma 2. □
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Interestingly, this reduction works at the “natural transformation” layer of the protocol. Rather than show that
particular language instances are structured, or even reductions between language instances are structured, we show
that reductions between reductions between language instances are structured. To our knowledge, this style of
argument is original, and we think it merits further study and application.

Finally, putting everything together allows us to state the following theorem:

Theorem 1. Any randomized self-reduction implies the existence of a one-way monoid action.

In summary, we have the following (informal) observation: there is some mathematical structure inherent to a
randomized self-reduction.

5.4 DISCUSSION
In this section, we provide some more informal observations about the structure of average-case reductions. We

think that formalizing these concepts would be excellent future work.

On the Structure of the Randomness. One interesting thing to note is the effect of the choice of the category 𝑅
on the problem. We can apply reductions in sequence, so we can reach any 𝑚𝑅 ∈ 𝑀𝑅 that is spanned by the elements
of 𝑅, which we can view as a generating set. There are some interesting issues around leftover hashing here and
geenrating sets over monoids that might lead to further insight into the problem, but this gets into topics that are far
beyond the scope of this work. Let’s illustrate what can be impacted by the structure of 𝑅 with a couple of examples.

On one hand, suppose that 𝑅 contains only values that map to a single element. In other words, 𝑅 contains
𝑟1, . . . , 𝑟𝑛 such that 𝑟𝑖 maps all 𝑥 ∈ 𝑋 to some 𝑥𝑖 . So each 𝑟𝑖 can be viewed as inducing a map with many source
nodes and only one sink node. This is even a “perfect” randomized self reduction, since, over the choice of
randomness, reducing to each language instance is equally likely. However, a language with such a randomized
self-reduction is not very useful for cryptographic applications

Now, given 𝑟𝑖 and 𝑥𝑖 , if we can find a witness 𝑤𝑖 for 𝑥𝑖 , then we can use 𝑟𝑖 to find witnesses for all of the language
instances in 𝑋 since we can apply the reverse direction of the reduction back to whatever instance we want! In other
words, if we can find a witness for a single random instance, then we can immediately use that witness to generate
witnesses for all of the other problems in 𝑋 . This means that 𝑋 isn’t a very desirable set of language instances (or
problems), and would be really problematic for cryptography (unless, of course, the reader works for a governmental
agency–there are always matters of perspective). The mathematical structure for 𝑅 here is also interesting: 𝑅 is a
monoid, but for every 𝑟1, 𝑟2 ∈ 𝑅, we have 𝑟1 ⊕ 𝑟2 = 𝑟1.

On the other hand, suppose that 𝑅 contains 𝑟 elements 𝑟1, . . . , 𝑟𝑛 such that each 𝑟𝑖 maps each problem instance
𝑥𝑖 to completely different problem instances in 𝑋 . This gives us much better properties–if we find or generate a
witness for one arbitrary instance in 𝑋 , we are unlikely to be able to use the solution to find witnesses for other
instances in 𝑋 immediately, outside of the one instance we used to generate the randomized self-reduction. So this is
much more useful type of reduction from a cryptographic perspective.

The structure of 𝑅 in this case is interesting as well. Since it has no obvious kernels, it should contain at least
some subgroup that has inverses (although the whole set 𝑅 does not have to be a group). This is obviously a much
nicer structure than before, and, if we require that |𝑅 | = |𝑋 |, then we effectively guarantee inverses, getting a one-way
group action.

In summary, what we have here is the following observation: the mathematical structure of a randomized
self-reduction is not too dissimilar from that of key exchange (which implies an abelian unpredictable monoid action)
although slightly weaker, but we also have the fact that, at least seemingly, the more structured the randomness set 𝑅
of the randomized self-reduction is is, the “better” the underlying problem is for things like cryptography. This is a
very informal statement, but we think a formalization of this could yield very interesting results.

What Happens In Pessiland? Our finding that any randomized self-reduction implies the existence of a one-way
monoid action is predicated on the fact that we can sample instances of hard problems in conjunction with their
corresponding witnesses. This, of course, implies the existence of one-way functions. But what if this is not the
case–what if we can only sample hard problems without solutions? In other words, what happens when we are in the
world of Pessiland [47]?

In this case, suppose we consider any reduction that shows average-case hardness. By our starting assumption,
we know that these reductions cannot be one-way: given two language instances 𝑥1 and 𝑥2, if it is possible to create
a reduction between them, then it must be possible to solve for the randomness of the reduction given 𝑥1 and 𝑥2
with non-negligible probability. Otherwise, a one-way function exists. This means that for any class of language
instances that are reducible to each other (or from a single instance), there exists an algorithm to generate a witness
for any language instance in the set given a witness to any one of the language instances.
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To summarize, it appears that Pessiland is unlikely to support randomized self-reductions that could be be useful
for cryptographic applications. These facts on Pessiland may be known or may be folklore, but we were unable
to find a reference. We leave it as an interesting open question to investigate if our category-theoretic modeling
techniques might be useful for further illuminating properties of Pessiland, about which very little is known [69].

5.5 COLLISION-RESISTANT HASH FUNCTIONS
We now show that a similar mathematical structure is implied by certain families of collision-resistant hash

functions (CRHFs). Informally, a CRHF is a function 𝑓 : 𝑋 → 𝑌 such that it is hard to find two elements 𝑥1, 𝑥2 ∈ 𝑋
such that 𝑓 (𝑥1) = 𝑓 (𝑥2). CRHFs are one of the most widely used cryptographic primitives, which makes it
interesting to study what kind of mathematical structure might be inherent to CRHFs.

Our main observation in this section is the following: we show that any (sufficiently compressing) function
family 𝐹 that has a reduction from collision resistance to one-wayness implies the existence of a one-way monoid
action. In other words, it seems unlikely that we can build provably secure CRHFs with collision resistance reducible
to one-wayness from unstructured ad-hoc assumptions, such as those used by practically efficient CRHFs (e.g.,
SHA). We note here that almost all known provably secure CRHFs rely on the same set of assumptions for collision
resistance and one-wayness. Hence, our results seemingly indicate some lower bounds on the practical efficiency of
provably secure CRHFs.

Let 𝐹 = 𝐹𝜆 be a family of functions with input space 𝑋 and output space 𝑌 (𝜆 being a security parameter). Let
D𝐹 and D𝑋 denote some efficiently sampleable distributions over 𝐹 and 𝑋 , respectively.

Definition 13 (One-Way Function Family). We say that 𝐹 is one-way with respect to the distributions (D𝐹 ,D𝑋) if
for any 𝑓 ← D𝐹 , any 𝑥 ← D𝑋, and for any PPT adversary A, we have

Pr[A( 𝑓 , 𝑓 (𝑥)) = 𝑥′ such that 𝑓 (𝑥) = 𝑓 (𝑥′)] < negl(𝜆).

Definition 14 (Collision Resistant Function Family). We say that 𝐹 is collision resistant with respect to the
distribution D𝐹 if for any 𝑓 ← D𝐹 , and for any PPT adversary A, we have

Pr[A( 𝑓 ) = (𝑥, 𝑥′) such that 𝑓 (𝑥) = 𝑓 (𝑥′)] < negl(𝜆).

Lemma 3. Let 𝐹 = 𝐹𝜆 be a family of functions with input space 𝑋 and output space 𝑌 such that for any 𝑓 ∈ 𝐹 and
an overwhelmingly large fraction of 𝑥 ∈ 𝑋 , 𝑓 (𝑥) has super-polynomially many preimages. Then collision resistance
of 𝐹 implies one-wayness of 𝐹. In other words, there is a reduction from the one-wayness of 𝐹 to the collision
resistance of 𝐹.

This is a folklore result for which the proof is relatively simple; so we omit it (the folklore proof assumes uniform
distributions but can be adapted in a straightforward manner to work for non-uniform distributions as well). The
basic idea is just to sample a random input value 𝑥 ∈ 𝑋 , compute 𝑦 = 𝑓 (𝑥), and then send 𝑦 as a challenge to the
one-way function adversary. If the adversary finds a solution 𝑥′ ∈ 𝑋 such that 𝑦 = 𝑓 (𝑥′), we have that 𝑥 ≠ 𝑥′ with
high probability due to the density of inputs per output, giving us a collision.

We now state our main observation.

Lemma 4. Let 𝐹 = 𝐹𝜆 be a family of functions with input space 𝑋 and output space 𝑌 such that for any 𝑓 ∈ 𝐹
and an overwhelmingly large fraction of 𝑥 ∈ 𝑋 , 𝑓 (𝑥) has super-exponentially many preimages. If there exists a
reduction from the collision resistance of 𝐹 to the one-wayness of 𝐹, then there exists a one-way monoid action.

Proof. To prove this statement, it suffices to show the existence of a randomized self-reduction. Observe
that by Lemma 3, there is a reduction from the one-wayness of 𝐹 to the collision resistance of 𝐹. Also, by
assumption, there exists a reduction from the collision resistance of 𝐹 to the one-wayness of 𝐹. By chaining these
(randomized) reductions, we get a randomized self-reduction on the one-wayness of 𝐹. At this point, we can invoke
Theorem 1 to argue the existence of a one-way monoid action.

The rigorously formal proof again uses a category-theoretic modeling of the one-wayness of 𝐹. This can
be done by defining a category C := {𝐹 × 𝑌, 𝑋} such that each object in C is of the form {( 𝑓 , 𝑦), 𝑥} such that
𝑓 (𝑥) = 𝑦 (here ( 𝑓 , 𝑦) is an instance of the problem, and the preimage 𝑥 is the witness). However the details are
relatively straightforward, and are hence avoided. □

6 FUTURE WORK
In this paper, we show that analyzing cryptography and average-case complexity through a computational

category-theoretic lens yields interesting results on the role of mathematical structure in these two fields. We briefly
mention some potential future directions below.
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New Separation Results. In our opinion, one of the most exciting facets of this new computational category-
theoretic lens is the potential for new black-box separations in cryptography based on mathematical structure. As we
explained earlier, we can model essentially all cryptosystems as category-theoretic diagrams. If the diagram of one
cryptosystem contains another cryptosystem (and the “projection” of the computational assumptions from the larger
diagram to the smaller one is appropriate), then we can obviously build the second cryptosystem from the first in a
black-box way. Can we show any more complicated reductions, or, in particular, lower bounds?

The celebrated result of Impagliazzo and Rudich [49] is the main result we can currently exploit: in our language,
it shows that we cannot generically build a “computationally hard” commutative square (key exchange) from a
single functor (one-way function). Can we use topology-style proofs to turn [49] into a stronger statement that
can be applied to many different kinds of commutative diagrams? Can we show other lower bounds on different
commutative diagrams? Taking a category-theoretic view of cryptosystems seems to offer a lot of potential for
black-box lower bounds in cryptography.

Classifying Cryptographic Primitives. In [7], the authors conjecture that public key cryptoprimitives can be
classified by mathematical structure and propose a potential hierarchy for classification. They only “measure"
mathematical structure in terms of algebraic objects such as groups and rings, so intuitively we should be able to do
better by using the arbitrary structures provided by category theory. Can we do this, and provide a more concrete
hierarchical view of Cryptomania primitives?

Average-Case Complexity. We show in this paper that mathematical structure can be helpful for understanding
what kinds of problems have average-case reductions. But this barely scratches the surface in terms of what we would
like to know about average-case complexity (which is much less than what we know about worst-case complexity).
Can we use mathematical structure to help achieve a better understanding of average-case complexity?

Key Exchange from New Concrete Assumptions. Given our exact characterization of the mathematical structure
necessary for key exchange, we hope that it becomes easier to identify new (and plausibly post-quantum secure)
concrete assumptions to build key exchange. We think looking at assumptions with very minimal structure might be
quite interesting, particularly because these kinds of assumptions are more likely to be quantum-resistant.

Proving Indistinguishability Obfuscation (iO) is “Crypto-Complete.” Many cryptographers have referred to
iO as a “crypto-complete” primitive. Can this be shown in any kind of formal way?

We expect that it would be straightforward to instantiate any kind of category-theoretic diagram using virtual
black-box (VBB) obfuscation, but this is not particularly useful since VBB is known to be uninstantiable in
general [14]. In particular, suppose that given a cryptographic diagram, we VBB-obfuscate each functor in this
diagram. This essentially is equivalent to giving an adversary oracle access to the functors and, by definition, does
not leak any information beyond what an adversary is “allowed” to learn from the diagram. Now, assuming that the
diagram correctly captures the security properties of the underlying cryptoprimitive, we achieve a secure realization
of this primitive from VBB-obfuscation. This is, of course, an informal intuition and we do not claim any formal
results related to this statement, but we expect a construction and proof in this vein to be straightforward.

In particular, a “compiler” showing how to build computational category-theoretic diagrams from iO would
seemingly be an interesting statement on the power of iO.

Improvements to Our Framework and Techniques. We emphasize that we approached the computational
category-theoretic framework described in this paper from the perspective of cryptographers. Hence, some of our
formalization may not adhere to traditional conventions in category-theory. We leave it open to improve upon our
framework and techniques using more technical formalizations from a complexity-theoretic or category-theoretic
point of view.
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