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Abstract We present an algorithm for finding mildly short vectors in ideal lattices of cyclotomic fields, i.e. solutions
to 𝛾-SVP for 𝛾 ∈ 2𝑂̃ (

√
𝑛) where 𝑛 is the degree of the field. Our algorithm is an adaptation of a method due to

Cramer, Ducas and Wesolowski which is designed to use quantum computers. Our method, which only uses
classical computers, leverages recursive methods using subfield computations based on norm relations introduced
by Biasse, Fieker, Hofmann and Page. Our method applies to non-cyclic cyclotomic fields. In certain fields, the
search for mildly short vectors efficiently reduces to subfield computations in fields of significantly smaller degree.
In particular, we are able to identify infinite families of number fields where mildly short vectors can be found in
time 2𝑛𝑜 (1) , which is a superpolynomial improvement over the BKZ algorithm.
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1 INTRODUCTION
Background Given a Euclidean lattice L and 𝜆 ≥ 1, the problem of finding a non-zero 𝑢 ∈ L such that
∥𝑢∥ ≤ 𝛾𝜆1 (L), where 𝜆1 (L) is the length of a shortest non-zero vector of L (i.e. its first minimum), is called the
𝛾-Shortest Vector Problem (𝛾-SVP). The security of lattice-based cryptosystems such as LWE schemes [38] relies
on the hardness of 𝛾-SVP for 𝛾 polynomial in the dimension of the lattice. The LLL algorithm [26] solves 𝛾-SVP
for 𝛾 ∈ 2𝑂 (𝑛) in polynomial time in 𝑛. Exponential algorithms such as sieve methods [2] can solve exact SVP (i.e.
𝛾 = 1) in time 2𝑂 (𝑛) , while the BKZ algorithm [39] allows one to solve 𝛾-SVP for 𝛾 ∈ 2𝑂 (𝑛/𝑘 ) in time 2𝑂 (𝑘 ) . In
particular, the time to solve 𝛾-SVP for 𝛾 ∈ 2𝑂̃ (

√
𝑛) is in 2𝑂̃ (

√
𝑛) . In [17], solutions of 𝛾-SVP for 𝛾 ∈ 2𝑂̃ (

√
𝑛) are

referred to as mildly short vectors. We use this terminology throughout this paper. The study of the hardness of
𝛾-SVP is crucial both from a fundamental standpoint and for its applications to cryptology. In particular, there are
no efficient algorithms to solve 𝛾-SVP for non-exponential 𝛾. In the subexponential 𝛾 regime, any superpolynomial
improvement over the state of the art (i.e. the BKZ algorithm) represents a significant step forward.

To gain efficiency, variants of lattice-based cryptosystems using lattices that are ideals in cyclotomic number
fields were introduced. This is the case of cryptosystems based on the Ring Learning With Error (RLWE)
problem [28]. It can be shown that 𝛾-SVP in the cyclotomic field Q(𝜁𝑚) with a polynomial 𝛾 reduces to RLWE in
this field. The most typical cyclotomic fields used in RLWE cryptosystems are those of the form Q(𝜁2𝑙 ) for some
𝑙 (i.e. the fields with a power-of-two conductor). However, the use of general cyclotomic fields is possible [29].
One of the main security assumptions on which ideal lattice based cryptosystems rely is that 𝛾-SVP in ideals of
cyclotomic fields is not significantly easier than in general Euclidean lattices. Because of that, 𝛾-SVP algorithms
for ideals of Q(𝜁𝑚) that outperform the BKZ reduction method are of particular interest. Indeed, they document
the gap between the hardness of this problem in the special case of ideals in cyclotomic fields and in the case of
general lattices. However, such improvements do not necessarily imply an attack against RLWE schemes. Indeed,
the proof of security of RLWE schemes relies on the hardness of 𝛾-SVP for a polynomial 𝛾. Hence, the hardness
of the search for mildly short vectors does not directly impact it. In addition, even an efficient algorithm for the
resolution of 𝛾-SVP with a polynomial 𝛾 would not necessarily imply the cryptanalysis of RLWE schemes. It
would however render the security proof moot.

Because of its close connection to the security proof of RLWE cryptosystems, the investigation of the hardness
of 𝛾-SVP in ideal lattices of cyclotomic fields (including the search for mildly short vectors) is a crucial stake
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in mathematical cryptology. It was heuristically observed by a scientific team from the British Government
Communications Headquarter (GCHQ) that the search for short generators of principal ideals of Q(𝜁2𝑙 ) should be
efficient with a quantum computer [15]. This observation relied on two conjectures: a) Quantum computers allow
us to efficiently find generators of principal ideals in number fields, and b) The search for a short generators of a
principal ideal in Q(𝜁2𝑙 ) efficiently reduces (on a classical computer) to the search for an arbitrary generator. Point
a) was proven by Biasse and Song [11], while Point b) was proven by Cramer, Ducas, Peikert and Regev [18].
In particular, it is shown in [18] that a short generator of a principal ideal of Q(𝜁2𝑙 ) is a solution to 𝛾-SVP for
𝛾 ∈ 2𝑂̃ (

√
𝑛) with 𝑛 = [Q(𝜁2𝑙 ) : Q] (i.e. a mildly short vector). This is the first example of a superpolynomial gap

between the hardness of 𝛾-SVP in ideal lattices and in general lattices. This line of work was further expanded
by Cramer, Ducas and Wesolowski [16] who showed that there was an efficient heuristic quantum reduction from
the search for mildly short vectors in general ideal lattices of Q(𝜁2𝑙 ) (i.e. not necessarily principal) and the search
for generators in principal ideals. This result was later extended to ideal lattices of Q(𝜁𝑚) for arbitrary 𝑚 in [17].
In this paper, we refer to this heuristic reduction as CDW. To achieve an efficient quantum reduction, the CDW
approach relies on two assumptions: a) The class group of the maximal real subfield Q(𝜁𝑚)+ of Q(𝜁𝑚) is small,
and b) The minus part Cl− (O𝐾 ) of the ideal class group of 𝐾 = Q(𝜁𝑚) is generated by few prime ideals. Limited
numerical data in support of these conjectures is available, and most of it concerns the case 𝑚 = 𝑝 a prime.

One of the key aspects of Q(𝜁𝑚) that enables the CDW approach is the knowledge of a set of units with good
properties: the cyclotomic units. Indeed, units in number fields can be arbitrarily large, but in Q(𝜁𝑚), one can
efficiently construct a set of small units that generate a subset of finite index of the group of units. This approach
has been generalized by Pellet-Mary, Hanrot, and Stehlé who used 𝑆-units instead of units for a small enough set
of primes 𝑆 that generates the ideal class group of the field [36]. This method, known as PHS, allows one to solve
𝛾-SVP for 𝛾 in 2𝑂 (𝑛𝑎 ) where 𝑎 < 1/2 at the cost of an exponential precomputation on the 𝑆-units based on the
work of Laarhoven [25]. The PHS approach was further improved [6], but the cost of the precomputation prevents
it from solving 𝛾-SVP more efficiently than the benchmark BKZ method. Recent preliminary work from Bernstein
and Lange [8] conjectured that 𝑆-units of cyclotomic field have properties allowing one to adapt the PHS approach
to outperform BKZ in the search for solutions to 𝛾-SVP where 𝛾 ∈ 2𝑂 (𝑛𝑎 ) with 𝑎 < 1/2. To this date, there is no
available strong evidence of this conjecture, even if it seems like the lattice of logarithmic embeddings of 𝑆-units
of cyclotomic fields might not comply with so-called “Gaussian heuristics” which provide estimates for the first
minima of random lattices. Independent work of Bernard, Lesavourey, Nguyen and Roux-Langlois [7] aimed to
improve 𝑆-unit attacks by investigating sets of small 𝑆-units analogously to the case of cyclotomic units. They also
attempted to remove the need for quantum computers in the CDW approach, but they were not able to improve the
bottleneck of the method which consists in decompositions of ideals in the ideal class group.

Our contribution The main contribution of this paper is to propose a classical variant of the CDW algorithm for
the computation of mildly short vectors in ideals of cyclotomic fields that reduces to computations in subfields. To
achieve such reduction, our method uses the norm relations introduced by Biasse, Fieker, Hofmann, and Page [14].
Our method applies to the density 1 set of non-cyclic cyclotomic fields, but depending on the conductor 𝑚, the
relative degree of the subfields of Q(𝜁𝑚) where computations are taking place varies. For certain conductors, we
achieve an asymptotic speed-up over BKZ, and we were even able to exhibit a family of cyclotomic fields in which
our methods enable the search for mildly short vectors in time 2𝑛𝑜 (1) . More specifically, here are the main technical
contributions of this paper:

1. An algorithm using computations in subfields given by norm relations to decompose the ideal class of an
ideal in a number field according to a set of generators of the ideal class group (Section 5).

2. An algorithm for computing the minus part of the ideal class group using computations in subfields given by
norm relations (Section 7) .

3. The description of a classical analogue to the CDW method using subfield information (Algorithm 9).

4. The asymptotic analysis of our new subfield methods, as well as an infinite family of cyclotomic fields where
the cost is in 2𝑛𝑜 (1) (Section 8).

5. An implementation of the classical CDW technique, as well as numerical data in support of the heuristics
made in [16] to support the asymptotic cost of CDW (Section 9).

Organization of the paper In Section 3, we begin with a high level description of the CDW technique from [16,
17]. Then, in Section 4, we recall the main facts about the norm relation techniques from [14] that will be used to
describe a classical subfield variant of CDW. In Section 5, we show how to leverage norm relations to decompose
the ideal class of an ideal according to a set of generators of Cl(O𝐾 ). This building block is the cornerstone of
our subfield CDW variant. Then in Section 6, we show how to solve the Principal Ideal Problem (PIP) using norm
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relations. Solving the PIP consists in deciding whether an ideal is principal, and if so, finding one of its generators.
Then, in Section 7, we show how to compute the minus part of Cl(O𝐾 ) with norm relations, and how to find a
small set of primes that generate this group. In Section 8, we analyze the asymptotic cost of our methods, and in
Section 9, we present an implementation of our subfield CDW variant, as well as numerical data in support of the
heuristics made to support the runtime of the CDW method. In Section 10, we conclude by mentioning potential
future work to use norm relations in the context of PHS 𝑆-units attacks.

2 BACKGROUND IN NUMBER THEORY
Let 𝐾 be an algebraic number field of degree 𝑛, that is, a finite extension of the rational numbers Q with

𝑛 = [𝐾 : Q]. For an element 𝛼 ∈ 𝐾 the minimal polynomial is the unique monic irreducible polynomial 𝑓 ∈ Q[𝑥]
with 𝑓 (𝛼) = 0 and we call 𝛼 integral if the minimal polynomial is in Z[𝑥]. The set of all integral elements of 𝐾 is
a subring of 𝐾 , which is called the ring of integers of 𝐾 and which is denoted by O𝐾 . The ring of integers O𝐾 as
well as all non-zero ideals of O𝐾 are free Z-modules of rank 𝑛. For a non-zero ideal 𝔞 of O𝐾 , the quotient O𝐾/𝔞 is
a finite abelian group, whose order is called the norm of 𝔞 and which we denote by N(𝔞). By setting N({0}) = 0
for the zero ideal, the norm becomes a multiplicative map on the set of all ideals of O𝐾 . Any Z-basis of O𝐾 is
called an integral basis. Given such an integral basis 𝜔1, . . . , 𝜔𝑛, we denote by Δ𝐾 = det((Tr𝐾/Q (𝜔𝑖𝜔 𝑗 ))1≤𝑖, 𝑗≤𝑛)
the discriminant of 𝐾 , whose value is independent of the chosen integral basis.

A fractional ideal of 𝐾 is a non-zero O𝐾 -submodule of 𝐾 , or equivalently, a set of the form 𝔞
𝑑

, where 𝔞 is a
non-zero ideal of O𝐾 and 𝑑 ∈ Z, 𝑑 ≠ 0. The set 𝐼𝐾 of fractional ideals of 𝐾 is a group with respect to multiplication
with neutral element O𝐾 . The inverse of a fractional ideal 𝔞 is given by 𝔞−1 = {𝑥 ∈ 𝐾 | 𝑥𝔞 ⊆ O𝐾 }. The group of
fractional ideals is free on the set of non-zero prime ideals of O𝐾 and therefore the norm map extends uniquely to a
group homomorphism 𝐼𝐾 → Q, which we also denote by N. Of particular interest are principal fractional ideals,
which are the fractional ideals of the form 𝛼O𝐾 with 𝛼 ∈ 𝐾× . The set 𝑃𝐾 of principal fractional ideals is a subgroup
of the abelian group 𝐼𝐾 . The quotient group 𝐼𝐾/𝑃𝐾 is the (ideal) class group of O𝐾 or 𝐾 , which we denote by
Cl(O𝐾 ). A classical theorem of algebraic number theory asserts that Cl(O𝐾 ) is a finite group. We denote its order
by ℎ𝐾 and call it the class number of O𝐾 or 𝐾 . When two fractional ideals 𝔞 and 𝔟 are in the same ideal class, we
denote this as 𝔞 ∼ 𝔟. We denote by ℎ𝑚 the class number of 𝐾 = Q(𝜁𝑚) where 𝜁𝑚 is a primitive 𝑚-th root of unity
(i.e. 𝐾 is the cyclotomic field of conductor 𝑚). By ℎ+𝑚 we denote the class number of 𝐾+ := Q(𝜁𝑚 + 𝜁−1

𝑚 ), and by
Cl− (O𝐾 ) ⊆ Cl(O𝐾 ) the kernel of the map [𝔞] ↦→ [𝔞𝔞], where denotes complex conjugation. The cardinality of
Cl− (O𝐾 ) is denote by ℎ−𝑚, and we have ℎ𝑚 = ℎ+𝑚ℎ

−
𝑚.

Since 𝐾 is of degree 𝑛, there are 𝑛 embeddings 𝜎 : 𝐾 → C, which can be classified as follows: If the image
of 𝜎 is contained in the real numbers R, we call 𝜎 a real embedding of 𝐾 . Otherwise 𝜎 is called a complex
embedding. Because of complex conjugation, the complex embeddings of 𝐾 always come in pairs. If 2𝑠 denotes
the number of complex embeddings and 𝑟 the number of real embeddings, then (𝑟, 𝑠) is the signature of 𝐾 .
Denote by 𝜎1, . . . , 𝜎𝑟 the real embeddings and by 𝜎𝑟+1, 𝜎𝑟+1, . . . , 𝜎𝑟+𝑠 , 𝜎𝑟+𝑠 the complex embeddings. We call 𝐾
totally real if all embeddings are real and totally complex if all embeddings are complex. Since for an embedding
𝐾× → R, 𝛼 ↦→ log|𝜎(𝛼) | is a group morphism, we obtain the logarithmic embedding

Log: 𝐾× −→ R𝑟+𝑠 , 𝛼 ↦−→ (log( |𝜎1 (𝛼) |), . . . , log( |𝜎𝑟+𝑠 (𝛼) |)).

The celebrated theorem of Dirichlet asserts that Log(O×
𝐾
) is a lattice of rank 𝑟 + 𝑠 − 1 and ker(Log) is equal to the

torsion units of 𝐾 . In particular O×
𝐾
� Z𝑟+𝑠−1 × 𝑇 , where 𝑇 are the torsion units of 𝐾 . For 𝑆 a set of 𝑘 distinct

prime ideals, the 𝑆-unit group O×
𝐾,𝑆
⊆ 𝐾 is the multiplicative group of all 𝛼 that generate a principal ideal of the

form (𝛼)O𝐾 =
∏

𝔭∈𝑆 𝔭
𝑥𝔭 . The 𝑆-unit group is isomorphic to Z𝑟+𝑠+𝑘−1 × 𝑇 .

Assume now that 𝐿/𝐾 is a finite extension of number fields of degree 𝑑 with Tr𝐿/𝐾 : 𝐿 → 𝐾 the corresponding
trace map. Then we define the (relative) discriminantΔ𝐿/𝐾 of 𝐿/𝐾 to be theO𝐾 -ideal ⟨det((Tr𝐿/𝐾 (𝜔𝑖𝜔 𝑗 ))1≤𝑖, 𝑗≤𝑑) |
𝜔1, . . . , 𝜔𝑑 ∈ O𝐿⟩. Using this notion, (relative) discriminants behave well in extension of number fields. Indeed,
we have Δ𝐿 = N𝐿/𝐾 (Δ𝐿/𝐾 )Δ[𝐿:𝐾 ]

𝐾
.

3 THE CDW TECHNIQUE
3.1 SHORT GENERATORS OF PRINCIPAL IDEALS

Assume we obtained a (not necessarily short) generator in compact representation (see [10, 20]) of an input
principal ideal 𝐼 of the the cyclotomic field 𝐾 = Q(𝜁𝑚) of degree 𝑛 = 𝜑(𝑚) for some 𝑚 > 0. In this section,
we recall the main results of [18, 17] regarding the techniques for the computation of a short generator of 𝐼.
The techniques we are using in this section were originally stated in the case were 𝑚 = 2𝑘 for some 𝑘 , but they
were recently extended to the case of an arbitrary conductor in [17]. It relies on the so-called cyclotomic units,

86



Mildly Short Vectors in Ideals of Cyclotomic Fields Without Quantum Computers

which are the units generated by {±𝜁𝑚} ∪ {1 − 𝜁 𝑖𝑚 | 𝑖 = 1, . . . , 𝑚 − 1}. We denote this subgroup of O×
𝐾

by
𝐶. From [45, Th 4.12], we know that [Log(O×

𝐾
) : Log(𝐶)] has finite index. Let the 𝑝𝑖 be the prime divisors of

𝑚 = 𝑝
𝛼1
1 . . . 𝑝

𝛼𝑘

𝑘
, and let 𝑚𝑖 := 𝑚/𝑝𝛼𝑖

𝑖
. From [17, Th 3.4], we know that the elements Log(𝑣 𝑗 ) generate Log(𝐶)

and that


Log(𝑣 𝑗 )



 ∈ 𝑂 (√𝑚), where

𝑣 𝑗 =

{
1 − 𝜁 𝑗𝑚 if for all indices 𝑖, we have 𝑚𝑖 ∤ 𝑗 ;
1−𝜁 𝑗

𝑚

1−𝜁𝑚𝑖
𝑚

otherwise, for the unique 𝑖 such that 𝑚𝑖 | 𝑗 ,

for 𝑗 = 1, . . . , 𝑚. Denote by 𝐺 the Galois group Gal(Q(𝜁𝑚)/Q) and by 𝜏 ∈ 𝐺 the complex conjugation. The
algorithm for finding a short generator given any generator is summarized in Algorithm 1.

Algorithm 1 Finding a short generator of 𝑔O𝐾
Require: A generator 𝑔 of 𝐼 = 𝑔O𝐾 where 𝐾 = Q(𝜁𝑚).
Ensure: A unit 𝑢 such that 𝑢𝑔 is a short generator of 𝐼.

1: ∀𝑖, 𝑤𝑖 ← Log(𝑣𝑖),𝑊 ← (𝑤1, . . . , 𝑤𝑚−1).
2: 𝑠(𝐺) ← ∑

𝜎∈𝐺 𝜎 ∈ R[𝐺]/(1 − 𝜏).
3: 𝑡′ ← Log(𝑔), 𝑡′′ ← 1

𝜑 (𝑚) · log(N(𝑔)) · 𝑠(𝐺).
4: 𝑡 ← 𝑡′ − 𝑡′′ ∈ Log(O×

𝐾
) ⊗ R, 𝑥 ← (0, . . . , 0).

5: while ∥𝑊 · 𝑥 − 𝑡∥∞ >
√︁

2 · log(4𝜑(𝑚)) ·max𝑤∈𝑊 ∥𝑤∥ do
6: 𝑥 ← CV∞ (𝑊, 𝑡).
7: end while
8: return 𝑢 :=

∏
𝑖 𝑣
−𝑥𝑖
𝑖

.

The procedure CV∞ (𝑊, 𝑡) in Step 6 is described in [17, Cor. 2.2] and finds a vector 𝑥 in𝑊 that is close to 𝑡 for
the infinity norm, given the set of short generators 𝑤𝑖 for𝑊 that we have as input. One of the technical challenges
outlined in [17] is that we need to ensure that we can work with rational approximations of the 𝑤𝑖 , and of Log(𝑔)
while ensuring numerical stability. Assume the input 𝑔 is given as the (non-evaluated) product 𝑔 =

∏
𝑖≤𝑘 𝛾

𝑘𝑖
𝑖

for 𝛾𝑖 ∈ O𝐾 , 𝑘𝑖 > 0, and let 𝑝 =
⌈
log2

(
max(∥𝐿 · 𝑘 ∥, ∥𝑘 ∥∞, 10

√
𝑛∥𝑊 ∥2𝑛−3)

)⌉
. In [17, Sec. 3.4], fixed point

approximations with 𝑝 + 𝑚2 bits of precision were used, that is, the approximation of 𝑥 ∈ R is given by 𝑥 ∈ Q of
the form 𝑎𝑥

2𝑝+𝑚2 where 𝑎𝑥 ∈ Z. Then, to use CV∞ (𝑊, 𝑡), we need an approximation 𝑊 of 𝑊 with 𝑝 + 𝑚2 bits of
precision that lies in Log(O×

𝐾
) ⊗ R. This is achieved by computing an approximation 𝑊̃ of𝑊 with 𝑝 + 𝑚2 + 1 bits

of precision and setting

𝑤𝑖 := 𝑤𝑖 −
2

𝜑(𝑚)

𝜑 (𝑚)/2∑︁
𝑗=1

˜𝑤𝑖, 𝑗 𝑠(𝐺).

The matrix𝑊 satisfies ∥𝑊 − 𝑊̃ ∥∞ ≤ 1
2𝑝+𝑚2+1 , and for all 𝑖 we have 𝑤𝑖 ∈ (𝑠(𝐺) · R)⊥ = log(O×

𝐾
) ⊗ R. Then it can

be shown that the element 𝑥 such that

∥𝑊 · 𝑥 − 𝑡∥∞ ≤
√︁

2 log(4𝜑(𝑚)) max
𝑤∈𝑊

∥𝑤∥

gives us a short generator 𝑔 ·∏𝑖 𝑣
−𝑥𝑖
𝑖

of 𝐼.

Theorem 1 ([17, Th. 3.6]). There is a randomized algorithm that for any 𝑔 ∈ O𝐾 finds an element ℎ ∈ O𝐾 such
that 𝑔O𝐾 = ℎO𝐾 and

∥ℎ∥ = 𝑒𝑂
(√
𝑚 log(𝑚)

)
· N(𝑔)1/𝜑 (𝑚) .

3.2 THE CLOSE PRINCIPAL MULTIPLE PROBLEM
The input to the CDW algorithm for the search for a mildly short vector is not necessarily a principal ideal. To

reduce the search for mildly short vectors to short-PIP, we first find an ideal 𝔟 ⊆ O𝐾 such that 𝔞𝔟 is principal, and
N(𝔟) ∈ 2𝑂̃ (𝑛3/2 ) where 𝑛 = [𝐾 : Q]. In [16], this task is referred to as the Close Principal Multiple Problem. Then,
the techniques of Section 3.1 yield a short generator of 𝔞𝔟, which is a solution to 𝛾-SVP in 𝔞 for 𝛾 in 2𝑂̃ (

√
𝑛) . This

involves three main steps:
1. Multiply 𝔞 by random ideals of small norm 𝔞0 until the class of 𝔞′ := 𝔞0𝔞 is in Cl− (O𝐾 ) ⊆ Cl(O𝐾 ), the

“minus part” of Cl(O𝐾 ).
2. Decompose the class of 𝔞′ in Cl− (O𝐾 ) according to a set 𝑆 = {𝔭1, . . . , 𝔭𝑘} of prime ideals that generate

Cl− (O𝐾 ).
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3. Find a close vector 𝑣 in a lattice L (which is known to annihilate Cl− (O𝐾 )) to 𝑡 ∈ Z𝑘 such that 𝔞′−1 ∼∏
𝑖 𝔭
𝑡𝑖
𝑖
.

Then the solution to the problem is 𝔟 := 𝔞0
∏
𝑖 𝔭
𝑡𝑖−𝑣𝑖
𝑖
∼ 𝔞−1 (which has small norm if the vector 𝑣 found in Step (3)

is close enough to 𝑡). In [16, 17], Steps (1) and (2) require the quantum polynomial time algorithm of [11]. With
classical computers, subexponential algorithms for ideal class group computations and the principal ideal problem
(PIP) such as [13] can be used, but they do not provide a better complexity than the BKZ algorithm. Step (3) on
the other hand, can be performed efficiently on a classical computer with the methods introduced in [16].

If 𝔞 ∼ ∏
𝑖 𝔭
𝑥𝑖
𝑖

, then 𝔟 =
∏
𝑖 𝔭
𝑥′
𝑖

𝑖
with 𝑥′

𝑖
= −𝑥𝑖 mod ℎ and ℎ = |Cl(O𝐾 ) | satisfies that 𝔞𝔟 is principal. The issue

is that the 𝑥′
𝑖
can be quite large, thus preventing 𝔟 from satisfying N(𝔟) ≤ 2𝑂̃ (𝑛3/2 ) . However, the techniques of [16,

17] show how to derive 𝔟 ∼ ∏
𝑖 𝔭
𝑥′
𝑖

𝑖
with small exponents. We recall the general idea of this method, and we refer

to [16, 17] for the details of the proofs. This task involves the search for close vectors in the so-called Stickelberger
lattice, and to bound the runtime, we need to rely on a key conjecture:

Conjecture 1 ([17, Assumption 1]). There are integers 𝑙 ≤ Polylog(𝑚) and 𝐵 ≤ Poly(𝑚) such that the following
holds. Choose uniformly at random 𝑙 prime ideals 𝔭1, . . . , 𝔭𝑙 among the primes of norm less than 𝐵 that lie in
Cl− (O𝐾 ). Then the set 𝑆 := {𝔭𝜎

𝑖
| 𝜎 ∈ 𝐺} generates Cl− (O𝐾 ) with probability at least 1/2.

We first compute a short generating set of Cl− (O𝐾 ). Then we perform a random walk in the Cayley graph of
Cl(O𝐾 ) whose edges are defined by the primes in 𝑆 from Conjecture 1. In other words, this means that we multiply
𝔞 by random elements of 𝑆 until we get an ideal 𝔞′ whose class lies in Cl− (O𝐾 ). This is described in [17, Alg.
5]. Its cost is in 𝑂

(
ℎ+
𝐾
· Poly(𝑚, log(N(𝔞))) · Cost(PIP)

)
according to [17, Lem. 5.2], where ℎ+

𝐾
denotes the class

number of the totally real subfield Q(𝜁𝑚 + 𝜁−1
𝑚 ). To bound this asymptotic cost, we need to assume that ℎ+

𝐾
is small

enough:

Conjecture 2 ([17, Assumption 2]). For any integer 𝑚, it holds that ℎ+ (𝑚) ≤ Poly(𝑚).
So we find small 𝑥𝑖 ≤ 0 such that the class of 𝔞′ := 𝔞 ·∏𝑖 𝔭

𝑥𝑖
𝑖

is in Cl− (O𝐾 ), and then we decompose the
ideal class of 𝔞′ according to the set of primes 𝑆 defined by Conjecture 1 to get a vector ®𝑦 such that 𝔞′ ∼ ∏

𝑖 𝔭
𝑦𝑖
𝑖

.
Then [17, Sec. 4] constructs a lattice of vectors in Z[𝐺] that act trivially on Cl− (O𝐾 ) from the Stickelberger ideal.
The Stickelberger ideal (see [17, Sec. 4.1]) is an ideal of Z[𝐺] that annihilates Cl(O𝐾 ) but that does not have full
rank as a Z[𝐺]-module. To get a full rank module, we project it to 𝑅 = Z[𝐺]/(1 + 𝜏), where 𝜏 is the complex
conjugation. The action of the resulting lattice 𝐿 of 𝑅-rank 𝜑(𝑚)/2 annihilates Cl− (O𝐾 ) because 𝜏 + 1 annihilates
Cl− (O𝐾 ). The decomposition of 𝔞′ is then split according to each cycle under the action of 𝑅:

𝔞′ ∼
( ∏
𝜎∈𝐺
(𝔭𝜎1 )

𝑦1,𝜎

) ( ∏
𝜎∈𝐺
(𝔭𝜎2 )

𝑦2,𝜎

)
. . .

( ∏
𝜎∈𝐺
(𝔭𝜎𝑑 )

𝑦𝑑,𝜎

)
Then, we apply [17, Alg. 3] on each cycle ®𝑦𝑖 := (𝑦𝑖,𝜎)𝜎∈𝐺 . According to [17, Th. 4.7], this yields a vector ®𝑦′

𝑖

such that
∏
𝜎∈𝐺

(
𝔭𝜎
𝑖

) 𝑦𝑖,𝜎 ∼ ∏
𝜎∈𝐺

(
𝔭𝜎
𝑖

) 𝑦′
𝑖,𝜎 with ∥ ®𝑦′

𝑖
∥1 ≤ 1

4𝜑(𝑚)
3/2 in polynomial time in log ∥ ®𝑦𝑖 ∥. Then, under

Conjecture 1, 𝔟 :=
∏
𝑖

∏
𝜎 (𝔭𝜎𝑖 )

𝑦′
𝑖,𝜎 satisfies N(𝔟) ∈ 2𝑂 (𝑛3/2 ) and 𝔞𝔟 is principal, thus solving the Close Principal

Multiple Problem.

4 NORM RELATIONS
4.1 DEFINITION

In this section, we recall some facts about norm relations and their existence. We refer the reader to [14] for
details. Let 𝐾 be a Galois number field with Galois group 𝐺 = Gal(𝐾/Q). For a subgroup 𝐻 ≤ 𝐺 we denote
by 𝑁𝐻 =

∑
ℎ∈𝐻 ℎ ∈ Q[𝐺] the norm of 𝐻 as an element of the group algebra Q[𝐺]. A norm relation of 𝐺 is an

equality of the form 1 =
∑𝑙
𝑖=1 𝑎𝑖N𝐻𝑖

𝑏𝑖 in Q[𝐺] with 𝑎𝑖 , 𝑏𝑖 ∈ Q[𝐺] and subgroups 1 ≠ 𝐻𝑖 ≤ 𝐺. By clearing
denominators, a norm relation can always be written as

𝑑 =

𝑙∑︁
𝑖=1

𝑎𝑖N𝐻𝑖
𝑏𝑖 (1)

with 𝑑 ∈ N>0 minimal such that 𝑎𝑖 , 𝑏𝑖 ∈ Z[𝐺]. We call 𝑑 the denominator of the norm relation.
The existence of such a norm relation for a number field implies relations between arithmetic objects of the

field 𝐾 and its subfields (see [14]). In the present paper, we will use the fact that Equation (1) implies that for all
𝑥 ∈ 𝐾× we have

𝑥𝑑 =

𝑙∏
𝑖=1

N𝐾/𝐾𝐻𝑖 (𝑥𝑏𝑖 )𝑎𝑖 , (2)
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where 𝐾𝐻 = {𝑥 ∈ 𝐾 | 𝜎(𝑥) = 𝑥 for all 𝜎 ∈ 𝐻} is the fixed field of 𝐻, and 𝑥𝑎 =
∏
𝑔∈𝐺 𝑔(𝑥)𝑎𝑔 for all 𝑥 ∈ 𝐾× and

𝑎 =
∑
𝑔∈𝐺 𝑎𝑔𝑔 ∈ Z[𝐺]. We will most often use an equality of the form (2) when referring to a norm relation. Let

now 𝔞 be a fractional ideal of 𝐾 . From [33, Chapter III, §1, Proposition 1.6] it follows that for a subgroup 𝐻 ≤ 𝐺
the following relation holds: N𝐾/𝐾𝐻 (𝔞)O𝐾 =

∏
𝜎∈𝐻 𝜎(𝔞) = 𝔞𝑁𝐻 . In particular, from Equation (1), we also obtain

𝔞𝑑 =

𝑙∏
𝑖=1

N𝐾/𝐾𝐻 (𝔞𝑏𝑖 )𝑎𝑖O𝐾 . (3)

Example 1. Let 𝐺 = 𝐶2 × 𝐶2 = ⟨𝜎, 𝜏⟩. Then we have the norm relation 2 = 𝑁⟨𝜎⟩ + 𝑁⟨𝜏⟩ − 𝜎𝑁⟨𝜎𝜏⟩ . This is the
norm relation used implicitly in both [5] and [12].

Due to Funakura [21] we have the following simple criterion for the existence of norm relations for abelian
groups 𝐺. Note that this implies that norm relations exist if and only if 𝐺 is not cyclic. Thus, for cyclotomic fields
𝐾 = Q(𝜁𝑚) this implies that a norm relation exists if and only if 𝑚 is not 2, 4, 𝑝𝑘 or 2𝑝𝑘 , where 𝑝 is an odd prime
and 𝑘 ∈ N.

Theorem 2 ([14, Theorem 2.27]). Let 𝐺 be a finite abelian group, and write 𝐺 � 𝐶 × 𝑄 where 𝐶 is the largest
cyclic factor of 𝐺.

1. The group 𝐺 admits a norm relation with denominator 1 if and only if |𝑄 | is divisible by at least two distinct
primes. If the condition is satisfied, then 𝐺 admits a norm relation with 𝑎𝑖 ∈ Z, denominator 1, and where
all 𝐻𝑖 satisfy that 𝐺/𝐻𝑖 is a 𝑝𝑖-group times a cyclic group, for some prime number 𝑝𝑖 .

2. Assume that𝑄 is a 𝑝-group. Then 𝐺 admits a norm relation if and only if𝑄 ≠ 1. If the condition is satisfied,
then 𝐺 admits a norm relation with 𝑎𝑖 ∈ Z, denominator a power of 𝑝 and where all 𝐻𝑖 satisfy that 𝐺/𝐻𝑖 is
a cyclic group.

4.2 SATURATION TECHNIQUES
Equation (2) shows us that when a norm relation of denominator 𝑑 involving the fields 𝐾1, . . . , 𝐾𝑙 exists, then

we know that the 𝑑-th powers of all elements 𝑥 ∈ 𝐾 can be expressed as products of elements in 𝐾1, . . . , 𝐾𝑙 .
Suppose we want to compute a generating set of a multiplicative group 𝑈 ⊆ 𝐾× (typically the group of units, of
the 𝑆-unit group for a certain set 𝑆), we can use the following recursive strategy:

1. Compute a subgroup 𝑉 ⊆ 𝑈 such that 𝑉 ∩ (𝐾×)𝑑 = 𝑈𝑑 .
2. Compute generators 𝑣1, . . . , 𝑣𝑘 of 𝑉 ∩ (𝐾×)𝑑 .
3. Take the 𝑑-th roots of the 𝑣𝑖 and deduce generators of𝑈.

When 𝑈 is the 𝑆-unit group for a set of prime ideals 𝑆 that is stable under the action of the Galois group, we can
take 𝑉 to be the subgroup of 𝑈 generated by all the 𝑆𝑖-unit groups of 𝐾𝑖 , where 𝑆𝑖 is the set of prime ideals of
𝐾𝑖 lying under the primes of 𝑆. Then, since 𝑉 contains all N𝐾/𝐾𝑖

(𝑈), we know from equation (2) that it contains
all 𝑑-th powers of 𝑈. Additionally, if 𝑥𝑑 ∈ 𝑉 , then 𝑥 must be only divisible by elements of 𝑆, hence 𝑥 ∈ 𝑈 and
𝑉 ∩ (𝐾×)𝑑 = 𝑈𝑑 . Step (2) is known as a saturation technique. We define the 𝑑-saturation𝑊 of 𝑉 as the smallest
group𝑊 ⊆ 𝐾× with𝑉 ⊆ 𝑊 and 𝐾×/𝑊 being 𝑑-torsion free. The group𝑉 is 𝑑-saturated if it equals its 𝑑-saturation.
The saturation technique takes the subgroup 𝑉 of the group𝑈 that we desire to compute, with the guarantee that𝑈
equals the 𝑑-saturation of 𝑉 , and computes generators for (𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 .

When dealing with an arbitrary denominator 𝑑, we first factor 𝑑 as a product of prime powers, and we repeat
Steps (2) and (3) for all prime powers dividing 𝑑. Thus from now on we will assume that 𝑑 is a prime power.
Saturation employs local computations to detect global powers. This a well known technique in computational
algebraic number theory, used for example in the class and unit group computation of number fields ([37, Section
5.7]) or the number field sieve ([1]). Note that, in contrast to previous applications of this technique, in our case
the number 𝑑 is in general not a prime. As a consequence, we will rely on the Grunwald–Wang theorem (see [3,
Chapter X] or [34, Chapter IX, §1]) and therefore have to consider the following dichotomy. For 𝑘 ∈ Z≥1 denote
by 𝜁𝑘 a primitive 𝑘-th root of unity and set 𝜂𝑘 = 𝜁𝑘 + 𝜁−1

𝑘
. Let 𝑠 ≥ 2 be an integer such that 𝜂𝑠 ∈ 𝐾 but 𝜂𝑠+1 ∉ 𝐾 .

Moreover let 𝑆 be a finite set of prime ideals of O𝐾 . Recall that 𝑑 is a prime power. We say that we are in the bad
case when the following conditions are simultaneously satisfied:

1. The number 𝑑 = 2𝑡 is even and 𝑡 > 𝑠.
2. The elements −1, 2 + 𝜂𝑠 and −(2 + 𝜂𝑠) are non-squares in 𝐾 .
3. We have

{𝔭 | 2 ∈ 𝔭 and −1, 2 + 𝜂𝑠 and −(2 + 𝜂𝑠) are non-squares in 𝐾𝔭} ⊆ 𝑆.

If we are not in the bad case, we say that we are in the good case. The terminology is explained by the theorem of
Grunwald–Wang, which gives the following connection between global and local 𝑑-th powers.
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Theorem 3 (Grunwald–Wang). Consider the canonical map

𝐾×/(𝐾×)𝑑 −→
∏
𝔭∉𝑆

𝐾×𝔭 /(𝐾×𝔭 )𝑑 .

If we are in the good case, this map is injective. If we are in the bad case, the kernel of the map is ⟨𝜂𝑠⟩ � Z/2Z.

The good case Finding 𝑑-th powers in the good case can be done exclusively by detecting local 𝑑-th powers
modulo a set of prime ideals. Recall that for a set 𝑆 of prime ideals of O𝐾 we denote by O𝐾,𝑆 the ring of 𝑆-integers,
that is, the elements 𝑥 ∈ 𝐾 with 𝑣𝔭 (𝑥) ≥ 0 for all 𝔭 ∉ 𝑆, and O×

𝐾,𝑆
the group of 𝑆-units, i.e., the elements 𝑥 ∈ 𝐾×

such that 𝑣𝔭 (𝑥) = 0 for all 𝔭 ∉ 𝑆.

Proposition 1 ([14, Proposition 4.5]). Assume that 𝔭 is a non-zero prime ideal with 𝑑 ∉ 𝔭 and let 𝜛 ∈ 𝐾 be a
local uniformizer at 𝔭, that is, an element with 𝑣𝔭 (𝜛) = 1. Then the map

𝐾×𝔭 /(𝐾×𝔭 )𝑑 −→ Z/𝑑Z × 𝑘×𝔭 /(𝑘×𝔭 )𝑑 , 𝑥 ↦−→ (𝑣, 𝑥𝜛−𝑣) where 𝑣 = 𝑣𝔭 (𝑥),

is an isomorphism.

Proposition 2. Assume that we are in the good case of Grunwald–Wang. For a multiplicative finitely generated
subgroup 𝑉 ⊆ 𝐾× we have

(𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 =
⋂
𝑑∉𝔭

ker(𝑉/𝑉𝑑 → Z/𝑑Z × 𝑘×𝔭 /(𝑘×𝔭 )𝑑).

There exists 𝑐0 ∈ R>0 (depending on 𝐾,𝑉 and 𝑑) such that

(𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 =
⋂

𝑑∉𝔭,N(𝔭)≤𝑐0

ker(𝑉/𝑉𝑑 → Z/𝑑Z × 𝑘×𝔭 /(𝑘×𝔭 )𝑑).

Proof. The first part is [14, Proposition 4.6]. As𝑉 is finitely generated,𝑉/𝑉𝑑 is a finitely generated (Z/𝑑Z)-module.
Thus 𝑉/𝑉𝑑 is Artinian and the existence of 𝑐0 follows from the first part. □

The general case In the general case, 𝑑 is a power of 2, but the approach we sketch here applies to 𝑑 = 𝑝𝑡 a
power of an arbitrary prime 𝑝. In essence, it consists in inductively computing the 𝑝-saturation of 𝑉 and replacing
it with its 𝑝-saturation 𝑡 times. At each step, 𝑝-th roots of generators of (𝑉 ∩ (𝐾×) 𝑝)/𝑉 𝑝 need to be computed,
which makes this process in practice more computationally expensive than in the so-called good case, but does not
change the overall asymptotic complexity.

5 IDEAL DECOMPOSITION FROM NORM RELATIONS
Given an input ideal 𝔞 whose ideal class in Cl(O𝐾 ) is known to be a product of powers of the classes of

𝔤1, . . . , 𝔤𝑘 , the task of finding exponents such that 𝔞 ∼ ∏
𝑖 𝔤
𝑥𝑖
𝑖

is central to the CDW framework. In [16], this
requires a quantum computer. The best classical algorithms for ideal class decomposition have the same asymptotic
cost as the computation of Cl(O𝐾 ), which is subexponential. In this section, we show how to leverage norm
relations to reduce the decomposition of the class of an input ideal 𝔞 ⊆ 𝐾 to subfield computations. We assume
that there are subfields (𝐾𝑖)𝑖≤𝑙 such that ideals of 𝐾 satisfy the norm equation (2). We first tackle the case of the
decomposition of 𝔞 according to a set 𝑆 of prime ideals invariant under the action of Gal(𝐾/Q). Then, given a
subgroup 𝐻 ⊆ Cl(O𝐾 ), and generators 𝔤1, . . . , 𝔤𝑘 of order 𝑑1, . . . , 𝑑𝑘 such that 𝐻 ≃ ⟨𝔤1⟩ × . . . × ⟨𝔤𝑘⟩, we show
how to find the unique (𝑥1, . . . , 𝑥𝑘) ∈ Z/𝑑1Z × . . . × Z/𝑑𝑘Z such that 𝔞 ∼∏

𝑖 𝔤
𝑥𝑖
𝑖

.

5.1 IDEAL DECOMPOSITION WITH RESPECT TO PRIMES
Let 𝑆 = {𝔭𝑖}𝑖≤𝑘 be a set of non-zero prime ideals of O𝐾 that is stable under the action of 𝐺 = Gal(𝐾/Q). Let

⟨𝑆⟩ ⊆ Cl(O𝐾 ) be the subgroup of Cl(O𝐾 ) generated by the classes of the elements of 𝑆. Assume that an ideal 𝔞
of O𝐾 satisfies (3), i.e. 𝔞𝑑 =

∏𝑙
𝑖=1 N𝐾/𝐾𝑖

(𝔞𝑏𝑖 )𝑎𝑖O𝐾 . Then, for each 𝑖, one can recursively find the decomposition
of N𝐾/𝐾𝑖

(𝔞𝑏𝑖 ) in Cl(O𝐾𝑖
) with respect to the 𝔭 ∩ 𝐾𝑖 for 𝔭 ∈ 𝑆, and deduce the decomposition of N𝐾/𝐾𝑖

(𝔞𝑏𝑖 )𝑎𝑖O𝐾
in Cl(O𝐾 ) with respect to 𝑆 (each (𝔭 ∩ 𝐾𝑖) O𝐾 is a product of elements of 𝑆 since it is assumed to be stable under
the action of 𝐺). At this point, we have ®𝑥 such that 𝔞𝑑 ∼∏

𝑖 𝔭
𝑥𝑖
𝑖

.
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This information alone is not enough to decompose 𝔞 with respect to the 𝔭𝑖 in Cl(O𝐾 ). In particular, we need
to use a generator of the principal ideal 𝔞𝑑

∏
𝑖 𝔭
−𝑥𝑖
𝑖

. To get this information, in each subfield, we can make sure
that we obtain an identity of the form

N𝐾/𝐾𝑖
(𝔞𝑏𝑖 )𝑎𝑖O𝐾 = (𝛼𝑖)

∏
𝑗

𝔭
𝑥𝑖, 𝑗

𝑗
.

This can be done by working exclusively in the subfields (an ideal class decomposition in Cl(O𝐾𝑖
) followed by

solving a PIP in 𝐾𝑖). By recombining all subfield information, we obtain an identity of the form

𝔞𝑑 = (𝛼)
∏
𝑖

𝔭
𝑦𝑖
𝑖
, (4)

where ®𝑦 ∈ Z𝑘 and 𝛼 ∈ 𝐾 is given in product form. We summarize this procedure in Algorithm 2.

Algorithm 2 Decomposition of 𝔞𝑑 with norm relation
Require: Number field 𝐾 of unit rank 𝑟 , norm relation 𝑑 =

∑
𝑖 𝑎𝑖N𝐻𝑖

𝑏𝑖 , ideal 𝔞 and set 𝑆 of 𝑘 prime ideals stable
under the action of 𝐺 = Gal(𝐾/Q), and with [𝔞] ∈ ⟨𝑆⟩.

Ensure: ®𝑦 and 𝛼 such that 𝔞𝑑 = (𝛼)∏𝑖 𝔭
𝑦𝑖
𝑖

.
1: Compute a basis (𝛽𝑖)𝑖≤𝑟+𝑘 for the 𝑆-unit group (using recursive norm relation techniques), and let𝑀 ∈ Z(𝑟+𝑘 )×𝑘

such that (𝛽𝑖) =
∏
𝑗 𝔭

𝑀𝑖, 𝑗

𝑗
.

2: for 𝐾𝑖 in the norm relation do
3: Compute 𝛼𝑖 , ®𝑥𝑖 such that N𝐾/𝐾𝑖

(𝔞𝑏𝑖 )𝑎𝑖O𝐾 = (𝛼𝑖)
∏
𝑗 (𝔭 𝑗 ∩ 𝐾𝑖)𝑥𝑖, 𝑗 .

4: end for
5: Deduce 𝛼 in product form and ®𝑦 such that 𝔞𝑑 = (𝛼)∏𝑖 𝔭

𝑦𝑖
𝑖

.
6: return 𝛼, ®𝑦.

Computing 𝑑-th root in Cl(O𝐾 ) Now we also know that since the class of 𝔞 is a product of the classes of 𝑆,
there must exist ®𝑧 ∈ Z𝑘 and 𝛽 ∈ 𝐾 such that 𝔞 = (𝛽)∏𝑖 𝔭

𝑧𝑖
𝑖

, which means that

𝔞𝑑 = (𝛽𝑑)
∏
𝑖

𝔭
𝑑𝑧𝑖
𝑖
.

Now we have the equality of ideals (𝛽𝑑)∏𝑖 𝔭
𝑑𝑧𝑖
𝑖

= (𝛼)∏𝑖 𝔭
𝑦𝑖
𝑖

, but since 𝛼 is not necessarily 𝛽𝑑 , we don’t
necessarily have 𝑦𝑖 = 𝑑𝑧𝑖 . However, we know that

∏
𝑖 𝔭
𝑦𝑖
𝑖
∼ 𝔭

𝑑𝑧𝑖
𝑖

so we must have ®𝑦 − 𝑑®𝑧 ∈ L where L ⊆ Z𝑘 is
the lattice of relations between the 𝔭𝑖 , i.e. the lattice of vectors ®𝑢 such that

∏
𝑖 𝔭
𝑢𝑖
𝑖

is a principal ideal. We want to
re-write 𝛼 as 𝛼 = 𝛽′𝑑 · 𝛿 where 𝛿 is an 𝑆-unit with (𝛿)O𝐾 =

∏
𝑖 𝔭
𝑢𝑖
𝑖

such that ®𝑢 + ®𝑦 ∈ 𝑑Z𝑘 . If this is the case, then

𝔞𝑑 = (𝛽′𝑑)∏𝑖 𝔭
𝑑𝑧′

𝑖

𝑖
where ®𝑧′ := ®𝑢 + ®𝑦. Once an 𝑆-unit 𝛿0 such that (𝛿0) =

∏
𝑖 𝔭
𝑢0
𝑖

𝑖
with ®𝑢 (0) + ®𝑦 ∈ 𝑑Z𝑘 is found,

then any other solution 𝛿 is of the form 𝛿 = 𝛿0𝛿
′ where 𝛿′ is an 𝑆-unit satisfying (𝛿′)O𝐾 =

∏
𝑖 𝔭
𝑢′
𝑖

𝑖
with ®𝑢′ ∈ 𝑑Z𝑘 .

The set of such 𝛿′ is a subgroup of the 𝑆-unit group
Using saturation methods sketched in Section 4.2, we can compute generators 𝛼1, . . . , 𝛼𝑟+𝑘+1 of the 𝑆-unit group

from subfield computations (where 𝑟 is the rank of the unit group), together with a matrix 𝑀 ∈ Z(𝑟+𝑘+1)×𝑘 whose
rows are the valuations of the 𝛼𝑖 according to the primes in 𝑆. Thus, there is ®𝑥 ∈ Z𝑟+𝑘+1 such that ®𝑦 = ®𝑥𝑀 + 𝑑®𝑧, i.e.

®𝑦 = ®𝑥𝑀 mod 𝑑.

This system does not have a unique solution. However, we can put 𝑀 in row reduced echelon form modulo 𝑑 and
find

1. a solution ®𝑥 (0) to ®𝑦 = ®𝑥𝑀 mod 𝑑,

2. a basis ®𝑥 (1) , . . . , ®𝑥 (𝑚) of the left kernel of 𝑀 mod 𝑑.
So all the ®𝑥 such that ®𝑦 = ®𝑥𝑀 mod 𝑑 are of the form ®𝑥 = ®𝑥 (0) +∑ 𝑗 𝑎 𝑗 ®𝑥 ( 𝑗 ) , including the one that satisfies ®𝑦 = ®𝑥𝑀+𝑑®𝑧
for ®𝑧 defined above. We denote by ®𝑥 ( 𝑗 )𝑀𝑖 the 𝑖-th coefficient of ®𝑥 ( 𝑗 )𝑀 , and by 𝛼𝑖 ∈ 𝐾 the element that satisfies∏
𝑗 𝔭

𝑀𝑖, 𝑗

𝑗
= (𝛼𝑖)O𝐾 . With the notation previously used, 𝛿0 =

∏
𝑖 𝛼

𝑥
(0)
𝑖

𝑖
, while the subgroup of 𝛿′’s is generated by

𝛿𝑖 :=
∏
𝑖 𝛼

𝑥
( 𝑗)
𝑖

𝑖
for 𝑖 = 1, . . . , 𝑚. Therefore, we have
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(𝛼)
∏
𝑖

𝔭
𝑦𝑖
𝑖
= (𝛼)

∏
𝑖

𝔭
®𝑥𝑀𝑖

𝑖
·
∏
𝑖

𝔭
𝑦𝑖− ®𝑥𝑀𝑖

𝑖

= (𝛼)
∏
𝑖

𝔭
®𝑥 (0)𝑀𝑖

𝑖
·
∏
𝑗≤𝑚

[∏
𝑖

𝔭
®𝑥 ( 𝑗)𝑀𝑖

𝑖

]𝑎 𝑗

·
∏
𝑖

𝔭
𝑦𝑖− ®𝑥𝑀𝑖

𝑖

= (𝛼)
(∏
𝑖

𝛼
𝑥
(0)
𝑖

𝑖

)
·
(∏
𝑗≤𝑚

[∏
𝑖

𝛼
𝑥
( 𝑗)
𝑖

𝑖

]𝑎 𝑗
)
·
∏
𝑖

𝔭
𝑦𝑖− ®𝑥𝑀𝑖

𝑖

= (𝛼′)
(∏
𝑗

𝛿
𝑎 𝑗

𝑗

)
·
∏
𝑖

𝔭
𝑑𝑧′

𝑖

𝑖
for some 𝑧′𝑖 ∈ Z

where we have a product representation of 𝛼′ ∈ 𝐾 and the 𝛿 𝑗 ∈ 𝐾 .
So we are looking for (𝑎 𝑗 )𝑖≤𝑚 such that 𝛼′ ·∏ 𝑗 𝛿

𝑎 𝑗

𝑗
= 𝛽′𝑑 for some 𝛽′ ∈ 𝐾 . Once we find (𝑎 𝑗 )𝑖≤𝑚, we derive

the corresponding ®𝑥 = ®𝑥 (0) +∑
𝑗≤𝑚 𝑎 𝑗 ®𝑥 ( 𝑗 ) and then ®𝑧′ = 1

𝑑
(®𝑦 − ®𝑥𝑀). This means that we have the identity

𝔞𝑑 = (𝛽′𝑑)
∏
𝑖

𝔭
𝑑𝑧′

𝑖

𝑖
.

Such an identity exists at least for 𝛽′ = 𝛽 and 𝑧′
𝑖
= 𝑧𝑖 (with the notation above), but other choices of (𝑎𝑖)𝑖≤𝑚 might

lead to other solutions. Once a solution is found, we have 𝔞 = (𝛽′)∏𝑖 𝔭
𝑧′
𝑖

𝑖
since an equality of fractional ideals of

the form 𝐼𝑑 = 𝐽𝑑 implies that 𝐼 = 𝐽 by uniqueness of prime decomposition. Thus, we are able to conclude that
𝔞 ∼∏

𝑖 𝔭
𝑧′
𝑖

𝑖
, which solves the ideal class decomposition problem.

Now the question is how to find the desired (𝑎𝑖)𝑖≤𝑚? Since there is a solution, we know that 𝛼′ is a 𝑑-th power
modulo 𝑈 for 𝑈 = ⟨𝛿1, . . . , 𝛿𝑚⟩. This means that there are 𝑥 ∈ 𝐾× and 𝑢 ∈ 𝑈 such that 𝛼′ = 𝑢 · 𝑥𝑑 . To find the
𝑎𝑖 , we apply a variation of the saturation methods described in Section 4.2. We begin with the case of 𝑑 a prime
power in the good case of Grunwald–Wang.

The good case. We assume that we are in the good case of Grunwald–Wang. The aforementioned discussion
shows that it is sufficient to determine whether an element 𝛼′ ∈ 𝐾 is a 𝑑-th power modulo𝑈 = ⟨𝛿1, . . . , 𝛿𝑚⟩.

Proposition 3. Let 𝑉 = ⟨𝑈, 𝛽⟩ where 𝑈 = ⟨𝛼1, . . . , 𝛼𝑙⟩, and assume 𝑈 ∩ ⟨𝛽⟩ = {1}, 𝑑 is a prime power, and that
we are in the good case of Grunwald–Wang. Furthermore let 𝑐 ∈ R>0 be arbitrary. Assume that the intersection⋂

𝑑∉𝔭,N(𝔭)≤𝑐
ker(𝑉/𝑉𝑑 → Z/𝑑Z × 𝑘×𝔭 /(𝑘×𝔭 )𝑑) ⊆ 𝑉/𝑉𝑑

is generated by the classes of 𝛼1𝛽
𝑛1 , . . . , 𝛼𝑙𝛽

𝑛𝑙 ∈ 𝑉 with 𝛼𝑖 ∈ 𝑈, 𝑛𝑖 ∈ Z.
1. If gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) ≠ 1, then 𝛽 is not a 𝑑-th power modulo𝑈.
2. Assume 𝛽 is not a 𝑑-th power modulo𝑈. Then for 𝑐 sufficiently large we have gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) ≠ 1.
3. Assume 𝛽 is a 𝑑-th power modulo 𝑈. Then for 𝑐 sufficiently large we have gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) = 1 and that

the element 𝛼𝑘1
1 · · · 𝛼

𝑘𝑙
𝑙
𝛽 is a 𝑑-th power, where 𝑘𝑖 ∈ Z are integers with 1 = 𝑘0𝑑 +

∑𝑙
𝑖=1 𝑘𝑖𝑛𝑖 .

Proof. Let us denote by𝑊/𝑉𝑑 the intersection of the kernels.
(1): Assume that 𝛽 is a 𝑑-th power modulo𝑈, that is, 𝛼𝛽 ∈ 𝑉 ∩ (𝐾×)𝑑 for some 𝛼 ∈ 𝑈. As (𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 ⊆

𝑊/𝑉𝑑 , there exist integers 0 < 𝑘𝑖 < 𝑑 such that

𝛼𝛽 = (𝛼1𝛽𝑛1 )𝑘1 · · · (𝛼𝑙𝛽𝑛𝑙 )𝑘𝑙

in 𝑊/𝑉𝑑 ⊆ 𝑉/𝑉𝑑 . As 𝑉 is generated by 𝑈 and 𝛽, the group 𝑉𝑑 is generated by 𝑈𝑑 and 𝛽𝑑 . Hence there exists
𝛼0 ∈ 𝑈 and 𝑘0 ∈ Z such that

𝛼𝛽 = (𝛼1𝛽
𝑛1 )𝑘1 · · · (𝛼𝑙𝛽𝑛𝑙 )𝑘𝑙𝛼𝑑0 (𝛽

𝑑)𝑘0 .

From𝑈 ∩ ⟨𝛽⟩ = {1} we get 1 = 𝑘0𝑑 +
∑𝑙
𝑖=1 𝑘𝑖𝑛𝑖 i.e. gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) = 1.

(2): Let 𝑐0 be the constant from Proposition 2 and assume 𝑐 ≥ 𝑐0. In particular it holds (𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 =

𝑊/𝑉𝑑 . Assume gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) = 1. Then there exist 𝑘𝑖 ∈ Z, 0 ≤ 𝑖 ≤ 𝑙, such that 1 = 𝑘0𝑑 +
∑𝑙
𝑖=1 𝑘𝑖𝑛𝑖 . Then

the element 𝛼 = 𝛼
𝑘1
1 · · · 𝛼

𝑘𝑙
𝑙

satisfies

𝛼𝛽 = 𝛼𝛽𝑛1𝑘1 · · · 𝛽𝑛𝑙𝑘𝑙 𝛽𝑑𝑘0 = (𝛼1𝛽
𝑛1 )𝑘1 · · · (𝛼𝑙𝛽𝑛𝑙 )𝑘𝑙 𝛽𝑑𝑘0 ,
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that is 𝛼𝛽 ∈ 𝑊/𝑉𝑑 = (𝑉 ∩ (𝐾×)𝑑)/𝑉𝑑 and 𝛽 is a 𝑑-th power modulo𝑈.
(3): Let 𝑐0 be as in Proposition 2 and assume 𝑐 ≥ 𝑐0. Note that as 𝛽 is a 𝑑-th power modulo𝑈, it follows from

(1) that gcd(𝑑, 𝑛1, . . . , 𝑛𝑙) = 1. The result follows, since

𝛼𝑘1 · · · 𝛼𝑘𝑙 𝛽 = (𝛼1𝛽
𝑛1 )𝑘1 · · · (𝛼𝑙𝛽𝑛𝑙 )𝑘𝑙 (𝛽𝑘0 )𝑑

and for all 1 ≤ 𝑖 ≤ 𝑙 we have 𝛼𝑖𝛽𝑛𝑖 ∈ (𝐾×)𝑑 (as 𝑐 ≥ 𝑐0). □

As we know that 𝛼′ is a 𝑑-th power modulo 𝑈, we should have gcd(𝑑, 𝑛1, . . . , 𝑛𝑚) = 1, where the 𝑛𝑖 are the
exponents defined in Proposition 3 which are obtained from the intersection of the kernels. Let 𝑘 , and (𝑎𝑖)𝑖≤𝑚
such that 1 = 𝑘𝑑 + ∑𝑚

𝑖=1 𝑎𝑖𝑛𝑖 . With this choice of 𝑎𝑖 we have that 𝛼′
∏
𝑖 𝛿
𝑎𝑖
𝑖

is a 𝑑-th power and we can find the
decomposition of 𝔞 in Cl(O𝐾 ). Note that taking the 𝑑-th root of 𝛼′

∏
𝑖 𝛿
𝑎𝑖
𝑖

can be done efficiently by keeping
elements in so-called compact representation. We summarize this procedure in Algorithm 3.

Algorithm 3 Ideal decomposition from subfields in the good case where 𝑑 = 𝑝𝑡

Require: Number field 𝐾 of unit rank 𝑟, norm relation 𝑑 =
∑
𝑖 𝑎𝑖N𝐻𝑖

𝑏𝑖 where 𝑑 is a prime power in the good case
of Grunwald–Wang, ideal 𝔞 and set 𝑆 of 𝑘 primes stable under the action of 𝐺 = Gal(𝐾/Q), together with 𝛼, ®𝑦
such that 𝔞𝑑 = (𝛼)∏𝑖 𝔭

𝑦𝑖
𝑖

.
Ensure: 𝛽′, ®𝑧′ such that 𝔞 = (𝛽′)∏𝑖 𝔭

𝑧′
𝑖

𝑖
.

1: Compute a basis (𝛼𝑖)𝑖≤𝑘+𝑟+1 for the 𝑆-unit group (using recursive norm relation techniques), and let 𝑀 ∈
Z(𝑟+𝑘+1)×𝑘 such that (𝛼𝑖) =

∏
𝑗 𝔭

𝑀𝑖, 𝑗

𝑗
.

2: Put 𝑀 in row reduced echelon form mod𝑑. Find ®𝑥 (0) solution to ®𝑦 = ®𝑥𝑀 mod 𝑑.
3: Compute ®𝑥 (1) , . . . , ®𝑥 (𝑚) basis of the left kernel of 𝑀 mod 𝑑.

4: 𝛼′ ← (𝛼)
(∏

𝑖 𝛼
𝑥
(0)
𝑖

𝑖

)
. For 𝑗 ≤ 𝑚: 𝛿 𝑗 ←

∏
𝑖 𝛼

𝑥
( 𝑗)
𝑖

𝑖
.

5: 𝑈 ← ⟨𝛿1, . . . , 𝛿𝑚⟩. Let 𝑐 ≤ 𝑐0 large enough.
6: Compute a (Z/𝑑Z)-generating set 𝛿1𝛼′𝑛1 , . . . , 𝛿𝑚𝛼

′𝑛𝑚 of⋂
𝑝∉𝔭,N(𝔭)≤𝑐

ker(⟨𝑈, 𝛼′⟩/⟨𝑈, 𝛼′⟩𝑑 → Z/𝑑Z × 𝑘×𝔭 /(𝑘×𝔭 )𝑑).

7: Compute 𝑘, 𝑎𝑖 ∈ Z, 1 ≤ 𝑖 ≤ 𝑚, with 1 = 𝑘𝑑 +∑𝑚
𝑖=1 𝑎𝑖𝑛𝑖 . Let ®𝑥 ← ®𝑥 (0) +∑

𝑗≤𝑚 𝑎 𝑗 ®𝑥 ( 𝑗 ) .
8: return 𝑑

√︃
𝛼′ ·∏ 𝑗 𝛿

𝑎 𝑗

𝑗
, 1
𝑑
(®𝑦 − ®𝑥𝑀).

General case The following cases need extra care:
1. The case where 𝛼 is an 𝑆-unit (which leads to𝑈 ∩ ⟨𝛼′⟩ ≠ {1} for𝑈 = ⟨𝛿1, . . . , 𝛿𝑚⟩).
2. The case of 𝑑 not a prime power.
3. The bad case of Grunwald–Wang.

Case (1) can be easily avoided by replacing 𝛼 by 𝛼 · 𝑥𝑑 where 𝑥 is outside of the 𝑆-unit group. The procedure will
succeed, and lead to the computation of appropriate exponents 𝑎1, . . . , 𝑎𝑚. For Case (2), assume that 𝑑 is not a
prime power. We rely on the following lemma

Lemma 1. Let 𝑎, 𝑏 be coprime integers such that 𝑑 = 𝑎𝑏. Assume that with Algorithm 3 we can find 𝛽𝑥 , ®𝑥, 𝛽𝑦 , ®𝑦
such that

𝔞𝑑 = (𝛽𝑎𝑥 )
∏
𝑖

𝔭
𝑎𝑥𝑖
𝑖

= (𝛽𝑏𝑦 )
∏
𝑖

𝔭
𝑏𝑦𝑖
𝑖
.

Then 𝔞 = (𝛽𝑠𝑥𝛽𝑟𝑦)
∏
𝑖 𝔭
𝑠𝑥𝑖+𝑟 𝑦𝑖
𝑖

.

Proof. Let 𝑟, 𝑠 be such that 𝑟𝑎 + 𝑠𝑏 = 1. This means that

𝔞𝑑 =

(
𝔞𝑑

)𝑟𝑎+𝑠𝑏
=

(
𝔞𝑑

)𝑟𝑎 (
𝔞𝑑

)𝑠𝑏
=

(
(𝛽𝑦)

∏
𝑖

𝔭
𝑦𝑖
𝑖

)𝑟𝑎𝑏 (
(𝛽𝑥)

∏
𝑖

𝔭
𝑥𝑖
𝑖

)𝑠𝑎𝑏
=

(
(𝛽𝑠𝑥𝛽𝑟𝑦)

∏
𝑖

𝔭
𝑠𝑥𝑖+𝑟 𝑦𝑖
𝑖

)𝑑
.
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Therefore, by equality of ideals, we have a 𝛽, ®𝑧 such that 𝔞 = (𝛽)∏𝑖 𝔭
𝑧𝑖
𝑖

. □

This process can be iterated for all prime powers that divide 𝑑, thus reducing the case of arbitrary 𝑑 to that of
𝑑 being a prime power.

Finally, Case (3) concerns the bad case of Grunwald–Wang. Because of the above consideration, we can assume
that 𝑑 is a prime power, and since the bad case only concerns powers of two, there is 𝑡 such that 𝑑 = 2𝑡 . Algorithm 3
cannot be applied directly on input 𝑑, but we can use it with denominator 2. This leads to the creation of 𝛽′, ®𝑧′ such
that

𝔞2𝑡−1
= (𝛽′)

∏
𝑖

𝔭
𝑧′
𝑖

𝑖
.

This can be iterated 𝑡 times, eventually leading to the decomposition of 𝔞.

5.2 DECOMPOSITION WITH RESPECT TO ELEMENTARY GENERATORS OF𝐻 ⊆ Cl(O𝐾)
Let 𝐻 be a subgroup of Cl(O𝐾 ). In this paper, the two cases of interest are 𝐻 = Cl− (O𝐾 ), the minus part of the

class group, and 𝐻 = Cl(O𝐾 ). In the previous section, we established how to decompose the class of an input ideal
𝔞 with respect to a given set of primes 𝑆 (if this decomposition exists, which is always the case when we pick 𝑆 a
generating set of Cl(O𝐾 )). Now, we need to leverage this routine in order to decompose the class of 𝔞 according
to a fixed set of generators 𝔤1, . . . , 𝔤𝑘 where

𝐻 ≃ ⟨[𝔤1]⟩ × · · · × ⟨[𝔤𝑘]⟩ ≃ Z/𝑑1Z × · · · × Z/𝑑𝑘Z.

We assume that 𝑆 = {𝔭𝑖}𝑖≤𝑘 is a set of non-zero prime ideals stable under the action of Gal(𝐾/Q) such that
⟨𝑆⟩ = 𝐻. By using the recursive 𝑆-unit group computation, we can find a matrix 𝑀 ∈ Z𝑘×𝑘 such that the rows of 𝑀
generate the lattice of vectors ®𝑣 ∈ Z𝑘 such that

∏
𝑖 𝔭
𝑣𝑖
𝑖
∼ (1). This can be done by working in the subfields involved

in the norm relation. Then, we compute the Smith Normal Form (SNF) diag(𝑑1, . . . , 𝑑𝑘) of 𝑀 and unimodular
matrices𝑈,𝑉 such that𝑈𝑀𝑉 = diag(𝑑1, . . . , 𝑑𝑘) (note that some 𝑑𝑖 might equal 1).

Given a fractional ideal 𝔞 such that [𝔞] ∈ 𝐻, we are interested in computing the unique exponents in Z/𝑑1Z ×
· · · × Z/𝑑𝑘Z of the decomposition of [𝔞] according to the generators (𝔤𝑖)𝑖≤𝑘 . The previous section shows how to
decompose [𝔞] according to the primes in 𝑆. We can convert this decomposition into one with respect to the 𝔤𝑖
via linear algebra involving 𝑉 . Indeed, the conversion back-and-forth between a representation over the 𝔤𝑖 and one
over the 𝔭 𝑗 corresponds to a multiplication of 𝑉−1 (resp. 𝑉) with the vector of exponents:

𝔞 ∼
∏
𝑗

𝔭
𝑥 𝑗

𝑗
=

∏
𝑗

(∏
𝑖

𝔤
𝑥 𝑗 ·𝑉−1

𝑖, 𝑗

𝑖

)
=

∏
𝑖

𝔤

∑
𝑗 𝑥 𝑗𝑉

−1
𝑖, 𝑗

𝑖
=

∏
𝑖

𝔤
(𝑉−1 · ®𝑥𝑇)
𝑖

.

Therefore 𝔞 ∼∏
𝑖 𝔤
𝑥′
𝑖

𝑖
for ®𝑥′ := 𝑉−1 · ®𝑥. By a similar argument, if 𝔞 ∼∏

𝑖 𝔤
𝑦′
𝑖

𝑖
, then 𝔞 ∼∏

𝑖 𝔭
𝑦𝑖
𝑖

where ®𝑦 = 𝑉 · ®𝑦′.

Algorithm 4 Conversion of decomposition with respect to primes in 𝑆 to generators
Require: Number field 𝐾 , Set 𝑆 of non-zero primes (𝔭𝑖)𝑖≤𝑠 , vector ®𝑥 such that 𝔞 ∼∏

𝑖 𝔭
𝑥𝑖
𝑖

,𝑈,𝑉 unimodular such
that𝑈𝑀𝑉 = diag(𝑑1, . . . , 𝑑𝑘) where the rows of 𝑀 are a basis of the lattice of relations between primes in 𝑆.

Ensure: ®𝑥′ with 𝔞 ∼∏
𝑖 𝔤
𝑥′
𝑖

𝑖
where ⟨𝑆⟩ = ⟨[𝔤1] × . . . × ⟨[𝔤𝑘]⟩.

1: return ®𝑥′ := 𝑉−1 · ®𝑥.

6 THE PRINCIPAL IDEAL PROBLEM
Given an input fractional ideal 𝔠, the Principal Ideal Problem (PIP) is two fold: 1) Decide whether 𝔠 is principal,

and 2) If 𝔠 is principal, compute a generators. Item (1), which is the decisional part of the PIP is repeatedly
used in the CDW algorithm, more specifically in the resolution of the Close Principal Multiple problem. Step (1)
of Section 3.2 consists in testing many elements of the form N𝐾/𝐾+ (𝔞) for principality. Likewise, Step (2) of
Section 3.2 requires the testing that N𝐾/𝐾+ (𝔭) is principal for many prime ideals 𝔭 (in order to create a generating
set of prime ideals in Cl− (O𝐾 ). Item (2) on the other hand, has to be used only once a close principal multiple 𝔟

to the input 𝔞 is found, to find a generator of 𝔞𝔟.

Decisional PIP Deciding whether 𝔠 is principal is the same as deciding whether the ideal class [𝔠] ∈ Cl(O𝐾 ) is
the trivial element of the class group. Following the notation of Section 5, with 𝐻 = Cl(O𝐾 ), this means that 𝔠 is a
principal ideal if and only if it is represented by the vector (0, . . . , 0) ∈ Z/𝑑1Z × . . . × Z/𝑑𝑘Z. Therefore, to solve
the decisional PIP, one needs to precompute a set of primes 𝑆 stable under that action of Gal(𝐾/Q) generating the
class group, and then apply Algorithms 3 and 4.
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Algorithm 5 Decisional PIP
Require: Number field 𝐾 , fractional ideal 𝔞, set 𝑆 of non-zero primes (𝔭𝑖)𝑖≤𝑠 that generate Cl(O𝐾 ), vector ®𝑥 such

that 𝔞 ∼ ∏
𝑖 𝔭
𝑥𝑖
𝑖

, 𝑈,𝑉 unimodular such that 𝑈𝑀𝑉 = diag(𝑑1, . . . , 𝑑𝑘) where the rows of 𝑀 are a basis of the
lattice of relations between primes in 𝑆.

Ensure: Whether 𝔞 is principal.
1: Compute vector ®𝑥 such that 𝔞 ∼∏

𝑖 𝔭
𝑥𝑖
𝑖

with Algorithm 3.
2: Use ®𝑥 and 𝑉 to produce ®𝑦 such that 𝔞 ∼∏

𝑖 𝔤
𝑦𝑖
𝑖

where Cl(O𝐾 ) ≃ ⟨𝔤1⟩ × . . . × ⟨𝔤𝑘⟩.
3: return 𝔞 is principal if ®𝑦 = ®0.

Search-PIP The computation of a generator of an input fractional ideal 𝔞 can also be done using 𝑆-units, but the
main difference with the decisional variant of PIP is that the 𝑆-unit group that needs to be calculated depends on
the instance 𝔞. Therefore, a new 𝑆-unit group needs to be calculated for each instance, which makes the repetition
of multiple instances of Search-PIP more expensive in practice than multiple instances of the decisional PIP.

Given the input ideal 𝔞, we first enumerate 𝛼 ∈ 𝔞 that are small combinations of an LLL-reduced basis of 𝔞
until (𝛼)/𝔞 = 𝔭 a prime ideal. Then let 𝑆 = {𝔭𝜎 for 𝜎 ∈ Gal(𝐾/Q)}. Compute a generating set 𝛼1, . . . 𝛼𝑟+𝑠
of the 𝑆-unit group modulo torsion using the recursive technique based on norm relations of [14], where 𝑟 is the
rank of O×

𝐾
and 𝑠 = |𝑆 |, together with vectors ®𝑣1, . . . , ®𝑣𝑟+𝑠 ∈ Z𝑠 describing the finite valuations of the 𝛼𝑖 . Solve

a linear system to find ®𝑥 ∈ Z𝑟+𝑠 such that
∑
𝑖 𝑥𝑖®𝑣𝑖 is the vector with zeros everywhere except for a 1 in the entry

corresponding to 𝔭. Then
∏
𝑖 𝛼

𝑥𝑖
𝑖

is a generator of 𝔭, and 𝑔 = 𝛼 ·∏𝑖 𝛼
−𝑥𝑖
𝑖

is a generator of 𝔞.

Algorithm 6 PIP using 𝑆-units
Require: 𝔞 ⊆ O𝐾 principal.
Ensure: A generator 𝑔 ∈ O𝐾 of 𝔞

1: 𝐵← LLL-reduced basis of 𝔞, 𝛼
R←− Span(𝐵).

2: while (𝛼)/𝔞 is not prime do
3: 𝛼

R←− Span(𝐵).
4: end while
5: 𝑆 ← {𝔭𝜎 for 𝜎 ∈ Gal(𝐾/Q)} with 𝔭1 = 𝔭.
6: Find generators (𝛼𝑖)𝑠+𝑟 of the 𝑆-unit group modulo torsion using [14, Alg. 4.16].
7: Let 𝑀 ∈ Z(𝑟+𝑠)×𝑠 such that row 𝑖 is the valuations of 𝛼𝑖 .
8: Solve ®𝑥 · 𝑀 = ®𝑦 for ®𝑦 = (1, 0, . . . , 0).
9: return 𝛼 ·∏𝑖 𝛼

−𝑥𝑖
𝑖

7 COMPUTING THE MINUS PART OF Cl(O𝐾)
The computation of the minus part of the class group is an essential building block of Step (2) of Section 3.2.

In essence, we need to compute the kernel of the map Cl(O𝐾 ) → Cl(O𝐾+ ) given by

[𝔞] ↦→
[
N𝐾/𝐾+ (𝔞)

]
.

Let 𝔤1, . . . , 𝔤𝑘 be such that Cl(O𝐾 ) = ⟨[𝔤1]⟩×· · ·×⟨[𝔤𝑘]⟩, and 𝔤′1, . . . , 𝔤
′
𝑙
be such that Cl(O𝐾+ ) = ⟨[𝔤′1]⟩×· · ·×⟨[𝔤

′
𝑙
]⟩.

We could compute our norm map by decomposing each N𝐾/𝐾+ (𝔤𝑖) with respect to the 𝔤′
𝑗
in Cl(O𝐾+ ), however, we

only know the 𝔤𝑖 in a product representation from the primes in 𝑆 = {𝔭1, . . . , 𝔭𝑠} that generate Cl(O𝐾 ). Evaluating
these products would be costly. Instead, it is easier to decompose each N𝐾/𝐾+ (𝔭𝑖) with respect to the 𝔤′

𝑗
in Cl(O𝐾+ ).

Then, since we know how to express each 𝔤𝑖 with respect to the primes in 𝑆, this allows us to associate with each
N𝐾/𝐾+ (𝔤𝑖) a vector ®𝑥 ∈ Z/𝑑′1Z× · · ·×Z/𝑑

′
𝑙
Z that corresponds to the exponents of the decomposition of N𝐾/𝐾+ (𝔤𝑖).

Therefore, we get a map
𝜑 : Z/𝑑1Z × · · · × Z/𝑑𝑘Z→ Z/𝑑′1Z × · · · × Z/𝑑

′
𝑙Z

whose kernel is isomorphic to Cl− (O𝐾 ). We summarize this procedure in Algorithm 7.
Under the Generalized Riemann Hypothesis, there is a polynomial size set 𝑆 of prime ideals that generate the

ideal class group Cl(O𝐾 ), namely 𝑆 := {𝔭 | N(𝔭) ≤ 12 log2 |Δ𝐾 |}, where Δ𝐾 is the discriminant of 𝐾 (see [4]).
We refer to this bound on the norm of the prime ideals as Bach’s bound. While this means that Steps (1) and (2) of
Algorithm 7 are asymptotically efficient, one can hope to find generating sets of size at most𝑂 (log |Δ𝐾 |). However,
the effort required might be commensurate with that of computing the ideal class group. A method for class group
computations using norm relations is described in [14, Alg. 4.23]. A byproduct of this algorithm is a set of primes
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𝑆 that generate the ideal class group. In a nutshell, it uses the fact that when 𝐾 admits a norm relation of the
form (3), the group Cl(O𝐾 ) ⊗ Z[1/𝑑] is isomorphic to a direct summand of

⊕ℓ

𝑖=1 Cl(O𝐾𝑖
) ⊗ Z[1/𝑑], and the

group Cl(O𝐾 )/Cl(O𝐾 ) [𝑑] is isomorphic to a subgroup of
⊕ℓ

𝑖=1 Cl(O𝐾𝑖
). This means that a subset of Cl(O𝐾 )

(namely
⊕ℓ

𝑖=1 Cl(O𝐾𝑖
) ⊗ Z[1/𝑑]) is generated by the prime ideals above the primes that generate the Cl(O𝐾𝑖

).
The rest of the generators are chosen at random (Step (9) of [14, Alg. 4.23]). This probabilistic method relies on
subfield computations, and is likely to return a generating set significantly smaller than that obtained from Bach’s
bound (which is quadratic in log( |Δ𝐾 |). Therefore we recommend the use of [14, Alg. 4.23] to perform Steps (1)
and (2) of Algorithm 7. Note that there is no direct analogue of [14, Alg. 4.23] to compute the minus part of the
class group. Indeed, no formula linking Cl− (O𝐾 ) to the minus part of the class groups of the subfields involved
in (3) exists, to the best of our knowledge. Therefore, we need to rely on the new ideal decomposition method
introduced in Section 5 to perform this task.

Algorithm 7 Minus part of the ideal class group
Require: Number field 𝐾 that admits a norm relation of the form (3).
Ensure: Cl− (O𝐾 ).

1: Compute a set of non-zero primes 𝑆 that generate Cl(O𝐾 ) .
2: Compute a set of non-zero primes 𝑆+ that generate Cl(O𝐾+ ) .
3: Compute a matrix 𝑀 whose rows are a basis of the relations between 𝔭𝑖 in 𝑆.
4: Compute a matrix 𝑀+ whose rows are a basis of the relations between 𝔮 𝑗 in 𝑆+.
5: Compute unimodular matrices𝑈,𝑉 such that𝑈𝑀𝑉 = diag(𝑑1, . . . , 𝑑𝑘).
6: Compute unimodular matrices𝑈′, 𝑉 ′ such that𝑈′𝑀+𝑉 ′ = diag(𝑑′1, . . . , 𝑑

′
𝑙
).

7: for all 𝔭𝑖 do
8: Find ®𝑥𝑖 such that N𝐾/𝐾+ (𝔭𝑖) ∼

∏
𝑗 𝔮
𝑥𝑖, 𝑗

𝑗
with Algorithm 3.

9: Find ®𝑥′
𝑖

such that N𝐾/𝐾+ (𝔭𝑖) ∼
∏
𝑗 𝔤
′
𝑗
𝑥′
𝑖, 𝑗 with Algorithm 4.

10: end for
11: for all 𝔤𝑖 do
12: Find ®𝑦𝑖 such that 𝔤𝑖 ∼

∏
𝑗 𝔭

𝑦𝑖, 𝑗

𝑗
with the inverse of Algorithm 4.

13: ®𝑦′
𝑖
← ∑

𝑗 𝑦𝑖, 𝑗
®𝑥′
𝑗

(hence N𝐾/𝐾+ (𝔤𝑖) ∼
∏
𝑗 𝔤
′
𝑗
𝑦′
𝑖, 𝑗 )

14: end for
15: Let 𝜑 defined by (0, . . . , 0, 1︸︷︷︸

𝑖

, 0, . . . , 0) ∈ ∏
𝑗 Z/𝑑 𝑗Z ↦→ ®𝑦′𝑖 ∈

∏
𝑗 Z/𝑑′𝑗Z.

16: return ker(𝜑).

The computation of the minus part of the class group enables Step (2) of Section 3.2 which consists in calculating
a generating set of primes for Cl− (O𝐾 ) under Conjecture 1. Given the parameters 𝑙, 𝐵, we construct the set of
prime ideals of 𝐾 whose classes are in the minus part with norm bounded by 𝐵, and we repeatedly draw 𝑑 sets
of conjugates until one such subset generates the minus part of the class group. This procedure is summarized in
Algorithm 8.

Algorithm 8 Creation of a generating set for Cl− (O𝐾 )
Require: Integers 𝑙, 𝐵 > 0, number field 𝐾 , and a norm relation 𝑑 =

∑
𝑖 𝑎𝑖N𝐻𝑖

𝑏𝑖 .
Ensure: A set 𝑆 = {𝔭𝑖}𝑖≤𝑘 of prime ideals such that ∀𝑖, [𝔭𝑖] ∈ Cl− (O𝐾 ), and the classes of 𝔭𝜎 for 𝜎 ∈ 𝐺 generate

Cl− (O𝐾 ).
1: 𝑆0 ← {}.
2: for primes ideal 𝔭 with N(𝔭) ≤ 𝐵 do
3: if N𝐾/𝐾+ (𝔭) is principal (using Algorithm 5) then
4: 𝑆0 ← 𝑆0 ∪ {𝔭}.
5: end if
6: end for
7: Compute Cl− (O𝐾 ) with Algorithm 7.
8: while true do
9: 𝑆 ← 𝑑 elements of 𝑆0 chosen uniformly at random. 𝑆′ ← {𝔭𝜎 | 𝜎 ∈ 𝐺, 𝔭 ∈ 𝑆}.

10: Compute the 𝑆′-unit group and from the finite valuations of a generating set, deduce ⟨𝑆′⟩ ⊆ Cl(O𝐾 ).
11: if ⟨𝑆′⟩ = Cl− (O𝐾 ), then return 𝑆.
12: end while
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8 ASYMPTOTIC ANALYSIS
In this section, we analyze the asymptotic cost of our classical norm relation based variant of the CDW algorithm

for the search of mildly short vectors in ideals of 𝐾 = Q(𝜁𝑚) when 𝐾 admits a norm relation of the form (3). We
show that the cost is dominated (up to polynomial factors) by the cost of 𝑆-unit group computation and ideal class
decomposition in the subfields involved in (3). Note that unless 𝐾 is cyclic, which happens e.g. when 𝑚 = 𝑝𝑙 is an
odd prime power, there is always a norm relation that we can exploit to lower down the cost of ideal decompositions
and computation of Cl(O𝐾 ) and Cl− (O𝐾 ). This results in a practical gain for these tasks in almost all cyclotomic
fields. Additionally, we also observe asymptotic gains over the BKZ algorithm when the degrees of the fields
involved in the norm relation (3) are significantly smaller than 𝑛 = [𝐾 : Q]. In particular, we exhibit an infinite
family of cyclotomic fields for which the search for mildly short vectors has asymptotic cost 2𝑛𝑜 (1) , which is a
superpolynomial improvement over the cost of the BKZ reduction, which is in 2𝑂 (

√
𝑛) .

8.1 REDUCTION TO SUBFIELD COSTS
The building blocks presented in the previous sections are all that is needed to classically implement the CDW

search for mildly short vectors. For the sake of clarity, we recall the entire procedure in Algorithm 9.

Algorithm 9 Classical CDW search for mildly short vectors from norm relations
Require: Number field 𝐾 = Q(𝜁𝑚) that admits a norm relation of the form (3). Ideal 𝔞 ⊆ O𝐾 .
Ensure: A mildly short vector of 𝔞.

1: Let 𝑆 = {𝔭 | N(𝔭) ≤ 12 log2 |Δ𝐾 |} (i.e. 𝑆 generates Cl(O𝐾 ) under GRH).
2: while true do
3: Draw a random short product

∏
𝑖 𝔭
𝑥𝑖
𝑖

of elements in 𝑆.
4: if N𝐾/𝐾+

(
𝔞
∏
𝑖 𝔭
𝑥𝑖
𝑖

)
is principal (with Algorithm 5) then 𝔞0 ← 𝔞

∏
𝑖 𝔭
𝑥𝑖
𝑖

. break
5: end while
6: Compute a generating set of primes 𝑆′ = {𝔭𝑖}𝑖≤𝑠 of Cl− (O𝐾 ) with Algorithm 8.
7: Find ®𝑥 such that 𝔞0 ∼

∏
𝑖 𝔭
𝑥𝑖
𝑖

with Algorithm 3 (on input 𝑆′).
8: Use ®𝑥 to derive 𝔟 with N(𝔟) ∈ 2𝑂̃(𝑛3/2) with [17, Alg. 4].
9: Find a generator 𝛼 of 𝔞0𝔟 with Algorithm 6.

10: Use Algorithm 1 to derive a short generator 𝛼′ of 𝔞0𝔟.
11: return 𝛼′.

Proposition 4. Under Conjecture 1, Conjecture 2, and GRH, the cost of Algorithm 9 is in

Poly( [𝐾 : Q], log N(𝔞), 𝑙,max
𝑖

log 𝑎𝑖) (CostS-unit (subfields) + CostIdeal Dec (subfields)) ,

where CostS-unit (subfields) is the cost of computing 𝑆-units in the subfields involved in the norm relation (3), and
CostIdeal Dec (subfields) is the cost of Algorithm 2 in the subfields involved in the norm relation (3).

Proof. The random walk in Steps (2) to (5) of Algorithm 9 takes time in 𝑂
(
ℎ+
𝐾
· Poly(𝑚, log(N(𝔞))) · Cost(PIP)

)
.

Under Conjecture 2, ℎ+
𝐾

is polynomial, and the cost of the decisional PIP is that of Algorithm 2 (up to polynomial
factors). The cost of Algorithm 8 requires the computation of 𝑆-units (through Steps (3)-(4) of Algorithm 7, and
Step (11) of Algorithm 8). It also requires ideal decompositions from Algorithm 2. Then Step (7) is another
decomposition with Algorithm 2. Step (8) has an efficient solution from [17, Alg. 3], as well as Step (10)
(with Algorithm 1). Finally, the resolution of Search-PIP with Algorithm 6 reduces to the computation of 𝑆-units
(Steps (2)-(3) of Algorithm 6 find an 𝛼 with (𝛼)/𝔞 prime in polynomial time). Hence, up to polynomial factors,
the cost of Algorithm 9 is that of

• the computation of 𝑆-units and,

• the decomposition of the ideal class of an ideal according to a set of primes.
The computation of the 𝑆-unit group of 𝐾 from the 𝑆-unit groups of the subfields involved in the norm relation
relation (3) is shown to take (up to polynomial factors) the same cost as that of computing the 𝑆-unit groups of
subfields [14, Th. 4.8]. On the other hand, the decomposition of the ideal class of an ideal according to a set
of primes itself requires an 𝑆-unit group computation. Additionally, we need decompositions of ideals in the
subfields involved in the norm relation. Note that 𝑑-th roots can be efficiently calculated as long as we maintain
a so-called compact representation of the input elements, that is, a representation of the form 𝛼 =

∏
𝑖 𝛼

𝑑𝑖

𝑖
where

each 𝛼𝑖 has polynomial size. These compact representations are efficiently computable as long as we know the
prime decomposition of the input 𝛼, which is the case for all our subroutines, see [20]. Therefore, the cost of
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Algorithm 9 (up to polynomial factors), is that of 𝑆-unit group calculations and ideal class decompositions in the
subfields involved in the norm relation. □

The cost of 𝑆-unit group computation and ideal class decomposition in subfields derives from the heuristic
subexponential methods of Biasse and Fieker [10]. More specifically, the subexponential methods of [9, 10] allow
us to compute 𝑆-unit groups for 𝑆 a generating set of the class group, compute ideal class decompositions, and to
solve the PIP. Combined with Simon’s work [43], this also allows the computation of 𝑆-unit groups for arbitrary
sets 𝑆.

Lemma 2. Let 𝐾 be a cyclotomic field of degree 𝑛, 𝔞 be an ideal of 𝐾 and 𝑆 be a set of prime ideals of 𝐾 . Then,
under the heuristics of [10]:

• The computation of the 𝑆-unit group takes time in Poly(max𝔭∈𝑆 N(𝔭), |𝑆 |)2𝑂̃ (𝑛2/3 ) .

• The resolution of the PIP on input 𝔞 takes time i n Poly(log N(𝔞))2𝑂̃ (𝑛2/3 )

So far, our cost analysis takes the norm relation (3) as input. Fortunately, we know an efficient method from [14]
to derive norm relations.

Proposition 5. Let 𝐾 be an abelian number field of degree 𝑛 and Galois group 𝐺 = 𝐶 ×𝑄 where 𝐶 is the maximal
cyclic subgroup of 𝐺 and 𝑄 is non trivial. Then Algorithm 10 is correct, runs in polynomial time, and returns a
norm relation 𝑑 =

∑
𝑖≤𝑙 𝑎𝑖N𝐻𝑖

with 𝑎𝑖 ∈ Z and that satisfies 𝑑, 𝑙, |𝑎𝑖 | ≤ 𝑛, and max𝑖 [𝐾𝐻𝑖 : Q] ≤ |𝐶 |.

Proof. The number of subgroups 𝐻𝑖 is less than |𝐺̂ | = 𝑛. The computation of the 𝑛𝑖/𝑑𝑖 requires the factorization
of 𝑛 which is polynomial in log |Δ𝐾 |. For all subgroups 𝐻𝑖 with cyclic quotient we have |𝐺/𝐻𝑖 | | |𝐶 |, which proves
the bound on the degrees of the 𝐾𝐻𝑖 . Finally, the bound on (𝑎𝑖) and 𝑑 comes from 𝜇(𝑥) ∈ {−1, 0, 1} and [14, Prop.
2.26 (3)]. □

Algorithm 10 Norm relation with minimal subfields (abelian case)
Require: Non-cyclic abelian number field 𝐾 with Galois group 𝐺.
Ensure: Subgroups (𝐻𝑖)𝑖≤𝑙 of 𝐺, integers (𝑎𝑖)𝑖≤𝑙 , 𝑑 > 0, with 𝑑 =

∑
𝑖 𝑎𝑖N𝐻𝑖

.
1: 𝐺̂ ← dual of 𝐺,H ← {𝐻 ≤ 𝐺 with 𝐺/𝐻 cyclic}.
2: for 𝐻𝑖 ∈ H do
3: 𝐶 ⊆ 𝐺̂ ← ⟨𝜒⟩ where 𝐻𝑖 = ker(𝜒).
4: 𝑛𝑖

𝑑𝑖
← 1
| ker 𝜒 |

∑
𝐶≤𝐶′≤𝐺̂ cyclic 𝜇( [𝐶′ : 𝐶]) where 𝜇 is the Möbius function.

5: end for
6: Find minimal (𝑎𝑖), 𝑑 such that 𝑑 =

∑
𝑖 𝑎𝑖N𝐻𝑖

⇔ 1 =
∑
𝑖
𝑛𝑖
𝑑𝑖

N𝐻𝑖
.

7: return H , (𝑎𝑖), 𝑑.

We will use the following lemma. For cyclotomic fields, the Carmichael function gives us the size of the largest
cyclic factor of the Galois group, which in turns yields the degree of the largest subfield occurring in a norm relation
found with Algorithm 10.

Lemma 3. Let 𝑚 > 0 and 𝐾 = Q(𝜁𝑚), Algorithm 10 finds a norm relation 𝑑 =
∑
𝑖≤𝑙 𝑎𝑖N𝐻𝑖

in polynomial time
where 𝑙, 𝑑, 𝑎𝑖 ≤ 𝜑(𝑚) and for all 𝑖 we have [𝐾𝐻𝑖 : Q] ≤ 𝜆(𝑚) where 𝜆(𝑚) is the Carmichael function.

Proof. We apply Proposition 5 and use the fact that 𝜆(𝑚) = |𝐶 |. □

Unfortunately, the Carmichael function oscillates a lot, so there is no simple function 𝑓 yielding a useful bound
𝜆(𝑚) ≤ 𝑓 (𝑚). We can however make the following statement conditional on the size of 𝜆(𝑚) relative to 𝜑(𝑚).

Proposition 6. Assume the heuristics of [10], as well as Conjecture1, and Conjecture 2. Let 𝑎 > 0 and (𝑚𝑘)𝑘∈Z>0

be a sequence of integers satisfying 𝜆(𝑚𝑘) ≤ 𝜑(𝑚𝑘)𝑎 for all 𝑘 . Then Algorithm 9 applied to the infinite family of
fields 𝐾𝑘 := Q(𝜁𝑚𝑘

) has asymptotic complexity

Poly(log(N(𝔞))) · 2𝑂̃( [𝐾𝑘 :Q]2𝑎/3) .

Proof. By Lemma 3 the largest degree of a subfield occurring in the norm relation is 𝜆(𝑚𝑘) ≤ 𝜑(𝑚𝑘)𝑎. The main
term of the complexity of the subfield operations is 2𝑂̃ ( (log |Δ𝑖 | )2/3 ) , and by Lemma 4

(log |Δ𝑖 |)2/3 ≤
(𝑛𝑖
𝑛

log |Δ|
)2/3
∈ 𝑂̃ (𝑛2/3

𝑖
) = 𝑂̃ (𝑛2𝑎/3),

where Δ is the discriminant of 𝐾𝑘 , 𝑛 is its degree, and 𝑛𝑖 = 𝜆(𝑚𝑘) is the largest degree of a subfield occurring in
the norm relation. This proves our complexity bound. □
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Lemma 4. Let 𝑚 ≥ 2, 𝐾 = Q(𝜁𝑚) and 𝐿 ⊂ 𝐾 a subfield. Let 𝑛 = [𝐾 : Q] and 𝑛′ = [𝐿 : Q]. We have
1. |Δ𝐿 | ≤ |Δ𝐾 |𝑛

′/𝑛.

2. log(𝑛) = log(𝑚) +𝑂 (log log(𝑚)) and log(𝑚) = log(𝑛) +𝑂 (log log(𝑛)).
3. log |Δ𝐾 | = 𝑛

(
log(𝑛) +𝑂 (log log(𝑛))2

)
.

Proof. The first inequality derives directly from the fact that the discriminants satisfy Δ𝐾 = N𝐿/Q (Δ𝐾/𝐿)Δ[𝐾 :𝐿 ]
𝐿

where Δ𝐾/𝐿 is the relative discriminant between 𝐾 and 𝐿. Since 𝐾 is a cyclotomic field, we have

Δ𝐾 = (−1)𝜑 (𝑚)/2 𝑚𝜑 (𝑚)∏
𝑝 |𝑚 𝑝𝜑 (𝑚)/(𝑝−1) ,

so log |Δ𝐾 | = 𝜑(𝑚)
(
log(𝑚) −∑

𝑝 |𝑚
log(𝑝)
𝑝−1

)
. Let 𝑑 ≤ log2 (𝑚) be the number of distinct prime divisors of 𝑚:

∑︁
𝑝 |𝑚

log(𝑝)
𝑝 − 1

=
∑︁
𝑝 |𝑚

log(𝑝)
𝑝
+

∑︁
𝑝 |𝑚

log(𝑝)
𝑝2 − 𝑝

=
∑︁
𝑝 |𝑚

log(𝑝)
𝑝
+𝑂 (1)

≤
𝑑+2∑︁
𝑘=3

log(𝑘)
𝑘
+𝑂 (1) since 𝑡 ↦→ log(𝑡)

𝑡
is decreasing on [3,∞)

≤
∫ log2 (𝑚)

1

log(𝑡)
𝑡

𝑑𝑡 +𝑂 (1)

= 𝑂 (log log(𝑚))2.

Moreover we have

log(𝑛) = log(𝜑(𝑚))

= log(𝑚) +
∑︁
𝑝 |𝑚

log
(
1 − 1

𝑝

)
= log(𝑚) −

∑︁
𝑝 |𝑚

1
𝑝
+𝑂 (1)

= log(𝑚) +𝑂 (log log(𝑚)) by the same argument as above,

and therefore log(𝑚) = log(𝑛) +𝑂 (log log(𝑛)). This gives

log |Δ𝐾 | = 𝜑(𝑚)
(
log(𝑚) +𝑂 (log log(𝑚))2

)
= 𝑛

(
log(𝑛) +𝑂 (log log(𝑛))2

)
,

as claimed. □

In families of fields for which 𝑎 < 3/4, the above proposition shows how to find mildly short vectors with a
superpolynomial improvement over the complexity of BKZ which is in 2𝑂̃(

√
𝑛) for 𝑛 = [𝐾 : Q]. Of course, not

all infinite sequences of numbers 𝑚𝑘 satisfy 𝜆(𝑚𝑘) ≤ 𝜑(𝑚𝑘)𝑎 for an 𝑎 < 3/4. In fact, according to [19, Th. 2], a
density 1 subset of Z>0 satisfies 𝜆(𝑛) ∈ Ω̃(𝑛), meaning that infinite families for which 𝑎 < 3/4 must have negligible
density. However, as we see in Table 1, in the practical range (𝑛 < 100, 000), a significant fraction of 𝑛 satisfies
𝜆(𝑛) < 𝜑(𝑛)𝑎 for 𝑎 < 3/4.

𝑛 < 𝑁
log(𝜆(𝑛) )
log(𝜑 (𝑛) ) < 3/8 log(𝜆(𝑛) )

log(𝜑 (𝑛) ) < 1/2 log(𝜆(𝑛) )
log(𝜑 (𝑛) ) < 5/8 log(𝜆(𝑛) )

log(𝜑 (𝑛) ) < 3/4
1000 0.300% 2.000% 11.70% 30.20%

10000 0.180% 1.780% 10.42% 29.45%
100000 0.092% 1.580% 8.830% 26.32%

Table 1: Proportion of 𝑛 with low 𝜆(𝑛) in the practical range
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8.2 AN EXAMPLE OF WEAK FAMILIES OF CYCLOTOMIC FIELDS
We construct an infinite family of conductors with small Carmichael numbers by using the following theorem

of Erdös, Pomerance and Schmutz.

Theorem 4 (Erdös–Pomerance–Schmutz [19, Theorem 1 part 2]). There exists an infinite sequence𝑚1 < 𝑚2 < · · ·
of positive integers such that

𝜆(𝑚𝑘) = (log(𝑚𝑘))𝑂 (log log log(𝑚𝑘 ) ) .

Remark 1. Integers as in Theorem 4 are easy to construct in practice, as follows. Let 𝐿 be a highly divisible
number (for instance, take 𝐿 to be a product of a few small primes). Then let 𝑄 be the set of all primes 𝑝 such
that 𝑝 − 1 divides 𝐿, and let 𝑚 =

∏
𝑝∈𝑄 𝑝. This integer satisfies 𝜆(𝑚) | 𝐿, and the proof of Theorem 4 shows that

for suitable choices of 𝐿, the integer 𝑚 is much larger than 𝐿.

Example 2. We illustrate the construction by taking 𝐿 to be the product of the first prime numbers.
1. 𝐿 = 2 · 3 = 6, 𝑚 = 2 · 3 · 7 = 42, 𝜑(𝑚) = 12, 𝜆(𝑚) = 6.
2. 𝐿 = 2 · 3 · 5 = 30, 𝑚 = 2 · 3 · 7 · 11 · 31 = 14322, 𝜑(𝑚) = 3600, 𝜆(𝑚) = 30.
3. 𝐿 = 2 · 3 · 5 · 7 = 210, 𝑚 = 2 · 3 · 7 · 11 · 31 · 43 · 71 · 211 = 9225988926, 𝜑(𝑚) = 2222640000, 𝜆(𝑚) = 210.

Theorem 5 (under GRH, Conjecture 1 and 2). There exists an infinite sequence of integers 𝑚1 < 𝑚2 < · · · such
that Algorithm 9 has complexity

Poly( [𝐾𝑘 : Q], log(N(𝔞))) · 2(log(𝑚𝑘 ) )𝑂 (log log log(𝑚𝑘 ) )
.

Proof. Take (𝑚𝑘) to be the sequence from Theorem 4. Let𝑚 = 𝑚𝑘 be a term in this sequence, and 𝐾𝑘 = Q(𝜁𝑚𝑘
) be

the corresponding field. Let 𝐷 be the maximum absolute value of the discriminant of a subfield used by Algorithm 9
applied to 𝐾𝑘 . Then by Lemma 4 we have 𝐷 ≤ 𝑚𝜆(𝑚) , so that

log(𝐷) ≤ 𝜆(𝑚) log(𝑚) = (log(𝑚))𝑂 (log log log(𝑚) )

by Theorem 4. In particular, using the algorithm of Theorem 6 for the base case, the cost for the subfields is
2(log(𝐷) )𝑂 (1) = 2(log(𝑚) )𝑂 (log log log(𝑚) ) . □

Remark 2. Let Δ𝑘 be the discriminant of 𝐾𝑘 . Then we have log(𝑚𝑘) = 𝑂 (log log|Δ𝑘 |), so that the second term of
the complexity is

2(log log |Δ𝑘 | )𝑂 (log log log log|Δ𝑘 |)
.

This complexity is not quite quasi-polynomial (which would correspond to 𝑂 (1) instead of 𝑂 (log log log log|Δ𝑘 |)
in the second exponent), but it is strongly subexponential, as can be seen by rewriting it as

2(log |Δ𝑘 | )
𝑂

(
log log log log|Δ𝑘 | log log log|Δ𝑘 |

log log|Δ𝑘 |

)
= 2(log |Δ𝑘 | )𝑜 (1) .

This complexity is in time 2𝑛𝑜 (1) .

9 NUMERICAL RESULTS
Our efforts to implement all algorithms presented in this paper are a significant part of our contribution. More

specifically, we propose numerical data to achieve the following goals:
• Support for Conjecture 1 on the generators of the minus part of the class group.
• Support for Conjecture 2 on the size of the ideal class group ℎ+ of the maximal real subfield.
• Demonstration that Algorithm 9 is practical.

In [16], some justification in support of Conjecture 1 and Conjecture 2 is given. Below, we review existing data in
the literature, and we discuss the novelty of the data provided via our techniques based on norm relations.

9.1 NUMERICAL DATA ON ℎ+ (CONJECTURE 2)
Previous efforts The computation of the “plus part” of the class number of a cyclotomic field has been described
as "notoriously hard" [41]. Therefore, little data is available in the literature to support Conjecture 2. Masley [30]
used lower discriminant bounds proved by Odlyzko [35] to compute real class numbers. These results, later
extended by Van der Linden [27], yielded the unconditional computation of the class numbers of all real cyclotomic
fields of composite conductor 𝑚 ≤ 200, 𝜙(𝑚) ≤ 72 and 𝑚 ≠ 148, 152.
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However, for fields of larger degree, the root discriminant becomes too large for Masley’s method to handle. To
overcome the problem of large root discriminant, Miller [31] established a lower bound on sums over prime ideals
of Hilbert class field, which in turn establishes an upper bound on the class number. According to [31, Th. 1.1],
for a composite integer 𝑚 . 2 mod(4), the class number of the maximal real subfield of the 𝑚-th cyclotomic field
Q(𝜁𝑚) is ℎ+𝑚 = 1 if 𝜙(𝑚) ≤ 116 and 𝑚 ≠ 136, 145, 212. Also, ℎ+𝑚 = 2 for 𝑚 = 136, 145 and ℎ+256 = 1. Under the
GRH, Miller [31] was able to compute ℎ+212 = 5 and ℎ+512 = 1. The method was later extended to prime conductors
in [32]. According to [32, Th. 3.1.1], for a prime number 𝑝 one has ℎ+𝑝 = 1 if 𝑝 ≤ 151 . Under GRH we have
ℎ+𝑝 = 1 for 𝑝 ≤ 263 and 𝑝 ≠ 163, 191, 229, 257. Also ℎ+163 = 4, ℎ+191 = 11, ℎ+229 = 3, and ℎ+257 = 3.

Tables 4.1 and 4.2 of [32] provide the class numbers of the 𝑛-th layers of cyclotomic Z𝑝-extensions over the
rationals implying that ℎ+169 = ℎ+289 = ℎ+361 = 1. Also, under GRH ℎ+243 = ℎ+529 = ℎ+841 = ℎ+961 = 1

Great advances in the direction of computing class numbers of real cyclotomic fields were made by Schoof [41]
who presented a table of the orders of certain subgroups of the class groups of the real cyclotomic fields for prime
conductors less than 10000. Based on the Cohen–Lenstra heuristics, the probability that the main table presented
in [41] is actually a table of class numbers is at least 98%. The largest order in this table is 130473 for the prime
conductor 8017. So, according to the Schoof’s table, with high probability for prime conductor 𝑚 the class number
of the real cyclotomic field is less than 17𝑚.

Our results Concrete results on ℎ+𝑚 (even conditional to GRH) only exist for relatively small degrees, a few
sporadic reasonable size degree (𝑚 = 512, 529, 841, 961), or probabilistically for certain large prime conductors.
The methods based on the norm relations presented in this paper allowed us to compute ℎ+𝑚 (under the GRH) for
many conductors for which this invariant was not known before. What is even more interesting about the numerical
data we provide is that our methods perform better for highly composite conductors, which are the opposite of the
prime conductors for which some probabilistic data is already available. All in all, we were able to compute 149
values of ℎ+𝑚 that were not previously known in the literature. We reached a maximum conductor of 2730. Our data
supports Conjecture 2 which stipulates that ℎ+𝑚 has moderate size. Besides the support of the CDW heuristics, this
data is interesting in its own rights. Given the large number of values of ℎ+𝑚 we calculated, we chose to disseminate
the data on a dedicated webpage: https://www.cyclodb.org/which, to this day, contains 362 values, including
the 149 that were not previously known. Note that each entry of the database contains Cl(O𝐾 ), ℎ𝑚, the factorization
of ℎ𝑚, ℎ−𝑚, ℎ+𝑚, and the regulator of the field. We will continue populating it in the future as this data is of general
interest.

9.2 NUMERICAL DATA ON Cl−(O𝐾) (CONJECTURE 1)
Previous efforts Conjecture 1 is an ad-hoc assumption made for the first time in [16] that was not previously studied
in the literature. In some sense, the numerical data we provide in this section is the first to ever put Conjecture 1
to the test strictly speaking. However, the authors of [16, 17] presented a rationale to justify Conjecture 1 based
on existing numerical data. In [17, Prop. 6.1], it is proven that if a number 𝑠 satisfies 𝑠 ≥ 𝑟

(
log log2 (ℎ−) + 𝛼

)
for

a parameter 𝛼 ≥ 1 and 𝑟 the the number of Z[𝐺]-generators of Cl− (O𝐾 ), then the probability that 𝑠 elements of
Cl− (O𝐾 ) drawn uniformly at random generates Cl− (O𝐾 ) is at least 1 − 𝑂 (2−𝛼). This means that if we know that
the number of (not necessarily prime) generators of Cl− (O𝐾 ) is small, then on average few random elements are
required to generate Cl− (O𝐾 ). The purpose of [17, Prop. 6.1] is to relate Conjecture 1 with existing numerical
data from the literature which concerns the number of generators of Cl− (O𝐾 ) rather than the number of prime
generators of Cl− (O𝐾 ) (which is what is needed in Conjecture 1). However, to justify Conjecture 1 from [17, Prop.
6.1], one needs to make the extra unproven assumption that [17, Prop. 6.1] is still true even if we draw 𝑠 short prime
elements (as opposed to elements chosen uniformly at random). This extra heuristic seems reasonable, but it means
that numerical results on the number of generators of Cl− (O𝐾 ) do not, on its own, directly support Conjecture 1.

Below, we recall known results on Cl− (O𝐾 ). Most of the existing literature concerns its cardinality ℎ− , but
not the structure itself. Motivated by the results on divisibility properties of class numbers of cyclotomic fields,
Kummer [24] was the first to carry out computations of relative class numbers of cyclotomic fields of prime
conductor, for primes below 163. These calculations were extended by Lehmer and Masley [30] in 1978 to the
primes 𝑝 ≤ 509. According to these results, ℎ−𝑝 grows rapidly with 𝑝. For instance, ℎ−491 already has 138 decimal
digits. Later, Fung, Granville and Williams [22] computed all ℎ−𝑝 for 𝑝 ≤ 3000. Then, Shokrollahi [42] extended
this result to all 𝑝 ≤ 10000.

Regarding the structure of the minus part, in [24], Kummer proved that Cl− (OQ(𝜁𝑝 ) ) is cyclic for every prime
𝑝 ≤ 100 and 𝑝 ≠ 29, 41. Furthermore, Cl− (OQ(𝜁29 ) ) and Cl− (OQ(𝜁41 ) ) are abelian groups of type (2, 2, 2) and
(11, 11) respectively. Subsequently, Kummer’s methods were refined by Tateyama [44], Horie and Ogura [23] and
many other authors. Tateyama was able to compute the structure of Cl− (OQ(𝜁𝑝 ) ) for prime numbers 𝑝 smaller
than 227 except for seven cases. Horie and Ogura determined the structure of the minus part of any cyclotomic
field with conductor less than 100. Later, Schoof [40] determined the structure of Cl− (OQ(𝜁𝑝 ) ) for 𝑙 ≤ 509. As an
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example, Schoof showed that Cl− (OQ(𝜁491 ) ) is isomorphic to a product of 6 cyclic groups. Also, Theorem 3 of [40]
roughly states that for prime divisors 𝑝 of ℓ − 1, the 𝑝-part of Cl− (OQ(𝜁ℓ ) ) is cyclic whenever it is small.

Our results We present the first experiments that directly test the validity of Conjecture 1 without relying on
extra assumptions. Additionally, similar to the case of the provision of numerical data on ℎ+, our methods work
for non-cyclic cyclotomic fields, which makes them valuable since all previous data used to justify Conjecture 1
was restricted to prime conductors. The results of our experiments are presented in Table 2. For each conductor 𝑚
for which we tested Conjecture 1, we found the minimum 𝐵 and 𝑑 for which we could generate Cl− (O𝐾 ). Then
we repeated 100 time the following experiment: draw 𝑑 prime ideals of norm less than 𝐵 uniformly at random,
and check whether their conjugates generate Cl− (O𝐾 ). We report the corresponding probability. We also report
the runtime of the computation of Cl− (O𝐾 ) in CPU hours, which is of independent interest. Conjecture 1 is of
asymptotic nature, and hence difficult to justify with a finite number of experiments, but the results of Table 2 are
clearly consistent with the prediction of a moderate 𝐵 and 𝑑 with a high probability of generating Cl− (O𝐾 ).

9.3 TIMINGS OF THE SUBFIELD VARIANT OF CDW
In Table 9.3, we report timings of our implementation of Algorithm 9, i.e. our subfield variant of the CDW

method for the computation of mildly short vectors. We selected fields with conductor 𝑚 ranging between 𝑚 = 46
and 𝑚 = 154. For each field, we report “lb N”, the bit size of the algebraic norm of the input ideal, “lb Nsvp”,
the bit size of the algebraic norm of the short generator of the principal ideal found in Step (10) of Algorithm 9,
“𝑡gen”, the time to find a generating set for Cl− (O𝐾 ) (Step (6) of Algorithm 9), “𝑡cpm”, the time to solve the Close
Principal Multiple problem, and “𝑡svp”, the time to find the short generator of Step (10). Timings are reported in
CPU seconds unless otherwise stated.

10 CONCLUSION
We have presented a classical variant of the CDW algorithm that uses norm relations from [14] to reduce the

computations to subfields of cyclotomic fields of conductor 𝑚 ≠ 2, 4, 𝑝𝑘 , 2𝑝𝑘 for 𝑝 ≠ 2 (i.e., a density 1 subset of
the conductors). Of independent interest, we have provided an algorithm to compute the minus part of the ideal
class group from subfield information in Galois number fields admitting a norm relation. We used our recursive
methods to provide numerical evidence in support of the conjectures made in the original CDW paper [16].

Our asymptotic results show that our methods can outperform the BKZ reduction method in certain families of
cyclotomic number fields. Our numerical experiments provided new insight on ℎ+ and on the structure of Cl− (O𝐾 )
that was not previously available. They also demonstrated the practicality of our CDW variant. We are however not
able to reach higher dimensions than BKZ at the moment. This is due to the fact that certain subroutines need to
be optimized to fully leverage the potential of norm relations. Indeed, 𝑆-unit group computations are particularly
difficult to perform recursively in practice due to the presence of many root calculations which require compact
representations of the input. While this step runs in polynomial time, its practical implementation is currently the
bottleneck of our methods. This is in particular the reason why no 𝑆-units, or solutions to the PIP were calculated
in [14] where the norm relation techniques were originally described. Instead, only certain class groups calculations
that avoid 𝑑-th root calculations altogether were presented.

However, the new mathematical approach for computing mildly short vectors we presented in this paper clearly
shows future promise. In addition, once the root computation is optimized, the norm relations methods will allow
the computation of 𝑆-unit groups for large sets 𝑆 in large degree number fields. Beyond the impact on the CDW
methods presented in this paper, this will also allow the provision of numerical data on the performance of the PHS
method [36, 6] and its conjectured improvements [8]. This will be a crucial tool to contribute to the debate on the
potential of the so-called “𝑆-unit attacks”.
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Table 2: Experiments on Cl− (O𝐾 )
𝑚 𝑛 Cl− (O𝐾 ) 𝐵 𝑑 prob. time
23 22 [3] 47 2 100.0 0.01
46 22 [3] 47 2 100.0 0.01
39 24 [2] 13 1 100.0 0.01
52 24 [3] 13 1 100.0 0.01
56 24 [2] 8 1 100.0 0.01
72 24 [3] 9 1 100.0 0.01
78 24 [2] 13 1 100.0 0.01
29 28 [2, 2, 2] 59 2 100.0 0.01
58 28 [2, 2, 2] 59 2 100.0 0.01
31 30 [9] 32 2 100.0 0.01
62 30 [9] 32 2 100.0 0.01
51 32 [5] 103 1 100.0 0.01
64 32 [17] 193 2 100.0 0.01
68 32 [8] 137 2 100.0 0.02
96 32 [3, 3] 97 2 100.0 0.01
102 32 [5] 103 1 100.0 0.01
37 36 [37] 149 2 100.0 0.01
57 36 [9] 229 2 100.0 0.01
63 36 [7] 64 1 100.0 0.01
74 36 [37] 149 2 100.0 0.01
76 36 [19] 229 1 100.0 0.01
108 36 [19] 109 2 100.0 0.01
114 36 [9] 229 2 100.0 0.01
126 36 [7] 64 1 100.0 0.01
41 40 [11, 11] 83 2 100.0 0.01
55 40 [10] 11 1 100.0 0.03
75 40 [11] 151 2 100.0 0.01
82 40 [11, 11] 83 2 100.0 0.01
88 40 [55] 89 1 100.0 0.02
100 40 [55] 101 2 100.0 0.02
110 40 [10] 11 1 100.0 0.03
132 40 [11] 397 2 100.0 0.01
150 40 [11] 151 2 100.0 0.01
43 42 [211] 173 2 100.0 0.04
49 42 [43] 197 2 100.0 0.02
86 42 [211] 173 2 100.0 0.04
98 42 [43] 197 2 100.0 0.03
69 44 [69] 139 1 100.0 0.02
92 44 [201] 277 1 100.0 0.02
138 44 [69] 139 1 100.0 0.02

𝑚 𝑛 Cl− (O𝐾 ) 𝐵 𝑑 prob. time
47 46 [695] 283 2 100.0 0.13
94 46 [695] 283 2 100.0 0.17
65 48 [2, 2, 4, 4] 131 1 100.0 0.18
105 48 [13] 211 1 100.0 0.02
112 48 [3, 156] 113 3 100.0 0.22
130 48 [2, 2, 4, 4] 131 1 100.0 0.18
144 48 [13, 39] 433 4 100.0 0.05
53 52 [4889] 107 2 100.0 0.24
106 52 [4889] 107 2 100.0 0.24
81 54 [2593] 163 2 100.0 0.46
162 54 [2593] 163 2 100.0 0.34
87 56 [8, 8, 24] 523 2 100.0 0.4
116 56 [8, 8, 168] 233 2 100.0 0.33
174 56 [8, 8, 24] 523 2 100.0 0.38
59 58 [41241] 709 2 100.0 3.39
118 58 [41241] 709 2 100.0 2.65
61 60 [76301] 367 2 100.0 4.90
77 60 [4, 4, 4, 20] 463 1 100.0 0.29
93 60 [6795] 373 2 100.0 0.09
99 60 [31, 93] 199 1 100.0 0.12
122 60 [76301] 367 2 100.0 6.34
124 60 [2, 22878] 373 3 100.0 0.33
154 60 [4, 4, 4, 20] 463 1 100.0 0.31
186 60 [6795] 373 2 100.0 0.08
85 64 [6205] 1021 2 100.0 0.14
170 64 [6205] 1021 2 100.0 0.12
192 64 [3, 20451] 193 2 100.0 1.78
91 72 [4, 13468] 547 2 100.0 0.07
95 72 [107692] 571 2 98.0 2.74
135 72 [75961] 271 2 100.0 0.94
148 72 [4827501] 593 3 100.0 0.51
152 72 [19, 171, 513] 457 2 100.0 0.51
190 72 [107692] 571 2 96.0 2.54
123 80 [8, 8, 88, 1496] 739 1 100.0 5.16
164 80 [11, 7528840] 821 2 100.0 14.43
165 80 [92620] 331 2 100.0 7.16
176 80 [5, 5874275] 353 1 100.0 5.27
147 84 [5874617] 883 2 100.0 2.23
189 108 [105778197511] 379 1 100.0 2.60
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Table 3: Computation of mildly short vectors with our subfield CDW variant.
𝑚 𝑛 lb N lb Nsvp 𝑡cpm 𝑡pip 𝑡svp
23 22 51 68 3.05 0.01 0.98
46 22 55 72 3.06 0.01 1.04
39 24 46 49 1.44 0.01 0.89
52 24 52 56 1.17 0.01 0.96
56 24 53 56 1.14 0.01 0.92
72 24 58 68 3.23 0.01 0.68
78 24 52 56 1.22 0.01 0.72
29 28 54 77 2.96 0.03 1.22
58 28 53 75 2.81 0.02 1.01
31 30 56 66 1.04 0.03 1.00
62 30 58 79 2.57 0.03 0.84
51 32 55 62 1.48 0.03 0.92
64 32 56 81 3.51 0.05 1.27
68 32 56 172 289.47 0.08 0.7
96 32 53 79 4.14 0.03 0.73
102 32 60 73 3.82 0.03 0.69
37 36 52 78 3.15 0.05 1.01
57 36 46 70 3.69 0.05 1.12
63 36 51 63 4.06 0.04 0.73
74 36 55 81 3.29 0.05 0.98
76 36 47 80 202.89 0.05 1.10
108 36 59 83 3.90 0.07 0.76
114 36 55 83 4.41 0.06 0.90
41 40 57 92 2.78 0.08 1.26
55 40 52 69 4.01 0.07 0.81
75 40 57 71 1.94 0.07 0.83
82 40 55 86 3.39 0.09 1.45
88 40 55 75 3.96 0.06 0.73
100 40 58 97 416.62 0.11 0.69
150 40 55 79 4.59 0.07 0.90

𝑚 𝑛 lb N lb Nsvp 𝑡cpm 𝑡pip 𝑡svp
43 42 52 82 4.18 0.15 1.09
49 42 58 73 1.01 0.14 1.35
86 42 57 105 3.74 0.17 1.03
98 42 55 88 3.22 0.1 0.99
69 44 54 78 6.08 0.1 0.77
92 44 52 94 479.72 0.12 0.71
138 44 54 78 5.62 15.1 1.28
47 46 55 100 3.26 0.29 1.14
94 46 50 104 6.21 0.19 1.12
65 48 53 152 1342.92 57.64 1.37
112 48 51 264 1894.87 45.02 1.14
144 48 53 175 1988.98 71.09 1.58
87 56 52 139 5.79 73.53 1.49
116 56 56 294 1644.03 81.35 2.07
174 56 59 153 7.13 66.76 1.81
77 60 56 243 1496.5 69.37 1.30
93 60 50 133 7.68 101.88 2.13
99 60 55 124 6.76 78.57 1.29
124 60 48 147 5.70 124.02 2.25
186 60 57 140 7.33 0.47 1.57
85 64 58 155 8.17 1023.02 9.26
192 64 51 131 6.75 1117.83 16.92
91 72 51 137 10.63 73.88 2.60
95 72 53 139 8.14 528.04 3.21
135 72 52 136 8.50 503.78 3.62
148 72 54 160 7.24 368.24 3.45
152 72 57 148 6.18 950.51 9.39
123 80 54 127 12.38 1834.57 11.32
164 80 58 153 11.35 1897.85 9.99
176 80 55 126 14.97 5500.97 39.56
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