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Abstract This article develops a novel method of generating “independent” points on an ordinary elliptic curve
over a finite field of large characteristic. Such points are actively used, e.g., in the Pedersen vector commitment
scheme and its modifications. The conventional generation consists in sampling points successively via a hash
function to the elliptic curve. The new generation method equally satisfies the NUMS (Nothing Up My Sleeve)
principle, but it works faster on average. In other words, instead of finding each point separately, it is suggested
to sample several points at once with a non-small success probability. This means that in practice the new
method finishes in polynomial time, unless one is mysteriously unlucky. More precisely, some explicit formulas are
represented in the article for deriving up to four “independent” points on any curve of 𝑗-invariant 0. Such curves
are known to be very popular in elliptic curve cryptography.
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1 INTRODUCTION
A commitment scheme is a cryptographic primitive that allows one party to commit to a chosen value while

keeping it hidden to others, with the ability to reveal the committed value later. Commitment schemes are designed
so that the party cannot change the value after they have committed to it. They have important applications in a
number of cryptographic protocols including secure coin flipping and zero-knowledge proofs.

There is the classic Pedersen commitment scheme [36, Section 3]. It works in any cyclic group in which the
discrete logarithm problem (DLP) is hard. However, throughout the article we will deal only with (a large subgroup
G of) the F𝑞-points group 𝐸 (F𝑞) of an elliptic curve 𝐸 over a finite field F𝑞 . As is well known, today ordinary (i.e.,
non-supersingular) curves over fields of large characteristic 𝑝 are considered the safest. And every cryptographer
understands perfectly that the order ℓ := #G must be prime.

One can use a variant of the original Pedersen commitment (for 𝑛 = 1) to commit to multiple values
(𝑚1, · · ·, 𝑚𝑛) ∈ F𝑛

ℓ
at once (so-called vector commitment). For this purpose, we have to sample a vector of

public points (𝑃1, · · ·, 𝑃𝑛) ∈ G𝑛, along with a fixed generator 𝑃0 ∈ G. Then the commitment is just the sum
𝑚0𝑃0 +

∑𝑛
𝑖=1 𝑚𝑖𝑃𝑖 , where 𝑚0 ∈ Fℓ is an auxiliary value to ensure the security of the scheme.

Of course, we can simply commit to each 𝑚𝑖 individually, but this solution is much less efficient in terms of
memory and computing resources. Indeed, the full multi-scalar multiplication can be performed much more rapidly
than each one 𝑟𝑖𝑃0 +𝑚𝑖𝑃1 alone. Here (𝑟1, · · ·, 𝑟𝑛) ∈ F𝑛ℓ is another random vector playing the role of 𝑚0. Besides,
vector commitments provide a way to store or transmit only one element of the group G instead of a vector from
G𝑛. In real-world cryptography it happens that 𝑛 reaches huge numbers such as ≈ 230 as indicated, e.g., in [12].

The aforementioned primitive is also known as the Pedersen hash (function) F𝑛
ℓ

→ G (see, e.g., [6]). It
is provably secure, because its resistance is based on the multi-dimensional DLP. According to cryptanalysis
performed in [21, 22] the given problem does not seem to be simpler in general than the classical DLP. Another
advantage of the Pedersen hash is in its additive homomorphic property. All this positively distinguishes it from
(Merkle hash tree [35] using) faster standard hash functions such as SHA-3 (Keccak).

Certainly, the Pedersen scheme is resistant only if the points 𝑃𝑖 are “independent”, that is, nobody knows
a non-trivial linear relation between them. In other words, it is hard to find values (𝑘1, · · ·, 𝑘𝑛) ∈ F𝑛

ℓ
such that

𝑘0𝑃0 =
∑𝑛
𝑖=1 𝑘𝑖𝑃𝑖 and at least one 𝑘𝑖 ≠ 0. Therefore, every point 𝑃𝑖 must be generated in a transparent way. Be
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careful that, from the mathematical point of view, conversely, any two points depend on each other, since the group
G is prime.

Over time, a malicious user may find some relation between the points 𝑃𝑖 through a kind of brute-force attack.
We have no guarantee that this cannot happen for concrete points, even though the multi-dimensional DLP is
intractable in the general case. The fact is that for the large 𝑛 there is the huge number of linear relations. At the
same time, it is enough to find just one to break the Pedersen scheme. That is why, it is desirable for security to
periodically change the points.

The author of [19] prefers the word “basis” and he admits that “updating the basis at every round is inefficient”.
Let’s assume the opposite situation when the points 𝑃𝑖 remain the same for a long time. Even in this situation, the
task of their rapid generation is still important. First, the storage (resp., transmission) of the points requires a lot
of memory (resp., bandwidth). And second, there is ground for a potential fault attack, because it is enough for an
adversary to replace just one point.

As is known, the points 𝑃𝑖 can be obtained by means of a hash function H : {0, 1}∗ → G, for example as
𝑃𝑖 = H(seed| |𝑖) (cf. [6, Section 5.1]). This approach forces to evaluate H exactly 𝑛 times. The fastest constructed
hash functions to elliptic curves extract one radical 𝑚

√· in F𝑞 for some 𝑚 ∈ N. Their actual classification is given in
[30, Tables 1-2] (cf. [18]). And the existence of H without radicals at all is highly unlikely.

There is plenty of material devoted to extracting 𝑚
√·, starting with the seminal work of Adleman, Manders,

and Miller [1] (see [5] as well). But despite this, 𝑚
√· continues to be a much more expensive operation than the

arithmetic ones in F𝑞 , namely +, −, ∗, and even /. Indeed, the latter can be implemented in a sub-quadratic bit
time 𝑂 (log2 (𝑞)). For instance, the less performant inversion operation is discussed in the papers [8, 28]. In turn,
as far as the author knows, existing algorithms of computing 𝑚

√· need to carry out 𝑂 (𝑚 log4 (𝑞)) bit operations in
general. This estimate drops to 𝑂 (𝑚 log3 (𝑞)) for certain fields F𝑞 . At best, i.e., when 𝑚 and 𝑞 − 1 are relatively
prime, 𝑚

√
𝛼 = 𝛼𝑚

−1 mod 𝑞−1 (where 𝛼 ∈ F𝑞) is nothing but one exponentiation in F𝑞 . It obviously has a complexity
𝑂 (log3 (𝑞)) with a little constant behind 𝑂.

It is also worth noting the Kate–Zaverucha–Goldberg (KZG) commitment scheme (or just the Kate commitment)
[26] based on pairings of elliptic curves. At the moment, this scheme is recognized by the cryptographic society
as one of the best from the computational point of view. However, to deploy it a trusted setup is required. More
concretely, the scheme substantially uses the points 𝑠𝑖𝑃0 (with a secret 𝑠 ∈ F∗

ℓ
) rather than arbitrary “independent”

points. By the way, 𝑠𝑖𝑃0 can be utilized in the Pedersen scheme, but there is no necessity for that.
In comparison with the Pedersen protocol, KZG one is in fact a polynomial commitment. By definition, it

allows a prover to commit to a polynomial 𝑓 =
∑𝑛−1
𝑖=0 𝑚𝑖+1𝑥

𝑖 , with the property that the prover can later convince a
verifier of the equality 𝑓 (𝛼) = 𝛽, given 𝛼, 𝛽 ∈ Fℓ . In addition, until 𝑛 points of the form

(
𝛼, 𝑓 (𝛼)

)
are revealed,

the polynomial 𝑓 remains hidden, as should be clear.
It turns out that the Pedersen vector commitment can be supplemented to give rise to a polynomial commitment

without a trusted setup (see, e.g., [11, Section 3], [17, Section 4.5]). Incidentally, those sources are dedicated to a
protocol of so-called recursive proof composition using an amicable pair [43] of prime-order elliptic curves. More
precisely, the latter are non-pairing-friendly curves 𝑦2 = 𝑥3 +5 of 𝑗-invariant 0 under the name Pasta curves (Pallas
and Vesta) [23] (cf. [24]).

These curves (and many others [2]) are defined over highly 2-adic fields, i.e., 2𝑒 | 𝑞 − 1 for a fairly large 𝑒 ∈ N.
Such fields allow to utilize the fast Fourier transform (FFT) [17, Section 4.2] to speed up the polynomial arithmetic
in numerous modern protocols. The downside is that one cannot express

√· ∈ F𝑞 via one exponentiation in F𝑞 . We
can always resort to other square root methods such as the Tonelli–Shanks method (see, e.g., [16, Algorithm 5.14]),
but they are slower than the exponentiation operation. That is why, we should avoid square roots as far as possible.

2 UNDERLYING MATHEMATICAL PRELIMINARIES
Consider a finite field F𝑞 of characteristic 𝑝 > 3. The notion of an elliptic surface [38, Section 5], [41, Chapter

III] over F𝑞 is key for us. Without loss of generality, we can confine to a short Weierstrass form

E : 𝑦2 = 𝑥3 + 𝑎(𝑡)𝑥 + 𝑏(𝑡) ⊂ A3
(𝑥,𝑦,𝑡 )

with polynomial coefficients 𝑎(𝑡), 𝑏(𝑡) ∈ F𝑞 [𝑡]. As usual, E is interpreted as an elliptic curve over the function
field 𝐹 := F𝑞 (𝑡) in one variable. From time to time, we will equally need the field 𝐹′ := F𝑞 (𝑡) over the algebraic
closure F𝑞 .

Recall that the Mordell–Weil group of E is the abelian group E(𝐹) of all 𝐹-points on E. Due to a special
case of the Mordell–Weil theorem [38, Section 3.3], the group E(𝐹) is finitely generated. Its rank 𝑟 is called
the Mordell–Weil rank of E. As always, E(𝐹)𝑡𝑜𝑟 denotes the (finite) torsion subgroup of E(𝐹). The quotient
E(𝐹)/E(𝐹)𝑡𝑜𝑟 ≃ Z𝑟 enjoys a positive-definite quadratic form ℎ̂ under the name the canonical height or the Néron–
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Tate height [41, Section III.4]. The corresponding symmetric bilinear form ⟨·, ·⟩ and 𝑟-dimensional lattice are said
to be the height pairing and the Mordell–Weil lattice, respectively (see [38, Section 6.5]).

As is customary, we are given an ordinary elliptic F𝑞-curve 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏. Throughout the article, we
assume the coincidence of the 𝑗-invariants, i.e., 𝑗 (𝐸) = 𝑗 (E). Such a surface E is said to be isotrivial. Note that
𝑟 = 0 for trivial (constant) elliptic surfaces (s.t. 𝐸 ≃𝐹′ E), because elliptic curves are not rational. Hence, trivial
surfaces are excluded from our consideration. By definition, E is a non-trivial twist of 𝐸 . Since 𝑝 > 3, the results
of [42, Section X.5] about twisting elliptic curves are still relevant even though 𝐹 is not a perfect field.

Let’s define the polynomial

𝑐(𝑡) :=



𝑎(𝑡)𝑏(𝑡)
𝑎𝑏

if 𝑎𝑏 ≠ 0, i.e., 𝑗 (𝐸) ∉ {0, 1728},
𝑎(𝑡)
𝑎

if 𝑏 = 0, i.e., 𝑗 (𝐸) = 1728,

𝑏(𝑡)
𝑏

if 𝑎 = 0, i.e., 𝑗 (𝐸) = 0.

(1)

Let 𝑑 ∈ {2, 4, 6} be the order of the cyclic group Aut(𝐸) and 𝑠 := 𝑑
√︁
𝑐(𝑡). The curves 𝐸 , E are isomorphic

precisely over the Kummer extension 𝐹 (𝑠)/𝐹 of degree 𝑑. It is the function field of the superelliptic curve
𝐶 : 𝑠𝑑 = 𝑐(𝑡) ⊂ A2

(𝑡 ,𝑠) . The corresponding isomorphism (from the proof of [42, Proposition III.1.4.(b)]) has the
form

𝜑 : E → 𝐸 (𝑥, 𝑦) ↦→
( 𝑥
𝑧2
,
𝑦

𝑧3

)
, (2)

where

𝑧 :=

𝑎𝑠

𝑎(𝑡) =
𝑏(𝑡)
𝑏𝑠

if 𝑎𝑏 ≠ 0, i.e., 𝑗 (𝐸) ∉ {0, 1728},

𝑠 otherwise.

It is worth saying that points from E(𝐹) are nothing but F𝑞-sectionsA1
𝑡 → E of the projection 𝑝𝑟𝑡 to the variable

𝑡. Below, E𝑡 stands for its fiber over 𝑡 ∈ F𝑞 . Similarly, 𝜑𝑡 : E𝑡 → 𝐸 denotes the specialization of 𝜑. There is
only a finite number of degenerate fibers, namely those for which the discriminant Δ(E𝑡 ) = −16

(
4𝑎3 (𝑡) + 27𝑏2 (𝑡)

)
vanishes. Clearly, this happens exactly when 𝜑𝑡 is meaningless. In this situation, 𝜑𝑡 (𝑥, 𝑦) = ∞ is a convenient
notation (for any map). Finally, given 𝑡 ∈ F𝑞 , the condition E𝑡 ≃F𝑞 𝐸 occurs iff 𝜑𝑡 is defined over F𝑞 iff 𝑠 ∈ F∗𝑞 .

To continue we lack certain results about the endomorphism rings of elliptic curves, which can be found in any
classical source like [42, Sections III.9, V.3]. Since 𝐸 is an ordinary F𝑞-curve, new endomorphisms on it are not
added when extending F𝑞 . It is also readily shown by exploiting 𝜑 that the coefficients of 𝐹 (𝑠)-endomorphisms on
E in fact belong to 𝐹. Eventually,

End(𝐸/F𝑞) = End(𝐸/𝐹) = End
(
𝐸/𝐹 (𝑠)

)
≃ End

(
E/𝐹 (𝑠)

)
= End(E/𝐹).

By abuse of notation, we will identify all these rings by means of the single symbol O.
As is well known, O is an order in the imaginary quadratic field Q(

√
𝐷), where 𝐷 := 𝑡2𝑞 − 4𝑞 and 𝑡𝑞 is the trace

(of the Frobenius) of 𝐸/F𝑞 . Furthermore, O = Z ⊕ Z𝜙 for some endomorphism 𝜙 (with the dual one 𝜙). Recall
that its characteristic (and at the same time, minimal) polynomial equals

𝜒𝜙 = 𝑥2 − tr(𝜙)𝑥 + deg(𝜙), where tr(𝜙) := 𝜙 + 𝜙, deg(𝜙) := 𝜙 ·𝜙.

As explained in [4, Appendix A], original Schoof’s algorithm (see, e.g., [16, Algorithm 2.4]) for computing 𝑡𝑞 is
easily modified to compute tr(𝜙) whenever 𝜙 is the composition of a bounded number of small-degree isogenies.

There is a natural action of the group 𝜇𝑑 ≃ Z/𝑑 on the curve 𝐶 and hence on its Jacobian 𝐽𝐶 . Let’s introduce
the number

𝑘 := max
{
𝑘 ′ ∈ N | exists a surjective 𝜇𝑑-equivariant F𝑞-morphism 𝐽𝐶 → 𝐸 𝑘

′}
,

where 𝜇𝑑 acts diagonally on 𝐸 𝑘′ . By virtue of [31] (cf. [27, Sections 6, 7]), we have the sequence of homomorphisms
of O-modules

E(𝐹) ≃ Mor𝜇𝑑 (𝐶, 𝐸) → Hom𝜇𝑑 (𝐽𝐶 , 𝐸) ≃ Hom(𝐸 𝑘 , 𝐸) ≃ End(𝐸)𝑘 . (3)

The first homomorphism maps 𝑃 ↦→ 𝜑𝑃 through 𝜑 in a clear way. The kernel of the second one consists of constant
morphisms, which implies the equality 𝑟 = 2𝑘 . At last, the third one is not in any way a canonical isomorphism.

Likewise, we possess the sequence

E
(
𝐹 (𝑠)

)
≃ 𝐸

(
𝐹 (𝑠)

)
≃ Mor(𝐶, 𝐸) → Hom(𝐽𝐶 , 𝐸) ≃ Hom(𝐸𝐾 , 𝐸) ≃ End(𝐸)𝐾 ,
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where the number 𝐾 is defined by analogy with 𝑘 after removing the 𝜇𝑑-equivariance condition. Evidently, 𝐾 does
not exceed the geometric genus of 𝐶. And when 𝐾 attains it, 𝐽𝐶 is said to be a 𝜌-maximal (or singular) abelian
variety [7, Proposition 3].

Looking ahead, the O-module E
(
𝐹 (𝑠)

)
gives an advantage over E(𝐹) whenever 𝐾 > 𝑘 , which is possible

solely if 𝑑 ∈ {4, 6}. Indeed, in Algorithm 1 one can evaluate any (not necessarily 𝜇𝑑-equivariant) covers
𝜓1, · · ·, 𝜓𝑛 : 𝐶 → 𝐸 that are independent over O. However, E

(
𝐹 (𝑠)

)
is an awkward object that is more difficult to

analyze than E(𝐹). In Section 5.1 we will carry out such an analysis in a simple example.

3 NEW GENERATION METHOD AND ITS RUNNING TIME
Let’s keep the symbolism of the previous section. At the same time, consider an arbitrary cyclic F𝑞-cover

𝜒 : 𝐶 → P1 of degree 𝑚 | 𝑞 − 1. In other words, the curve can be represented in the form 𝐶 : 𝑣𝑚 = 𝑓 (𝑢) ⊂ A2
(𝑢,𝑣)

for some 𝑓 ∈ F𝑞 [𝑢] without roots of multiplicity ⩾ 𝑚. In particular, the earlier coordinates 𝑡, 𝑠 are expressed via
rational F𝑞-functions in 𝑢, 𝑣 and vice versa: (𝑡, 𝑠) = 𝜏(𝑢, 𝑣) and (𝑢, 𝑣) = 𝜏−1 (𝑡, 𝑠). By abuse of notation, 𝐶 will
denote both curves related by the transformation 𝜏. When 𝑚 = 𝑑, for our purposes, it will be sufficient to take
𝑓 = 𝑐(𝑡) (or, equivalently, 𝜒 = 𝑝𝑟𝑡 ) and 𝜏 = id.

Pick any points 𝑃1, · · ·, 𝑃𝑛 ∈ E(𝐹) \E(𝐹)𝑡𝑜𝑟 linearly independent over O. Given 𝑢 ∈ F𝑞 , the scenario E𝑡 ≃F𝑞 𝐸
evidently amounts to the fact that 𝑣 = 𝑚

√︁
𝑓 (𝑢) ∈ F𝑞 , unless 𝜏(𝑢, 𝑣) is meaningless or E𝑡 is singular. If actually 𝑣 ∈ F𝑞 ,

we obtain the 𝑛 points 𝑃𝑖 (𝑡) ∈ E𝑡 (F𝑞) ≃ 𝐸 (F𝑞) at least for integral 𝑃𝑖 . Since in discrete logarithm cryptography
the group 𝐸 (F𝑞) is (almost) prime, the specialized points 𝑃𝑖 (𝑡) (very often) become dependent for 𝑛 > 1. However,
an explicit non-trivial relation between them is not observed. Finally, whenever G ⊊ 𝐸 (F𝑞), it remains to clear the
cofactor to definitely fall into G, but the resulting points are still “independent”.

It is worth avoiding torsion points 𝑃𝑖 , because they and hence 𝑃𝑖 (𝑡) have tiny orders with respect to ℓ. It
should be emphasized that the points have to be independent precisely over O, and not just over Z. Although 1,
𝜙 are linearly independent endomorphisms, their restrictions on G are not. Indeed, from G ≃ Z/ℓ it follows that
End(G) ≃ Fℓ . On the other hand, in practice G = 𝐸 (F𝑞) [ℓ]. As a consequence, there exists 𝜆 ∈ Fℓ such that
𝜙(𝑃) = 𝜆𝑃 for all 𝑃 ∈ G. In other terms, 𝜆 is a root of the characteristic polynomial 𝜒𝜙 ∈ Fℓ [𝑥], i.e., 𝜆 is an
eigenvalue of 𝜙|𝐸 [ℓ ] . Eventually, knowing 𝜒𝜙 , we can determine 𝜆 with 50-percent confidence (100-percent one
when 𝜙 is easy to evaluate).

Realizing 𝜙 as an abstract element ofQ(
√
𝐷), we immediately get 𝜒𝜙 , because 𝜙 is the complex conjugate of 𝜙.

In turn, the latter can be found via randomized Bisson–Sutherland’s algorithm [9] (resp., deterministic Kohel’s one
[20, Section 25.4.2]). While in the worst case its running time is sub-exponential (resp., exponential), the curve 𝐸
is usually generated once and for all by a certain regulator. It is not ruled out that 𝜙 is in its sleeve. That is why, we
must not rely on the hardness of finding 𝜙. In addition, implementors of elliptic curve cryptosystems often choose
𝐸 for which, conversely, 𝜙 is a small-degree endomorphism known to all. This is done in order to enjoy the GLV
(Gallant–Lambert–Vanstone) scalar multiplication method [20, Section 11.3.3].

Fix a cryptographic hash function 𝜂 : {0, 1}∗ → F𝑞 . We need to change 𝑢 = 𝜂(seed| |𝑖), where 𝑖 ∈ N, while
the desired requirement 𝑚

√︁
𝑓 (𝑢) ∈ F𝑞 is not met. So, the new generation method (formalized in Algorithm 1) is a

priori non-constant-time. Nevertheless, this is not dangerous as regards timing attacks, because seed| |𝑖 is public
information. Frankly speaking, it is necessary to continue sampling 𝑢 when we encounter one of the degenerate
situations 𝜏(𝑢, 𝑣) = ∞, 𝜑𝑡 (𝑥, 𝑦) = ∞, or 𝑃𝑖 (𝑡) = ∞. However, they arise with negligible probability, so attention
should not be paid to them anymore.

As cliché as it sounds, one can run the algorithm multiple times to generate as many points of 𝐸 (F𝑞) as needed
if one cannot do it with a single run. The resulting points will be “independent” in total if we keep the hash function
𝜂, and at the same time, if we take, e.g., seed| |0 as a new seed. Of course, the belief is based on the reliability of 𝜂.
Nevertheless, it would be more efficient to maximize the number 𝑛 as much as possible. For instance, the extreme
case 𝑛 = 1 is essentially what is currently often used in practice and what we want to avoid.

To go further we lack the power residue symbol
(
𝛼
𝑞

)
𝑚

:= 𝛼 (𝑞−1)/𝑚 (where 𝛼 ∈ F𝑞) generalizing the Legendre
symbol (for𝑚 = 2). It is obviously a surjective homomorphism F∗𝑞 → 𝜇𝑚 to the group of all𝑚-th roots of unity. As
is well known, to determine whether 𝑓 (𝑢) is an 𝑚-th residue in F𝑞 it is sufficient to check the equality

( 𝑓 (𝑢)
𝑞

)
𝑚
= 1.

Due to [25], computing the residue symbol for 𝑚 ⩽ 11 is comparable in complexity 𝑂 (log2 (𝑞)) to inverting in F∗𝑞 .
Thereby,

( ·
𝑞

)
𝑚

is a much cheaper operation than extracting any root in F𝑞 . Thus, unlike the generation method with
a hash function H : {0, 1}∗ → 𝐸 (F𝑞), we obtain a set of “independent” F𝑞-points on 𝐸 with the cost of extracting
only one root in F𝑞 (of degree 𝑚).

The same thought occurs in [47, Section 3] to speed up (de)compression in the post-quantum protocol SIDH
(Supersingular Isogeny Diffie–Hellman), which is now fully broken [13, 32, 37]. Instead of applying a constant-time
encoding (essentially H ) to an elliptic curve, the authors of that article prefer to “subvert” it to produce at once
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two independent (in the strict sense) points with high probability. They agree with the author that a randomized
algorithm with one square root (and several Legendre symbols) is faster on average than a deterministic one with
two square roots in the same field. Before the attacks, this was especially relevant for SIDH, since the given protocol
was deployed over a highly 2-adic field.

Algorithm 1: New generation method.
Data: a finite field of characteristic at least 5 and the function field 𝐹 = F𝑞 (𝑡),

a seed ∈ {0, 1}∗ and a cryptographic hash function 𝜂 : {0, 1}∗ → F𝑞 ,
an ordinary elliptic F𝑞-curve 𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 and an elliptic F𝑞-surface E : 𝑦2 = 𝑥3 + 𝑎(𝑡)𝑥 + 𝑏(𝑡)

of the same 𝑗-invariant,
points 𝑃1, · · ·, 𝑃𝑛 ∈ E(𝐹) \ E(𝐹)𝑡𝑜𝑟 independent over End(E) ≃ End(𝐸),
the superelliptic curve 𝐶 : 𝑠𝑑 = 𝑐(𝑡), where 𝑑 = #Aut(𝐸) and 𝑐 ∈ F𝑞 [𝑡] is defined in Equality (1),
the F𝑞-covers 𝜑𝑃𝑖 : 𝐶 → 𝐸 based on the F𝑞 (𝐶)-isomorphism 𝜑 : E → 𝐸 of the form (2),
an F𝑞-change 𝜏 of the coordinates 𝑡, 𝑠 to those 𝑢, 𝑣 satisfying the equation 𝑣𝑚 = 𝑓 (𝑢), where

𝑚 | 𝑞 − 1 and 𝑓 ∈ F𝑞 [𝑢].
Result: 𝑛 “independent” points in 𝐸 (F𝑞).
begin

𝑖 := 0;
𝑢 := 𝜂(𝑠𝑒𝑒𝑑 | |𝑖);
while

( 𝑓 (𝑢)
𝑞

)
𝑚
≠ 1 do

𝑖 := 𝑖 + 1;
𝑢 := 𝜂(𝑠𝑒𝑒𝑑 | |𝑖);

end
𝑣 := 𝑚

√︁
𝑓 (𝑢);

(𝑡, 𝑠) := 𝜏(𝑢, 𝑣);
return 𝜑𝑃1 (𝑡, 𝑠), · · ·, 𝜑𝑃𝑛

(𝑡, 𝑠).
end

The author does not attribute the following lemma to himself. It is proved just for the sake of completeness.

Lemma 1. Let 𝑚 | 𝑞−1 and 𝑓 ∈ F𝑞 [𝑢] be a polynomial without roots of multiplicity ⩾ 𝑚. Given a random 𝑢 ∈ F𝑞 ,
the probability that 𝑚

√︁
𝑓 (𝑢) ∈ F𝑞 equals

𝜌 :=
𝑁

𝑞
=

1
𝑚

+𝑂
( 1
√
𝑞

)
, where 𝑁 := #

{
𝑢 ∈ F𝑞 | 𝑚

√︁
𝑓 (𝑢) ∈ F𝑞

}
,

𝑚, 𝑓 are fixed, but 𝑞 → +∞.

Proof. Let’s extend the reasoning of [16, Section 8.2.1] from the case 𝑚 = 2. As is customary, 𝑝𝑎 ∈ N stands for
the arithmetic genus of 𝐶 : 𝑣𝑚 = 𝑓 (𝑢). Let 𝑛0 be the number of F𝑞-points on 𝐶 of the type (𝑢, 0) and 𝑛∞ be the
number of those at infinity. Trivially, 𝑝𝑎, 𝑛0, 𝑛∞ = 𝑂 (1). Since 𝐶 is known to be an absolutely irreducible curve,
we have the Weil–Aubry–Perret inequality [3, Corollary 2.4] of the form

|#𝐶 (F𝑞) − (𝑞 + 1) | ⩽ 2𝑝𝑎
√
𝑞,

where 𝑛∞ is taken into account in #𝐶 (F𝑞). Therefore, #𝐶 (F𝑞) − 𝑞 = 𝑂 (√𝑞).
For compactness, we use below the auxiliary notation

𝛼(𝑢) :=
𝑚−1∑︁
𝑖=0

( 𝑓 𝑖 (𝑢)
𝑞

)
𝑚
, 𝐴 :=

∑︁
𝑢∈F𝑞

𝛼(𝑢).

From the equality (𝑥𝑚 − 1)/(𝑥 − 1) = ∑𝑚−1
𝑖=0 𝑥𝑖 it follows that

𝛼(𝑢) =


𝑚 if 𝑚

√︁
𝑓 (𝑢) ∈ F∗𝑞 ,

1 if 𝑓 (𝑢) = 0,

0 otherwise.

Consequently,

#𝐶 (F𝑞) = 𝐴 + 𝑛∞, 𝑁 =
𝐴 + 𝑛0 (𝑚 − 1)

𝑚
.
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Eventually,

𝜌 − 1
𝑚

=
𝐴 − 𝑞 + 𝑛0 (𝑚 − 1)

𝑚𝑞
=

#𝐶 (F𝑞) − 𝑛∞ − 𝑞 + 𝑛0 (𝑚 − 1)
𝑚𝑞

=

=
𝑂 (√𝑞) − 𝑛∞ + 𝑛0 (𝑚 − 1)

𝑚𝑞
= 𝑂

( 1
√
𝑞

)
.

The lemma is proved. □

Lemma 2. The average-case complexity of Algorithm 1 is that of computing 𝑚 symbols
( ·
𝑞

)
𝑚

and one radical 𝑚
√·

in F𝑞 .

Proof. It is suggested to consider the probability 𝜌𝑘 that for 𝑘 ∈ N random independent elements 𝑢𝑖 ∈ F𝑞 the root
𝑚
√︁
𝑓 (𝑢𝑖) ∉ F𝑞 and for the (𝑘 + 1)-th one, conversely, 𝑚

√︁
𝑓 (𝑢𝑘+1) ∈ F𝑞 . By virtue of Lemma 1, we get:

𝜌𝑘 = 𝑥
𝑘 · 1
𝑚

=
(𝑚 − 1)𝑘
𝑚𝑘+1 , where 𝑥 :=

𝑚 − 1
𝑚

.

Denote by 𝑋 the random variable returning 𝑘 + 1 with the probability 𝜌𝑘 . It corresponds to the number of symbols( ·
𝑞

)
𝑚

arising during the work of our algorithm.
By definition of average-case complexity, we need to compute the expected value

E[𝑋] =
∞∑︁
𝑘=0

(𝑘 + 1)𝜌𝑘 =
1
𝑚

∞∑︁
𝑘=0

(𝑘 + 1)𝑥𝑘

It is a classical fact that under the condition |𝑥 | < 1 (fulfilled for 𝑚 ∈ N) the geometric series
∑∞
𝑘=0 𝑥

𝑘 = 1/(1 − 𝑥),
hence

E[𝑋] = 1
𝑚

( ∞∑︁
𝑘=0

𝑥𝑘+1
)′
=

1
𝑚

( 𝑥

1 − 𝑥

)′
=

1
𝑚(1 − 𝑥)2 = 𝑚.

Bearing in mind the final 𝑚-th root extraction, the lemma is proved. □

Due to (3), the number 𝑛 = 𝑟/2 ∈ N is the most optimal in Algorithm 1. Besides, the smaller number 𝑚,
simpler methods exist (over a general field F𝑞) for finding

( ·
𝑞

)
𝑚

and 𝑚
√·, not to mention Lemma 2. The minimal

possible 𝑚 is the cyclic analogue

𝛾𝑐 := min
{

deg(𝜒) | 𝜒 : 𝐶 → P1 is a cyclic (i.e., Kummer) F𝑞-cover
}

of the gonality 𝛾 [33, Section 6.5.3] of the curve 𝐶. Trivially, 2 ⩽ 𝛾 ⩽ 𝛾𝑐 ⩽ 𝑑 ⩽ 6.
We see that the new generation method works more productively if the fraction 𝛿 := 𝑟/𝛾𝑐 is greater. It is natural

to call it the relative Mordell–Weil rank of E. Of course, this notion is useless when 𝑗 (E) ∉ {0, 1728}, that is,
𝑑 = 2. In the opposite case, it seems quite difficult to determine the exact value 𝛾𝑐, so it is reasonable to also
introduce 𝛿(𝜒) := 𝑟/deg(𝜒) for any 𝜒 from the definition of 𝛾𝑐. Then, 𝛿 = max𝜒{𝛿(𝜒)}.

The problem of maximizing 𝛿 has much in common with a classic one of pure mathematics about how big the
conventional Mordell–Weil rank 𝑟 can theoretically be for elliptic surfaces. Over an algebraically closed field of
zero characteristic (or just C) the current record equals 68 for the surfaces E𝑚 : 𝑦2 = 𝑥3 + 𝑡𝑚 + 1 such that 360 | 𝑚
(see [38, Section 13.2]). Be careful, there is a discrepancy with our previous notation E𝑡 of a fiber.

Circumstances are drastically different in a prime characteristic 𝑝. There is no upper bound on 𝑟 in the class
of non-isotrivial surfaces [45], whose 𝑗-invariants are always ordinary. The same is true for (isotrivial) surfaces
of supersingular 𝑗-invariants [44]. In fact, among those it is enough to confine to E𝑝𝑒+1 (where 𝑒 ∈ N) as shown
in [39]. Surprisingly, in accordance with the articles [10, 15], the rank 𝑟 can be made arbitrarily large even in the
class of isotrivial surfaces of ordinary 𝑗-invariants. However, it is not clear how constructive the results established
in those articles.

4 THE CASE OF 𝑗 -INVARIANT 0
Hereafter, we focus on elliptic curves of 𝑗-invariant 0, that is, 𝑎 = 𝑎(𝑡) = 0, because they are popular in practice.

Since we deal only with ordinary curves, 3 | 𝑞 − 1 or, equivalently, a primitive cubic root 𝜔 = (−1 +
√
−3)/2 of

unity lies in F𝑞 (see [42, Example V.4.4]). There is on 𝐸 , E the automorphism [𝜔] (𝑥, 𝑦) = (𝜔𝑥, 𝑦) of order 3 and
moreover O = Z[𝜔].

For any 𝑚 | 𝑞 − 1 and 𝑐 ∈ F∗𝑞 , consider the twist E𝑚 : 𝑦2 = 𝑥3 + 𝑡𝑚 + 𝑐 of the aforementioned elliptic surface.
Remarkably, the group E𝑚 (𝐹) is torsion-free regardless of𝑚. Further, for E𝑚 to be a rational surface it is necessary
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and sufficient that 𝑚 ⩽ 6. These and other details about the surfaces E𝑚 can be found in [39]. And the general
theory of rational elliptic surfaces is discussed, e.g., in [38, Chapter 7].

It is also natural to denote the curve 𝐶 from the previous sections by 𝐶𝑚 : 𝑏𝑠6 = 𝑡𝑚 + 𝑐. Its geometric genus
𝑔(𝐶𝑚) can be computed via a formula from [33, Section 5.1]. In this article, the author decided to concentrate only
on the case 𝑚 ⩽ 6, because it is the simplest and most investigated in the literature. For instance, 𝐶6 is a twist of
the Fermat sextic curve [7, Proposition 7], [31, Example 4.3]. It is hoped to study the opposite case 𝑚 > 6 in future
articles. From now on, the curve is represented in the form 𝐶𝑚 : 𝑡𝑚 = 𝑏𝑠6 − 𝑐. In terms of Section 3 this means
that 𝑓 = 𝑏𝑠6 − 𝑐, i.e., 𝜒 = 𝑝𝑟𝑠 and (𝑡, 𝑠) = (𝑣, 𝑢).

Table 1 summarizes main information about the rational surfaces E𝑚 over F𝑞 . It is provided for convenience of
the reader, no more no less. First, (up to an isomorphism) the Mordell–Weil lattices E𝑚 (𝐹′) are dual to some root
lattices (E8 is self-dual). By the way, a good survey of root lattices and their dual ones is given in [38, Section 2.3].
And second, the column 𝑑min (resp., disc) contains the minimum norm (resp., discriminant) of the lattices.

Table 1: The rational surfaces E𝑚/F𝑞 .

𝑚 E𝑚 (𝐹′) 𝑟/𝑚 𝑑min disc 𝑔(𝐶𝑚)

1 0 0 0

2 A∗
2 1 2/3 1/3 2

3 D∗
4 4/3 1 1/4 4

4 E∗
6 3/2 4/3 1/3 7

5
E8

8/5
2 1 10

6 4/3

Note that 0 < 1 < 4/3 < 3/2 < 8/5 for the values from the column 𝑟/𝑚 = 𝛿(𝑝𝑟𝑠). For Algorithm 1, the surface
E6 does not provide any advantage with respect to E3. That is why, the former will not be considered in detail. In
turn, the surface E5 is the best. Unfortunately, 5 ∤ 𝑞 − 1 for Pasta curves, hence for them we have to be content with
E4. So, we are able to generate 3 “independent” F𝑞-points in such a way that the average running time coincides
with that of computing 4 symbols

( ·
𝑞

)
4 and one quartic root in F𝑞 . The latter can be obviously represented as 2

successive square roots. Alternatively, one can apply (a variation of) the Adleman–Manders–Miller algorithm in
order to directly find 4

√·.
It is time to remind that Pasta curves were designed, taking into account the existence of F𝑞-isogenies of small

degree (namely 3) from auxiliary elliptic curves of 𝑗-invariants different from 0. As a result, one of the state-of-
the-art hash functions for Pasta curves is the Wahby–Boneh hash function H𝑊𝐵 [46] based on the simplified SWU
(Shallue–van de Woestĳne–Ulas) one [18, Section 6.6.2]. It requires to compute one square root in F𝑞 during the
execution.

As said before,
√· (as well as 4

√·) is a laborious operation over highly 2-adic fields and Pasta curves are defined
over such fields. Fortunately, their fields F𝑞 are not highly 3-adic (more concretely, 27 ∤ 𝑞 − 1). Therefore, the
cubic root extraction in F𝑞 can be performed by one exponentiation by virtue of [14, Proposition 1]. Thus, instead
of E4, it might be wise to use the surface E3 to obtain 2 “independent” points at the price of 3 symbols

( ·
𝑞

)
3 and

one cubic root in F𝑞 . A detailed comparison of the two approaches can be made only after a quartic root method
has been chosen. This is outside the scope of the present paper concentrating rather on mathematical aspects of
cryptography.

Finally, the surface E2 is useless, because we always have the opportunity to exploit the more advantageous
surface E3. Indeed, the author is not aware of practical situations in which F𝑞 is a highly 3-adic field and, at the
same time, 4, 5 ∤ 𝑞 − 1. Even if this situation occurs (and H𝑊𝐵 is not applicable), it is enough to use the universal
SW hash function [16, Sections 8.3.4, 8.4.2] with the same running time as for the method built on E2.

To sum up, methods of generating 𝑛 “independent” F𝑞-points on elliptic curves of 𝑗-invariant 0 are exhibited in
Table 2. To justify its bottom row, it is demonstrated in the next section that for all 𝑚 ⩽ 5 there is 𝑐 ∈ F∗𝑞 for which
the Mordell–Weil lattices of E𝑚/F𝑞 and E𝑚/F𝑞 coincide. To be precise, we will explicitly construct 𝑟 (resp., 𝑟/2)
minimal points 𝑃𝑖 ∈ E𝑚 (𝐹) independent over Z (resp., Z[𝜔]). Minimality is a useful property, since the size of
point formulas is proportional to their canonical heights. Furthermore, 𝑃𝑖 form a basis (cf. [34]), although this fact
is not applied anywhere by us.
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Table 2: Generation methods for elliptic F𝑞-curves 𝐸 of 𝑗-invariant 0.

Method 𝑛 Average complexity Conditions on 𝑞

classical with H : {0, 1}∗ → 𝐸 (F𝑞) 1 [30, Tables 1-2] (
√· for H𝑊𝐵)

new with E𝑚, where 2 ⩽ 𝑚 ⩽ 5 𝑚 − 1 𝑚
( ·
𝑞

)
𝑚
+ 𝑚

√· 𝑚 | 𝑞 − 1

5 LINEARLY INDEPENDENT POINTS IN E𝑚 (𝐹)
In the current section we will tacitly resort to the computer algebra system Magma. The corresponding code

is loaded on the web page [29]. Besides, we will regularly use a folklore result that, given a pair of lattices
𝐿′ ⊂ 𝐿 of the same rank, the squared index [𝐿 : 𝐿′]2 = disc(𝐿′)/disc(𝐿). In particular, 𝐿 = 𝐿′ if and only if
disc(𝐿) = disc(𝐿′).

5.1 THE CASE 𝑚 = 2
Assume that 3√𝑐 ∈ F𝑞 . It is readily seen that the points 𝑃𝑖 := (−𝜔𝑖−1 3√𝑐, 𝑡) belong to E2 (𝐹). Any two of them

are clearly independent over Z and dependent over Z[𝜔]. The height pairing on the sublattice ⟨𝑃1, 𝑃2⟩ ⊂ E2 (𝐹) is
given by the Gram matrix

𝑀 =

©­­­«
2
3

−1
3

−1
3

2
3

ª®®®¬ ,
where the 𝑖-th row and column correspond to 𝑃𝑖 . Since det(𝑀) = 1/3 = disc(A∗

2), the minimal points 𝑃1, 𝑃2 in
fact constitute a Z-basis of E2 (𝐹) = E2 (𝐹′) ≃ A∗

2. Consequently, 𝑃 := 𝑃1 is a generator over Z[𝜔].
In comparison with 𝑚 > 2, the case under consideration is easier, hence let’s dwell on it in more detail. The

curve 𝐶2 : 𝑡2 = 𝑏𝑠6 − 𝑐 is a famous hyperelliptic curve of geometric genus 2 (see, e.g., [7, Example 1]). There are
two quadratic F𝑞-covers

𝜑𝑃 : 𝐶2 → 𝐸 (𝑠, 𝑡) ↦→
(− 3√𝑐
𝑠2

,
𝑡

𝑠3

)
,

where
𝐸 : 𝑦2 = 𝑥3 + 𝑏,

𝜑′ : 𝐶2 → 𝐸 ′ (𝑠, 𝑡) ↦→ (𝑏𝑠2, 𝑏𝑡), 𝐸 ′ : 𝑦2 = 𝑥3 − 𝑏2𝑐.

Notice that 𝜑𝑃 ∈ Mor𝜇6 (𝐶2, 𝐸) as always, but 𝜑′ ∉ Mor𝜇6 (𝐶2, 𝐸
′). This immediately implies independency of

𝜑𝑃 , 𝜑′ over Z[𝜔] after identifying the curves 𝐸 , 𝐸 ′ by an isomorphism, which exists at most over F𝑞6 . In other
words,

𝐽𝐶2 ∼F𝑞 𝐸×𝐸 ′ ∼F
𝑞6 𝐸

2.

Meanwhile, there are two F𝑞-covers 𝐶2 → 𝐸 independent over Z[𝜔] if and only if

𝐽𝐶2 ∼F𝑞 𝐸
2 ⇔ 𝐸 ∼F𝑞 𝐸

′ ⇔ 𝐸 ≃F𝑞 𝐸 ′ ⇔ 6√−𝑏𝑐 ∈ F𝑞 ⇔
√
−𝑏𝑐, 3√

𝑏 ∈ F𝑞 .

The first ⇔ takes place according to uniqueness (up to an F𝑞-isogeny) of the Jacobian decomposition into simple
components. The second one follows from the fact that 𝐸 , 𝐸 ′ are ordinary twists of each other. The remaining ones
are evident. The restriction

√
−𝑏𝑐 ∈ F𝑞 is surmountable by picking 𝑐 = −𝑏3. But despite this, for many curves 𝐸

(including Pasta curves) 3√
𝑏 ∉ F𝑞 .

5.2 THE CASE 𝑚 = 3
From the proof of [39, Proposition 5.2] we know that the sought points in E3 (𝐹) have the form (𝑥, 𝑦) =

(𝑎1𝑡 + 𝑎0, 𝑏1𝑡 + 𝑏0) for some 𝑎𝑖 , 𝑏𝑖 ∈ F𝑞 . Substituting it into the equation of E3, we get the points

𝑃1 :=
(
−𝑡,

√
−3·𝑢3

18

)
, 𝑃2 :=

(
−𝑡 + 𝑢

2

3
, 𝑢𝑡 − 𝑢3

6

)
,

where 𝑢 := 6√−108𝑐, as well as 𝑃3 := [𝜔]𝑃1 and 𝑃4 := [𝜔]𝑃2. Note that 𝑢 ∈ F𝑞 if and only if
√
𝑐, 3√4𝑐 ∈ F𝑞 .

Certainly, it is sufficient to just take 𝑐 = −1/108 or, equivalently, 𝑢 =
6√1. This constant (and those from the next

sections) has nothing to do with the variable 𝑢 (and 𝑣) from Section 3.
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The height pairing on the sublattice ⟨𝑃𝑖⟩4
𝑖=1 ⊂ E3 (𝐹) is given by the Gram matrix

𝑀 =

©­­­­­­­­­­­«

1 0 −1
2

1
2

0 1 −1
2

−1
2

−1
2

−1
2

1 0

1
2

−1
2

0 1

ª®®®®®®®®®®®¬
,

where the 𝑖-th row and column correspond to 𝑃𝑖 . Since det(𝑀) = 1/4 = disc(D∗
4), the minimal points 𝑃𝑖 constitute

a Z-basis of E3 (𝐹) = E3 (𝐹′) ≃ D∗
4. As a result, 𝑃1, 𝑃2 do a Z[𝜔]-basis.

5.3 THE CASE 𝑚 = 4

In this section, 𝑖 :=
√
−1 ∈ F𝑞 . Looking ahead, we also lack the values 𝑣 := 26

√
3 − 45 and 𝑢 := 12√263𝑣𝑐. The

surface E4 over a non-closed field is discussed in the article [40]. From there we know that one can search for the
desired points from E4 (𝐹) in the form (𝑥, 𝑦) = (𝑎1𝑡 + 𝑎0, 𝑡

2 + 𝑏1𝑡 + 𝑏0), substituting it into the equation of E4. In
addition to 𝑃1 := (− 3√𝑐, 𝑡2), we find a point 𝑃2 with the coordinates

𝑥2 := 𝑢𝑡 +
√

3 + 3
12

𝑢4, 𝑦2 := 𝑡2 + 𝑢
3

2
𝑡 +

√
3 + 2
8

𝑢6

and 𝑃3 (𝑡) := −𝑃2 (𝑖𝑡). Obviously, 𝑢 ∈ F𝑞 if and only if 4√223𝑣𝑐, 3√3𝑣𝑐 ∈ F𝑞 . Inter alia, 3√𝑐 ∈ F𝑞 , because
3√3𝑣 = 2

√
3 − 3. Of course, it is enough to just pick 𝑐 = 1/(263𝑣) or, equivalently, 𝑢 =

12√1.
As usual, there are as well the counterparts 𝑃3+ 𝑗 := [𝜔]𝑃 𝑗 , where 1 ⩽ 𝑗 ⩽ 3. The height pairing on the

sublattice ⟨𝑃𝑘⟩6
𝑘=1 ⊂ E4 (𝐹) is given by the Gram matrix 𝑀 such that

3𝑀 =

©­­­­­­­­­­­­­«

4 −2 −2 −2 1 1

−2 4 1 1 −2 1

−2 1 4 1 −2 −2

−2 1 1 4 −2 −2

1 −2 −2 −2 4 1

1 1 −2 −2 1 4

ª®®®®®®®®®®®®®¬
,

where the 𝑘-th row and column correspond to 𝑃𝑘 . Since det(𝑀) = 1/3 = disc(E∗
6), the minimal points 𝑃𝑘 constitute

a Z-basis of E4 (𝐹) = E4 (𝐹′) ≃ E∗
6. As a result, 𝑃 𝑗 do a Z[𝜔]-basis.

5.4 THE CASE 𝑚 = 5
Like E4, the surface E5 over a non-closed field is studied in article [40]. First of all, possessing 𝜁 := 5√1 ∈ F𝑞 ,

𝜁 ≠ 1, we besides have the root
√

5 = 2𝜁3 + 2𝜁2 + 1. Also, we need the values

𝑣 :=

√︄
3(
√

5 + 5)
2

= 𝜁2 (𝜁 − 1)
√
−3,

𝜃 := 564300 + 252495
√

5 + 170252·𝑣 + 76074
√

5·𝑣, 𝑢 := 30√60·𝜃𝑐.

Without further ado, one can just take 𝑐 = 1/(60·𝜃), that is, 𝑢 =
30√1.

It turns out to be enough to confine to points of the form

𝑄𝑢 =

( 1
𝑢2 𝑡

2 + 𝑎1𝑡 + 𝑎0,
1
𝑢3 𝑡

3 + 𝑏2𝑡
2 + 𝑏1𝑡 + 𝑏0

)
.

As earlier, the substitution of 𝑄𝑢 into the equation of E5 gives rise to a polynomial system. After that, one finds its

19



Koshelev, D.

solution

𝑎0 := − (8289𝜁3 + 35113𝜁2 + 43402𝜁 + 21701)𝜔 + (26238𝜁3 + 39650𝜁2 + 21701𝜁 − 2804)
15

𝑢10,

𝑎1 := − (58𝜁3 + 246𝜁2 + 304𝜁 + 152)𝜔 + (184𝜁3 + 278𝜁2 + 152𝜁 − 19)
5

𝑢4,

𝑏0 :=
12𝑎0𝑎1 − 𝑎3

1𝑢
2 − 12𝑎0𝑢

4 + 15𝑎2
1𝑢

6 + 9𝑎1𝑢
10 + 𝑢14

16
𝑢,

𝑏1 :=
12𝑎0 + 3𝑎2

1𝑢
2 − 6𝑎1𝑢

6 − 𝑢10

8𝑢
, 𝑏2 :=

3𝑎1 + 𝑢4

2𝑢
.

Consider the points 𝑃𝑖 := 𝑄𝜁 𝑖−1𝑢 and 𝑃4+𝑖 := [𝜔]𝑃𝑖 = 𝑄𝜔𝜁 𝑖−1𝑢, where 1 ⩽ 𝑖 ⩽ 4. The height pairing on the
sublattice ⟨𝑃𝑘⟩8

𝑘=1 ⊂ E5 (𝐹) is given by the Gram matrix

𝑀 =

©­­­­­­­­­­­­­­­­­­­«

2 −1 0 0 −1 1 0 0

−1 2 −1 0 0 −1 1 0

0 −1 2 −1 0 0 −1 1

0 0 −1 2 0 0 0 −1

−1 0 0 0 2 −1 0 0

1 −1 0 0 −1 2 −1 0

0 1 −1 0 0 −1 2 −1

0 0 1 −1 0 0 −1 2

ª®®®®®®®®®®®®®®®®®®®¬

,

where the 𝑘-th row and column correspond to 𝑃𝑘 . Since det(𝑀) = 1 = disc(E8), the minimal points 𝑃𝑘 constitute
a Z-basis of E5 (𝐹) = E5 (𝐹′) ≃ E8. As a result, 𝑃𝑖 do a Z[𝜔]-basis.
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