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Abstract Several cryptographic protocols constructed based on less-known algorithmic problems, such as those in
non-commutative groups, group rings, semigroups, etc., which claim quantum security, have been broken through
classical reduction methods within their specific proposed platforms. A rigorous examination of the complexity of
these algorithmic problems is therefore an important topic of research. In this paper, we present a cryptanalysis of
a public key exchange system based on a decomposition-type problem in the so-called twisted group algebras of the
dihedral group 𝐷2𝑛 over a finite field F𝑞 . Our method of analysis relies on an algebraic reduction of the original
problem to a set of equations over F𝑞 involving circulant matrices, and a subsequent solution to these equations.
Our attack runs in polynomial time and succeeds with probability at least 90 percent for the parameter values
provided by the authors. We also show that the underlying algorithmic problem, while based on a non-commutative
structure, may be formulated as a commutative semigroup action problem.
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1 INTRODUCTION
The design of efficient cryptographic systems that resist quantum attacks presently constitutes the important area of
research called post-quantum cryptography. Non-commutative structures such as nonabelian groups, group rings,
semigroups, etc., along with pertinent algorithmic problems, have been used for the construction of public key
cryptosystems in a plethora of works in this field. Two algorithmic problems that have found great mention in this
realm are the so-called conjugacy search problem and the decomposition problem (see [22], [3], [8]). Since such
problems in general cannot be formulated as a version of the hidden subgroup problem in a finite abelian group,
they have been suggested to render the corresponding cryptographic systems secure from known quantum attacks.
However, specific instances of these problems are often solvable through other classical methods and do not have
the presumed complexity in the specific suggested platform (see, for instance [23], [1]). Several linear algebra
attacks on such cryptosystems have been devised that retrieve the shared key, often without solving the underlying
algorithmic problem [24], [14].

In [4], the authors construct a key exchange system based on so-called twisted group algebras over a finite field
F𝑞 , which are similar to group algebras but have a more complicated multiplicative structure. Group algebras
have found mention in some other proposed public key cryptographic schemes. In [9], the authors construct a key
exchange protocol based on the discrete logarithm problem in the semigroup Mat3 (F7 [𝑆5]) of 3 × 3 matrices over
the group ring F7 [𝑆5], where 𝑆5 is the group of permutation on five symbols. In [15], an attack was devised by
showing that Mat3 (F7 [𝑆5]) embeds into Mat360 (F7), for which the discrete logarithm problem can then be solved
using the method in [12] adapted to singular matrices. The attack in [6] on the same system uses the fact that the
algebra F7 [𝑆5] is semisimple, and so by Maschke’s theorem it is isomorphic to a direct sum of matrix algebras over
F7.

The authors of [4] assert that since Maschke’s Theorem is valid also for twisted group algebras, a similar attack
might break the underlying problem of their system. However, to resolve this they choose 𝑞 such that the twisted
group algebra is not semisimple. Further, they assert that the general methods of cryptanalysis in [17] and [18],
which require the construction of bases over some vector spaces, do not apply to their system. This is attributed to
the facts that the twisted group algebra is not a group under the twisted multiplication and that there is an added
dimension of non-commutativity with the twisted multiplication.
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The underlying platform of the system in [4] is a twisted group algebra of the dihedral group 𝐷2𝑛 over a finite field
F𝑞 with twisted multiplication defined with the help of a function called a 2-cocycle. The 2-cocycle 𝛼 is chosen by
the authors such that F𝛼𝑞𝐷2𝑛 and F𝑞𝐷2𝑛 are not isomorphic, so that one is no longer working over a group algebra.
Some recent relevant works on twisted group algebras are [16] and [5]. In [5], the authors study right ideals of
twisted group algebras, endowing them with a natural distance and thus studying them as codes; they show that
that all perfect linear codes are twisted group codes. In [16], the authors use twisted dihedral group rings as a
platform for a public key protocol as a non-commutative variation of the Diffie-Hellman protocol. This protocol
has a similar platform to the one in [4], but with the twisted multiplication and 2-cocycle defined differently. The
authors show in [4] that the twisted group algebra platforms are structurally different.

The security of the protocol in [4] relies on a newly introduced algorithmic assumption, which the authors call
Dihedral Product Decomposition (DPD) Assumption. Under this assumption, the authors prove that their protocol
is session-key secure in the authenticated-links adversarial model of Canetti and Krawczyk [2]. The underlying
algorithmic problem can be seen as a special form of the decomposition problem over the multiplicative monoid
of an algebra 𝐴: given (𝑥, 𝑦) ∈ 𝐴 and 𝑆 ⊆ 𝐺, the problem is to find 𝑧1, 𝑧2 ∈ 𝑆 such that 𝑦 = 𝑧1𝑥𝑧2. The Dihedral
Product Decomposition Problem constitutes finding (𝑧1, 𝑧2) given 𝑧1𝑥𝑧2 and 𝑥 in the platform, where 𝑧1 and 𝑧2 lie
in specific predefined subalgebras of F𝛼𝑞𝐷2𝑛. It is therefore a more restricted version of the general decomposition
problem in the platform. The authors claim that the protocol proposed is quantum-safe, with justification based on
the fact that the decomposition problem is a generalization of the conjugacy search problem, which is believed to
be difficult even for quantum computers, in certain platform groups.

In this paper we show that in most cases, the underlying Dihedral Product Decomposition (DPD) Problem can be
solved algebraically with a classical polynomial time algorithm. As a result, the Dihedral Product Decomposition
Assumption does not hold, and the security of the system breaks down completely. We do this by producing
an algebraic reduction of the original problem to a set of equations over F𝑞 involving circulant matrices, which
we show can be solved in polynomial time in a majority of cases. We show that our algorithm succeeds with
probability (1 − 1

𝑞
)2, which gives a lower bound of a 90 percent success rate with the values of 𝑞 and 𝑛 proposed

by the authors. We also show that the underlying DPD problem may be formulated as a semigroup action problem
[11], with multiplication in the multiplicative monoid of a twisted dihedral group algebra. Some other protocols
using this method have been proposed in [10], [9], [11].

The paper is structured as follows. In Section 2 we describe the structure and some properties of the underlying
platform, viz. the twisted group algebra F𝛼𝑞𝐷2𝑛, closely following the results of [4]. In Section 3, we describe
the key exchange protocol proposed in [4] and state the DPD problem, which forms the basis of its security
assumption. We show that despite the use of a non-commutative structure, this algorithmic problem is equivalent
to a commutative semigroup action problem. In Section 4, we present some background definitions and results on
circulant matrices, which are needed for our reduction and cryptanalysis. In Section 5, we describe an algebraic
reduction of the DPD problem to a set of simultaneous equations over F𝑞 and show that in a majority of cases, they
can be solved by linear algebra in polynomial time. Using these results, we provide a polynomial time algorithm
which performs the cryptanalysis of the system of [4].

Throughout, we let F denote a field, 𝐺 denote a finite group and F𝑞 denote the finite field with 𝑞 elements, where
𝑞 is a power of a prime. Also let F∗𝑞 = F𝑞 \ {0}. We denote by 𝐷2𝑛 the dihedral group of size 2𝑛.

2 STRUCTURE OF THE PLATFORM
Definition 1 (Group Algebra). The group algebra F[𝐺] is the set of the formal sums

∑
𝑔∈𝐺

𝑎𝑔𝑔, with 𝑎𝑔 ∈ F,

𝑔 ∈ 𝐺. Addition is defined componentwise:
∑

𝑔∈𝐺
𝑎𝑔𝑔 +

∑
𝑔∈𝐺

𝑏𝑔𝑔 :=
∑

𝑔∈𝐺
(𝑎𝑔 + 𝑏𝑔)𝑔. Multiplication is defined as∑

𝑔∈𝐺
𝑎𝑔𝑔 ·

∑
𝑔∈𝐺

𝑏𝑔𝑔 :=
∑

𝑔∈𝐺

∑
ℎ∈𝐺
(𝑎𝑔𝑏ℎ)𝑔ℎ =

∑
𝑘∈𝐺

∑
𝑔∈𝐺, ℎ∈𝐺:𝑔ℎ=𝑘

𝑎𝑔𝑏ℎ𝑘 .

Clearly, F[𝐺] is an algebra over F with dimension |𝐺 |. If 𝐺 is non-commutative, so is F[𝐺].

In [7], the authors apply the structure of twisted group algebra to construct a public-key exchange system. The
multiplication operation in these twisted group algebras is defined using the concept of 2-cocycles.

Definition 2 (2-Cocycle). A map 𝛼 : 𝐺 × 𝐺 → F∗𝑞 is called a 2-cocycle of 𝐺 if 𝛼(1, 1) = 1 and for all 𝑔, ℎ, 𝑘 ∈ 𝐺
we have 𝛼(𝑔, ℎ𝑘)𝛼(ℎ, 𝑘) = 𝛼(𝑔ℎ, 𝑘)𝛼(𝑔, ℎ).

Definition 3 (Twisted Group Algebra). Let 𝛼 be a 2-cocycle of 𝐺. The twisted group algebra F𝛼𝐺 is the set of all
formal sums

∑
𝑔∈𝐺

𝑎𝑔𝑔, where 𝑎𝑔 ∈ F, with the following twisted multiplication: 𝑔 · ℎ = 𝛼(𝑔, ℎ)𝑔ℎ, for 𝑔, ℎ ∈ 𝐺. The
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multiplication rule extends linearly to all elements of the algebra: ( ∑
𝑔∈𝐺

𝑎𝑔𝑔) · (
∑
ℎ∈𝐺

𝑏ℎℎ) =
∑

𝑔∈𝐺

∑
ℎ∈𝐺

𝑎𝑔𝑏ℎ𝛼(𝑔, ℎ)𝑔ℎ.

Addition is given componentwise as in Definition 1.

We note that the associativity of a twisted group algebra follows from the condition on 𝛼 being a 2-cocycle. In fact,
it is an if and only if condition.

Remark 1. Throughout the rest of the paper, we will be concerned with twisted group algebras, and so it is
understood that the product ( ∑

𝑔∈𝐺
𝑎𝑔𝑔) · (

∑
ℎ∈𝐺

𝑎ℎℎ) denotes twisted multiplication. Further, we will usually omit the

· symbol, so that multiplication in the group 𝐺 and in the twisted group algebra are not differentiated by operation
notation. To avoid confusion we ensure that the symbols used for elements of the group and group algebra do not
intersect.

Denote the set of all 2-cocycles of 𝐺 into F𝑞 by 𝑍2 (𝐺, F∗𝑞). For 𝛼, 𝛽 ∈ 𝑍2 (𝐺, F∗𝑞), one may define the cocycle
𝛼𝛽 ∈ 𝑍2 (𝐺, F∗𝑞) by 𝛼𝛽(𝑔, ℎ) = 𝛼(𝑔, ℎ)𝛽(𝑔, ℎ) for all 𝑔, ℎ ∈ 𝐺. With this operation, 𝑍2 (𝐺, F∗𝑞) becomes a
multiplicative abelian group.

Definition 4 (Adjunct). For an element 𝑎 =
∑

𝑔∈𝐺
𝑎𝑔𝑔 ∈ F𝛼𝑞𝐺 we define its adjunct as �̂� :=

∑
𝑔∈𝐺

𝑎𝑔𝛼(𝑔, 𝑔−1)𝑔−1.

2.1 A TWISTED DIHEDRAL GROUP ALGEBRA
For the rest of this paper, we set 𝐺 = 𝐷2𝑛, where 𝐷2𝑛 = ⟨𝑥, 𝑦 : 𝑥𝑛 = 𝑦2 = 1, 𝑦𝑥𝑦−1 = 𝑥−1⟩ is the dihedral group of
order 2𝑛. Further, we let 𝐶𝑛 = ⟨𝑥𝑖⟩ be the cyclic subgroup of 𝐷2𝑛 generated by 𝑥 and 𝛼 be a 2-cocycle of 𝐷2𝑛.

The following lemma from [4] can be verified in a straightforward manner.

Lemma 1 ([4]). We have

1. F𝛼𝑞𝐷2𝑛 is a free F𝛼𝑞𝐶𝑛-module with basis {1, 𝑦}. Therefore F𝛼𝑞𝐷2𝑛 = F𝛼𝑞𝐶𝑛 ⊕ F𝛼𝑞𝐶𝑛𝑦 as a direct sum of
F𝑞-vector spaces.

2. F𝛼𝑞𝐶𝑛𝑦 � F
𝛼
𝑞𝐶𝑛 as F𝛼𝑞𝐶𝑛-modules.

3. For 𝑎 ∈ F𝛼𝑞𝐶𝑛𝑦, 𝑎𝑏 ∈ F𝛼𝑞𝐶𝑛 if 𝑏 ∈ F𝛼𝑞𝐶𝑛𝑦 and 𝑎𝑏 ∈ F𝛼𝑞𝐶𝑛𝑦 if 𝑏 ∈ F𝛼𝑞𝐶𝑛.

4. If 𝑎 ∈ F𝛼𝑞𝐶𝑛, then �̂� ∈ F𝛼𝑞𝐶𝑛. Similarly, if 𝑎 ∈ F𝛼𝑞𝐶𝑛𝑦, then �̂� ∈ F𝛼𝑞𝐶𝑛𝑦.

Definition 5. 1. For a 2-cocycle 𝛼 of 𝐷2𝑛 we define the reversible subspace of F𝛼𝑞𝐶𝑛𝑦 as the vector subspace

Γ𝛼 = {𝑎 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖𝑦 ∈ F𝛼𝑞𝐶𝑛𝑦 | 𝑎𝑖 = 𝑎𝑛−𝑖 for 𝑖 = 1, . . . , 𝑛 − 1}.

2. Define a map 𝜓 : F𝛼𝑞𝐶𝑛𝑦 → F𝛼𝑞𝐶𝑛 as follows. Given 𝑎 =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖𝑦 ∈ F𝛼𝑞𝐶𝑛𝑦 we define 𝜓(𝑎) =

𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 ∈

F𝛼𝑞𝐶𝑛. Clearly, 𝜓 is an F𝑞-linear isomorphism.

In this paper, we will refer to an element
𝑛−1∑
𝑖=1

𝑎𝑖𝑥
𝑖𝑦 of the reversible subspace Γ𝛼 as a reversible element of F𝛼𝑞𝐶𝑛𝑦

and to the corresponding vector (𝑎0, . . . , 𝑎𝑛−1) ∈ F𝑛𝑞 as a reversible vector.

Lemma 2 ([4]). Let 𝛼 be a 2-cocycle of 𝐷2𝑛. Then we have

1. If
𝛼(𝑥𝑖 , 𝑥 𝑗−𝑖) = 𝛼(𝑥 𝑗−𝑖 , 𝑥𝑖) (1)

for all 𝑖, 𝑗 ∈ {0, . . . , 𝑛 − 1}, then 𝑎𝑏 = 𝑏𝑎 for 𝑎, 𝑏 ∈ F𝛼𝑞𝐶𝑛.

2. If
𝛼(𝑥𝑖− 𝑗 𝑦, 𝑥𝑖− 𝑗 𝑦)𝛼(𝑥𝑖𝑦, 𝑥𝑖− 𝑗 𝑦) = 𝛼(𝑥𝑛−𝑖𝑦, 𝑥𝑛−𝑖𝑦)𝛼(𝑥 𝑗−𝑖𝑦, 𝑥𝑛−𝑖𝑦) (2)

for all 𝑖, 𝑗 ∈ {0, . . . , 𝑛 − 1}, then 𝑎�̂� = 𝑏�̂� for 𝑎, 𝑏 ∈ Γ𝛼.

The following lemma provides an explicit construction of the 2-cocycle that will be used throughout in the
cryptographic construction of [4].
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Lemma 3 ([4]). Let _ ∈ F∗𝑞 = F𝑞 \ {0}. The map 𝛼_ : 𝐷2𝑛 × 𝐷2𝑛 → F∗𝑞 defined by

𝛼_ (𝑔, ℎ) = _ for 𝑔 = 𝑥𝑖𝑦, ℎ = 𝑥 𝑗 𝑦 with 𝑖, 𝑗 ∈ {0, . . . , 𝑛 − 1} and
𝛼_ (𝑔, ℎ) = 1 otherwise (3)

is a 2-cocycle. Further, 𝛼_ satisfies the two conditions (1) and (2).

Proof. By definition, 𝛼_ (1, 1) = 1. Thus one only needs to verify that 𝛼_ (𝑔, ℎ)𝛼_ (𝑔ℎ, 𝑘) = 𝛼_ (𝑔, ℎ𝑘)𝛼_ (ℎ, 𝑘) for
all 𝑔, ℎ, 𝑘 ∈ 𝐷2𝑛. Write ℎ = 𝑥 𝑗1 𝑦𝑘1 and 𝑘 = 𝑥 𝑗2 𝑦𝑘2 with 𝑖, 𝑗1, 𝑗2 ∈ {0, . . . , 𝑛 − 1}. The condition may then be
directly verified separately in a straightforward way for the two possible cases 𝑔 = 𝑥𝑖 and 𝑔 = 𝑥𝑖𝑦. The fact that 𝛼_
satisfies conditions (1) and (2) follows from the definition. □

Lemma 4 ([4]). F𝑞𝐷2𝑛 and F𝑞 𝛼_𝐷2𝑛 are isomorphic if and only if _ is a square in F𝑞 , i.e. if and only if
_ (𝑞−1)/2 = 1.

Lemma 5 ([4]). If _1, _2 are not squares in F𝑞 , then F𝑞 𝛼_1𝐷2𝑛 and F𝑞 𝛼_2𝐷2𝑛 are isomorphic.

From Lemma 2 we thus have that for the choice 𝛼 = 𝛼_ of 2-cocycle, the multiplicative ring of F𝛼𝑞𝐶𝑛 is commutative,
and that 𝑎�̂� = 𝑏�̂� for all 𝑎, 𝑏 ∈ Γ𝛼. The form (3) of 𝛼 = 𝛼_ is adopted throughout for the cryptosystem in [4] and
thus we restrict our study to this cocycle. Thus, henceforth we take 𝛼 = 𝛼_.

3 THE KEY EXCHANGE PROTOCOL
Having described the relevant structural properties of the underlying platform, we now describe the key exchange
protocol in [4]. This uses two-sided multiplications in F𝛼𝑞𝐷2𝑛.

3.1 PUBLIC PARAMETERS
1. A number 𝑚 ∈ N and a prime 𝑝 > 2 with 𝑝 | 2𝑛 and set 𝑞 = 𝑝𝑚.

2. A 2-cocycle 𝛼 = 𝛼_ for a non-square _ in F𝑞 . This ensures that the platform F𝛼𝑞𝐷2𝑛 is not isomorphic to
F𝑞𝐷2𝑛.

3. An element ℎ = ℎ1 + ℎ2 for a random 0 ≠ ℎ1 ∈ F𝛼𝑞𝐶𝑛 and a random 0 ≠ ℎ2 ∈ F𝛼𝑞𝐶𝑛𝑦. (Clearly, since ℎ is
public, so are ℎ1 and ℎ2.)

Protocol 1 describes the key exchange protocol of [4].

Protocol 1.

1. Alice chooses a secret pair (𝑠1, 𝑡1) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼, and sends pk𝐴 = 𝑠1ℎ𝑡1 to Bob.

2. Bob chooses a secret pair (𝑠2, 𝑡2) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼 and sends pk𝐵 = 𝑠2ℎ𝑡2 to Alice.

3. Alice computes 𝐾𝐴 = 𝑠1𝑝𝑘𝐵𝑡1,

4. Bob computes 𝐾𝐵 = 𝑠2𝑝𝑘𝐴𝑡2

5. The shared key is 𝐾 = 𝐾𝐴 = 𝐾𝐵

The authors’ proposed values for parameters 𝑞 and 𝑛 are 𝑞 = 𝑛 = 19, 𝑞 = 𝑛 = 23, 𝑞 = 𝑛 = 31, 𝑞 = 𝑛 = 41.

3.2 CORRECTNESS
It is easy to show that within an uncorrupted session, both Alice and Bob establish the same key. Indeed, because
of the choice of 𝛼 = 𝛼_, we have 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖 in F𝛼𝑞𝐶𝑛 and 𝑡𝑖𝑡 𝑗 = 𝑡 𝑗 𝑡𝑖 in F𝛼𝑞𝐶𝑛𝑦 for 𝑖, 𝑗 ∈ {1, 2}, so

𝐾𝐴 = 𝑠1pk𝐵𝑡1 = 𝑠1𝑠2ℎ𝑡2𝑡1 = 𝑠2𝑠1ℎ𝑡1𝑡2 = 𝑠2pk𝐴𝑡2 = 𝐾𝐵.

3.3 SECURITY ASSUMPTION
The security of the protocol depends on the assumption of the difficulty of the following algorithmic problem.

Definition 6 (Dihedral Product Decomposition (DPD) Problem). Let (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼_
be a secret key. Given

a public element ℎ = ℎ1 + ℎ2 ∈ F𝛼𝑞𝐷2𝑛, ℎ1 ∈ F𝛼𝑞𝐶𝑛, ℎ2 ∈ F𝛼𝑞𝐶𝑛𝑦, and a public key pk = 𝑠ℎ𝑡, the DPD problem
requires an adversary to compute (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼 such that pk = 𝑠ℎ𝑡.
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Let (𝑠, 𝑡) be the output of an adversary A attempting to solve the DPD problem for F𝛼𝑞𝐷2𝑛. The authors define
A’s advantage 𝐷𝑃𝐷𝑎𝑑𝑣 [A, F𝛼𝑞𝐷2𝑛] in solving the DPD problem as the probability that 𝑠ℎ𝑡 = 𝑠ℎ𝑡.

Definition 7 (DPD Assumption). The DPD assumption is said to hold for F𝛼𝑞𝐷2𝑛 if for all efficient adversariesA
the quantity 𝐷𝑃𝐷𝑎𝑑𝑣 [A, F𝛼𝑞𝐷2𝑛] is negligible.

In Section 5, we provide a cryptanalysis of Protocol 1 by solving the DPD problem. We show that in most cases, a
polynomial time solution is possible, and so the DPD assumption does not hold. For our method of cryptanalysis,
we need some prerequisites on circulant matrices, which we provide in the next section. However, we first show
below how the DPD problem can be formulated as a special case of a commutative semigroup action problem, in
the framework introduced in [11].

3.3.1 DPD PROBLEM AS A COMMUTATIVE SEMIGROUP ACTION
The authors of [4] assert that given a fixed ℎ ∈ F𝛼𝑞𝐷2𝑛, the set of keys {𝑠ℎ𝑡 | (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼} is not even a
semigroup under the twisted algebra multiplication. From this observation, they claim that their system is immune
to the quantum cycle-finding algorithm of Shor [21] which is known to solve the hidden subgroup problem in
abelian groups.

Further, the security of the system of [4] is based on the presence of a non-commutative multiplication in the twisted
group algebra. However, we now show that the DPD problem can be formulated as a commutative semigroup action
problem, and so any classical or quantum solution to the latter also applies to the former. In [13], a Pollard-rho
type square root algorithm was provided to solve an abelian group action problem, whereas the possibility for a
modification to the commutative semigroup case was left open.

As observed before, the cocycle 𝛼 = 𝛼_ satisfies conditions (1) and (2). Thus, 𝑎𝑏 = 𝑏𝑎 for 𝑎, 𝑏 ∈ F𝛼𝑞𝐶𝑛 and
𝑎�̂� = 𝑏�̂� for 𝑎, 𝑏 ∈ Γ𝛼. In particular, F𝛼𝑞𝐶𝑛 is a commutative subalgebra of F𝛼𝑞𝐷2𝑛. Recall the F𝑞-linear

isomorphism 𝜓 : F𝛼𝑞𝐶𝑛𝑦 → F𝛼𝑞𝐶𝑛 given by 𝜓(𝑎) =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 ∈ F𝛼𝑞𝐶𝑛 for 𝑎 =

𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖𝑦 ∈ F𝛼𝑞𝐶𝑛𝑦. Below, we show

that 𝜓(Γ𝛼) is a commutative semigroup under the multiplication defined by 𝜓(𝑡) ★𝜓(𝑡′) := 𝑡𝑡′ ∈ 𝜓(Γ𝛼).

Lemma 6. Let 𝛼 be a cocycle on F𝛼𝑞𝐷2𝑛.

1. Suppose that for all 𝑖 and 𝑗 , 𝛼(𝑥𝑖𝑦, 𝑥 𝑗 𝑦) = 𝛼(𝑥 𝑗 𝑦, 𝑥𝑖𝑦) and 𝛼(𝑥𝑖𝑦, 𝑥 𝑗 𝑦) = 𝛼(𝑥𝑛−𝑖𝑦, 𝑥𝑛− 𝑗 𝑦) where all
exponents are taken modulo 𝑛. Then, 𝜓(Γ𝛼) is closed under ★, and ★ is commutative.

2. Suppose that for all 0 ≤ 𝑖, 𝑗 , 𝑚 ≤ 𝑛 − 1,

𝛼(𝑥𝑖 , 𝑥 𝑗 𝑦)𝛼(𝑥𝑖− 𝑗 𝑦, 𝑥𝑖− 𝑗 𝑦) = 𝛼(𝑥𝑖+ 𝑗+𝑚𝑦, 𝑥𝑖𝑦)𝛼(𝑥 𝑗+𝑚𝑦, 𝑥 𝑗 𝑦),

where all exponents are taken modulo 𝑛. Then, ★ is associative.

Therefore, if both conditions (1) and (2) are satisfied, 𝜓(Γ𝛼) is a commutative semigroup under the operation ★.

Proof. 1. Let 𝑎 =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖𝑦, 𝑏 =

𝑛−1∑
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 ∈ Γ𝛼. We have

𝜓(𝑎) ★𝜓(𝑏) = 𝑎𝑏 =

(
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖𝑦

) ©«
𝑛−1∑︁
𝑗=0

𝑏 𝑗𝑥
𝑗 𝑦

ª®¬
=

𝑛−1∑︁
𝑚=0

(
𝑛−1∑︁
𝑘=0

𝑎𝑘𝑏𝑘−𝑚𝛼(𝑥𝑘𝑦, 𝑥𝑘−𝑚𝑦)
)
𝑥𝑚

Since 𝑎, 𝑏 ∈ Γ𝛼, 𝑎𝑛−𝑘 = 𝑎𝑘 and 𝑏𝑘−𝑚 = 𝑏𝑚−𝑘 for each 𝑚, 𝑘 , so, the applying the assumption on 𝛼,
𝑛−1∑
𝑘=0

𝑎𝑘𝑏𝑘−𝑚𝛼(𝑥𝑘𝑦, 𝑥𝑘−𝑚𝑦) =
𝑛−1∑
𝑘=0

𝑎𝑛−𝑘𝑏𝑚−𝑘𝛼(𝑥𝑛−𝑘𝑦, 𝑥𝑚−𝑘𝑦), i.e. the coefficients of 𝑥𝑚 and 𝑥𝑛−𝑚 are

equal, so 𝜓(𝑎) ★ 𝜓(𝑏) = 𝑎𝑏 ∈ 𝜓(Γ𝛼). Further, since for all 𝑖, 𝑗 , 𝛼(𝑥𝑖𝑦, 𝑥 𝑗 𝑦) = 𝛼(𝑥 𝑗 𝑦, 𝑥𝑖𝑦), we have
𝜓(𝑎) ★𝜓(𝑏) = 𝑎𝑏 = 𝑏𝑎 = 𝜓(𝑏) ★ 𝜙(𝑎), so ★ is commutative.
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2. Now, let 𝑎 =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖𝑦, 𝑏 =

𝑛−1∑
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 ∈ Γ𝛼, 𝑐 =

𝑛−1∑
𝑖=0

𝑐𝑖𝑥
𝑖𝑦 ∈ Γ𝛼. We have

(𝜓(𝑎) ★𝜓(𝑏)) ★𝜓(𝑐) =𝜓−1 (𝑎𝑏) · 𝑐 = ©«
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
𝑎𝑖𝑏 𝑗𝛼(𝑥𝑖𝑦, 𝑥 𝑗 𝑦)𝑥𝑖− 𝑗 𝑦

ª®¬ ·
(
𝑛−1∑︁
𝑖=0

𝑐𝑖𝑥
𝑖𝑦

)
=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

𝑎𝑖𝑏 𝑗𝑐𝑘𝛼(𝑥𝑖𝑦, 𝑥 𝑗 𝑦)𝛼(𝑥𝑖− 𝑗 𝑦, 𝑥𝑘𝑦)𝑥𝑖− 𝑗−𝑘 , and

𝜓(𝑎) ★ (𝜓(𝑏)) ★𝜓(𝑐)) =𝑎 · 𝜓−1 (𝑏𝑐) =
(
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖𝑦

)
· ©«

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑏 𝑗𝑐𝑘𝛼(𝑥 𝑗 𝑦, 𝑥𝑘𝑦)𝑥 𝑗−𝑘𝑦ª®¬
=

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝑛−1∑︁
𝑘=0

𝑎𝑖𝑏 𝑗𝑐𝑘𝛼(𝑥𝑖𝑦, 𝑥 𝑗−𝑘𝑦)𝛼(𝑥 𝑗 𝑦, 𝑥𝑘𝑦)𝑥𝑖− 𝑗+𝑘

The condition for associativity requires (𝜓(𝑎)★𝜓(𝑏))★𝜓(𝑐) = 𝜓(𝑎)★ (𝜓(𝑏))★𝜓(𝑐)). Equating the above
expressions quickly gives the condition stated in (1).

□

Clearly, the choice of 𝛼 = 𝛼_ in the protocol satisfies both the properties in Lemma 6, and therefore 𝜓(Γ𝛼_
) is a

commutative semigroup. We can now look at the key exchange in Protocol 1 as an instance of a semigroup action
problem, introduced in [11].

Definition 8 (Semigroup Action Problem). Let 𝑆 be any semigroup acting on a set 𝑋

𝑆 × 𝑋 → 𝑋

(𝑠, 𝑥) ↦→ 𝑠 · 𝑥

Given an element 𝑦 = 𝑠 · 𝑥 ∈ 𝑋 , where 𝑥 ∈ 𝑋 is known and 𝑠 ∈ 𝑆 is a secret, the semigroup action problem is to
find some 𝑠 ∈ 𝑆 such that 𝑠 · 𝑥 = 𝑦.

Proposition 1. The commutative semigroup F𝛼𝑞𝐶𝑛 × 𝜓(Γ𝛼) acts on F𝛼𝑞𝐷2𝑛 as follows

(F𝛼𝑞𝐶𝑛 × 𝜓(Γ𝛼)) × F𝛼𝑞𝐷2𝑛 → F𝛼𝑞𝐷2𝑛

(𝑠, 𝜓(𝑡)) · ℎ = 𝑠ℎ𝑡 (4)

Proof. Clearly, (1, 1) · ℎ = ℎ for all ℎ ∈ F𝛼𝑞𝐷2𝑛. Further,

(𝑠, 𝜓(𝑡)) ((𝑠′, 𝜓(𝑡′)) · ℎ) = 𝑠𝑠′ℎ𝑡′𝑡 = 𝑠𝑠′ℎ𝑡 = (𝑠𝑠′, 𝑡𝑡′) · ℎ = (𝑠𝑠′, 𝜓(𝑡) ★𝜓(𝑡′)) · ℎ.

□

Lemma 7. The DPD problem is equivalent to the semigroup action problem for the commutative semigroup
action (4).

Proof. Clearly, 𝑡 and 𝜓(𝑡) can easily be read from each other without any significant computational cost. Suppose
that given public element ℎ and public key pk, the adversary can find 𝑠, 𝑡 such that 𝑠ℎ𝑡 = pk. Then, (𝑠, 𝜓(𝑡)) is
a solution to the SAP (4). Conversely, any solution (𝑠, 𝜓(𝑡)) of the SAP (4) gives the solution (𝑠, 𝑡) of the DPD
problem. □

The next section highlights some prerequisites on circulant matrices which will be used in the cryptanalysis of the
system in Section 5.
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4 CIRCULANT MATRICES

Definition 9. A matrix over F𝑞 of the form
©«
𝑐0 𝑐𝑛−1 . . . 𝑐1
𝑐1 𝑐0 . . . 𝑐2
...

...
. . .

...

𝑐𝑛−1 𝑐𝑛−2 . . . 𝑐0

ª®®®®¬
with 𝑐𝑖 ∈ F𝑞 , is called circulant. Given a vector

c = (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)𝑇 ∈ F𝑛𝑞 , we use the notation 𝑀c to denote the circulant matrix 𝑀c :=
©«
𝑐0 𝑐𝑛−1 . . . 𝑐1
𝑐1 𝑐0 . . . 𝑐2
...

...
. . .

...

𝑐𝑛−1 𝑐𝑛−2 . . . 𝑐0

ª®®®®¬
.

Definition 10. Given vectors b = (𝑏0, 𝑏1, . . . , 𝑏𝑛−1)𝑇 ∈ F𝑛𝑞 , c = (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)𝑇 ∈ F𝑛𝑞 , define, for 0 ≤ ℓ ≤ 𝑛−1
the constants

𝑧ℓ (b, c) =
∑︁

𝑖+ 𝑗=ℓ mod 𝑛

𝑏𝑖𝑐 𝑗 =
(
𝑐ℓ , 𝑐ℓ−1, . . . , 𝑐ℓ+1

)
·
©«
𝑏0
𝑏1
...

𝑏𝑛−1

ª®®®®¬
, 0 ≤ ℓ ≤ 𝑛 − 1.

Also define the vector zb,c = (𝑧0 (b, c), . . . , 𝑧ℓ (b, c), . . . , 𝑧𝑛−1 (b, c))𝑇 . In other words,

zb,c =

©«
𝑐0 . . . 𝑐1
𝑐1 . . . 𝑐2
...

. . .
...

𝑐𝑛−1 . . . 𝑐0

ª®®®®¬
·
©«
𝑏0
𝑏1
...

𝑏𝑛−1

ª®®®®¬
= 𝑀c · b.

As in Definition 9, denote by 𝑀z (b, c) the circulant matrix 𝑀z (b, c) =
©«
𝑧0 (b, c) . . . 𝑧1 (b, c)
𝑧1 (b, c) . . . 𝑧2 (b, c)

...
. . .

...

𝑧𝑛−1 (b, c) . . . 𝑧0 (b, c)

ª®®®®¬
. The following

result is easy to verify by direct computation.

Lemma 8. 𝑀z (b, c) = 𝑀c · 𝑀b.

4.1 PROBABILITY OF A CIRCULANT MATRIX BEING INVERTIBLE
We will require the invertibility of some random circulant matrices over F𝑞 for our reduction of the system. For
this reason, we discuss the criteria for a random circulant matrix being invertible, and study this probability. We
have the following result from [20].

Proposition 2 ([20]). Let 𝑥𝑛 − 1 = 𝑓
𝛼1

1 (𝑥) . . . 𝑓
𝛼𝜏
𝜏 (𝑥) be the factorization of 𝑥𝑛 − 1 over F𝑞𝑚 into powers of

irreducible factors. The number of invertible circulant matrices in 𝑀𝑎𝑡𝑛 (F𝑞𝑚 ) is equal to
𝜏∏
𝑖=1
(𝑞𝑚𝑑𝑖𝛼𝑖 −𝑞𝑚𝑑𝑖 (𝛼𝑖−1) ),

where 𝑑𝑖 is the degree of 𝑓𝑖 (𝑥) in the factorization of 𝑥𝑛 − 1.

Note that the number of circulant matrices over F𝑞𝑚 is 𝑞𝑚𝑛. As a direct consequence, the probability of a randomly
chosen circulant matrix over F𝑞𝑚 being invertible is

𝜏∏
𝑖=1

𝑞𝑚𝑑𝑖𝛼𝑖−𝑞𝑚𝑑𝑖 (𝛼𝑖−1)

𝑞𝑛𝑚
=

𝜏∏
𝑖=1

(
1 − 1

𝑞𝑚𝑑𝑖

)
It is now easy to see that a lower bound for this quantity is (1− 1

𝑞𝑚 )𝑛, which is achieved if 𝑥𝑛 − 1 splits into distinct
linear factors, i.e. 𝜏 = 𝑛, 𝑑𝑖 = 1, 𝛼𝑖 = 1. Similarly, an upper bound is achieved when there is a single factor in the
factorization, i.e. 𝜏 = 1 and 𝛼1 = 𝑛, in which case the quantity is (1 − 1

𝑞𝑚 ). Note that this upper bound is achieved
when 𝑛 is a power of the characteristic 𝑝 of F𝑞𝑚 . (𝑥𝑛 − 1 = (𝑥 − 1)𝑛 mod 𝑝). In general, we have the following
corollary.

Corollary 1. Let 𝑒 be the largest number such that 𝑝𝑒 | 𝑛. Then the probability that a randomly chosen 𝑛 × 𝑛
circulant matrix over F𝑞 is invertible is at least (1− 1

𝑞
)

𝑛
𝑝𝑒 . If 𝑛 is a power of 𝑝, then the probability is exactly equal

to 1 − 1
𝑞

.
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In [4], the authors deliberately choose the case 𝑝 | 𝑛, so as to avoid having F𝑞𝑚𝐷2𝑛 semisimple. In fact, in all of
their proposed parameters, ones has 𝑛 = 𝑝 = 𝑞, and so, the probability 1 − 1

𝑞
applies for a random circulant matrix

being invertible.

5 CRYPTANALYSIS
Note that the adversary is given an equation of the form 𝑠ℎ𝑡 = 𝛾 over F𝛼𝑞𝐷2𝑛, where

𝑠 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 ∈ F𝛼𝑞𝐶𝑛, 𝑡 =

𝑛−1∑︁
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 ∈ Γ𝛼 ⊆ F𝑞 𝛼_𝐷2𝑛 (5)

are unknown, and ℎ =
𝑛−1∑
𝑖=0

𝑐𝑖𝑥
𝑖 +

𝑛−1∑
𝑖=0

𝑑𝑖𝑥
𝑖𝑦 is known. Since 𝑡 ∈ Γ𝛼, the coefficients in 𝑡 satisfy 𝑏𝑘 = 𝑏𝑛−𝑘 for

𝑘 = 1, . . . , 𝑛 − 1. We write

𝛾 =

𝑛−1∑︁
𝑖=0

𝑣𝑖𝑥
𝑖 +

𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥
𝑖𝑦

for known constants 𝑣𝑖 , 𝑤𝑖 . Substituting the above expansions into the equation 𝑠ℎ𝑡 = 𝛾, we have

(
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖) (

𝑛−1∑︁
𝑖=0

𝑐𝑖𝑥
𝑖 +

𝑛−1∑︁
𝑖=0

𝑑𝑖𝑥
𝑖𝑦) (

𝑛−1∑︁
𝑖=0

𝑏𝑖𝑥
𝑖𝑦) =

𝑛−1∑︁
𝑖=0

𝑣𝑖𝑥
𝑖 +

𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥
𝑖𝑦

=⇒ (
𝑛−1∑︁
𝑖, 𝑗=0

𝑎𝑖𝑐 𝑗𝑥
𝑖+ 𝑗 +

𝑛−1∑︁
𝑖, 𝑗=0

𝑎𝑖𝑑 𝑗𝑥
𝑖+ 𝑗 𝑦) (

𝑛−1∑︁
𝑘=0

𝑏𝑘𝑥
𝑘𝑦) =

𝑛−1∑︁
𝑖=0

𝑣𝑖𝑥
𝑖 +

𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥
𝑖𝑦

=⇒
𝑛−1∑︁

𝑖, 𝑗 ,𝑘=0
𝑎𝑖𝑐 𝑗𝑏𝑘𝑥

𝑖+ 𝑗+𝑘𝑦 +
𝑛−1∑︁

𝑖, 𝑗 ,𝑘=0
𝑎𝑖𝑑 𝑗𝑏𝑘_𝑥

𝑖+ 𝑗+𝑘 =

𝑛−1∑︁
𝑖=0

𝑣𝑖𝑥
𝑖 +

𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥
𝑖𝑦

Comparing coefficients, we have the following two equations

𝑛−1∑︁
𝑖, 𝑗 ,𝑘=0

𝑎𝑖𝑐 𝑗𝑏𝑘𝑥
𝑖+ 𝑗+𝑘𝑦 =

𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥
𝑖𝑦, (6)

_

𝑛−1∑︁
𝑖, 𝑗 ,𝑘=0

𝑎𝑖𝑑 𝑗𝑏𝑘𝑥
𝑖+ 𝑗+𝑘 =

𝑛−1∑︁
𝑖=0

𝑣𝑖𝑥
𝑖 (7)

Define vectors a = (𝑎0, . . . , 𝑎𝑛−1)𝑇 , b = (𝑏0, . . . , 𝑏𝑛−1)𝑇 , c = (𝑐0, . . . , 𝑐𝑛−1)𝑇 , d = (𝑑0, . . . , 𝑑𝑛−1)𝑇 , w =

(𝑤0, . . . , 𝑤𝑛−1)𝑇 , v = (𝑣0, . . . , 𝑣𝑛−1)𝑇 in F𝑛𝑞 . Here, b is a reversible vector, i.e. 𝑏𝑖 = 𝑏𝑛−𝑖 for each 𝑖 = 1, . . . , 𝑛 − 1.
The vectors a and b are unknown to the adversary, while c, d, v, and w are publicly known.

5.1 REDUCTION TO MATRIX EQUATIONS
In the below discussion, all subscripts are taken modulo 𝑛. The following lemma shows that Equation (6) can be
reduced to a matrix equation over F𝑞 .

Lemma 9. Equation (6) is equivalent to the matrix equation 𝑀z (b, c) · a = w over F𝑞 .

Proof. Equating the coefficients of the basis vectors 𝑥𝑖𝑦 in Equation (6), we have

𝑤𝑖 =

𝑛−1∑︁
ℓ=0

∑︁
( 𝑗 ,𝑘 ) | 𝑗+𝑘=ℓ mod 𝑛

𝑐 𝑗𝑏𝑘𝑎𝑖−ℓ

=
∑︁
ℓ=0

∑︁
( 𝑗 ,𝑘 ) | 𝑗+𝑘=𝑖−ℓ mod 𝑛

𝑐 𝑗𝑏𝑘𝑎ℓ

=
(
𝑧𝑖 (b, c) 𝑧𝑖−1 (b, c) . . . 𝑧0 (b, c) 𝑧𝑛−1 (b, c) . . . 𝑧𝑖+1 (b, c)

)
· a
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Thus, we can rewrite Equation (6) equivalently as the system

𝑤0 =
(
𝑧0 (b, c) 𝑧𝑛−1 (b, c) . . . 𝑧1 (b, c)

)
· a

𝑤1 =
(
𝑧1 (b, c) 𝑧0 (b, c) . . . 𝑧2 (b, c)

)
· a

...

𝑤𝑛−1 =
(
𝑧𝑛−1 (b, c) 𝑧𝑛−2 (b, c) . . . 𝑧0 (b, c)

)
· a

In other words, 𝑀z (b, c) · a = w. □

One may similarly rewrite Equation (7) as above, so that we have the following lemma.

Lemma 10. Equation (7) is equivalent to the matrix equation _𝑀z (b, d) · a = v over F𝑞 .

Combining the results of Lemmas 9 and 10, if the vectors b,c and d are given, then a is a simultaneous solution
to the matrix equations 𝑀z (b, c) · a = w and _𝑀z (b, d) · a = v. However, a priori the vector b is unknown to the
adversary. If we can find b such that this system of equations has a simultaneous solution, then we are done with
reducing the DPD problem to a solving a single system of linear equations, which can be done in polynomial time.
Summarizing this discussion, we have the following result.

Proposition 3. Suppose that a vector b = (𝑏0, . . . , 𝑏𝑛−1) is such that the system of simultaneous equations

_𝑀z (b, d)a = v and 𝑀z (b, c)a = w has a simultaneous solution a = (𝑎0, . . . , 𝑎𝑛−1). Then, 𝑠 =
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 ,

𝑡 =
𝑛−1∑
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 is a solution of the equation 𝑠ℎ𝑡 = 𝛾.

Now, for an adversary, the vectors a and b are both unknown. We will show below that in most cases, it suffices for
the adversary to fix a suitable value for b and then proceed to solve any one of the linear equations in Lemmas 9
and 10 for a. More precisely, we show that if 𝑀c and 𝑀d are invertible, then a solution is possible for any randomly
chosen b ∈ Γ𝛼 for which the correponding circulant matrix𝑀b is invertible. Since the values arise from a legitimate
public key, we know that there exists a vector b ∈ Γ𝛼 such that the equations _𝑀z (b, d)a = v and 𝑀z (b, c)a = w
have a simultaneous solution a.

Proposition 4. Let the vectors c and d be such that𝑀c and𝑀d are invertible. Assume that at least one simultaneous
solution (a, b) exists to the matrix equations _𝑀z (b, d)a = v and 𝑀z (b, c)a = w. Then, for any randomly chosen
b ∈ Γ𝛼 such that 𝑀b is invertible, the equations _𝑀z (b, d)a = v and 𝑀z (b, c)a = w have a simultaneous solution
a computable in polynomial time.

Proof. Here, b, c, and d are invertible, and thus so are 𝑀z (b, d) = 𝑀d · 𝑀b and 𝑀z (b, c) = 𝑀c · 𝑀b. Now, we
know that a solution (a, b) exists, and so for some vectors a and b we have

_𝑀d𝑀ba = v, 𝑀c𝑀ba = w, 𝑖.𝑒. _−1𝑀−1
d v = 𝑀ba, 𝑀−1

c w = 𝑀ba

So, independently of a and b we necessarily have

_−1𝑀−1
d v = 𝑀−1

c w (8)

Now let b be any random vector such that 𝑀b is invertible. Multiplying equation (8) by 𝑀−1
b , we get

_−1𝑀−1
b 𝑀−1

d v = 𝑀−1
b 𝑀−1

c w
=⇒ _−1𝑀z (b, d)−1v = 𝑀z (b, c)−1w

Setting a := _−1𝑀z (b, d)−1𝑀v = 𝑀z (b, c)−1w, we get a as the simultaneous solution _𝑀z (b, d)a = v and
𝑀z (b, c)a = w. □

5.2 THE ALGORITHM FOR CRYPTANALYSIS
Before describing the cryptanalysis algorithm, we state the following assumption, which we will make for the sake
of our complexity argument. We do not have a proof of its truth, but experimental evidence strongly suggests that
it holds to a good approximation.
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Assumption 1. Let 𝑃1 denote the probability of a uniformly sampled 𝑛×𝑛 circulant matrix over F𝑞 being invertible
and 𝑃2 denote the probability that the circulant matrix corresponding to a uniformly samples reversible vector
is invertible. Then 𝑃1 = 𝑃2. In other words, the probability distribution function corresponding to invertibility
remains the same when restricted to matrices corresponding to reversible vectors.

We have the following result.

Corollary 2. Let 𝑀c and 𝑀d be invertible and 𝛾 be a legitimate public key. Let 𝑒 denote the largest power of 𝑝
dividing 𝑛. Further, assume that Assumption 1 holds. Then, the equation 𝑠ℎ𝑡 = 𝛾 in the unknowns 𝑠 ∈ F𝛼𝑞𝐶𝑛, 𝑡 ∈ Γ𝛼

can be solved for a legitimate secret key (𝑠, 𝑡) in an expected O
((

1 − 1
𝑞

)−𝑛/𝑝𝑒
)

steps. If 𝑛 is a power of 𝑝 then we

have a constant time solution.

Proof. Since 𝛾 is a legitimate public key, a least one simultaneous solution (a, b) exists (the one corresponding to
the initial secret key) to the matrix equations _𝑀z (b, d)a = v and 𝑀z (b, c)a = w. Now, from Corollary 1, a vector

b ∈ F𝑛𝑞 such that b is invertible can be found in an expected

⌈
1(

1− 1
𝑞

)𝑛/𝑝𝑒
⌉

number of steps. For the solution of the

DPD problem, one further requires that the vector b satisfies 𝑏𝑖 = 𝑏𝑛−1 for 1 ≤ 𝑖 ≤ 𝑛 − 1, i.e. that b ∈ Γ𝛼. From
Assumption 1, we may assume the same number of expected steps. Thus, by Proposition 4, we can set 𝑏 to be any

vector in Γ𝛼 such that 𝑀b is invertible. If 𝑛 is a power of 𝑝, this quantity is
⌈

1
1− 1

𝑞

⌉
, which is decreasing in 𝑞, with

the smallest value being 2, for 𝑞 = 2. Thus, in this case the time complexity is O(1). This is also confirmed by
experimental results, where randomly chosen symmetric vectors b ∈ Γ𝛼 were invertible in almost all trials. Once
such a vector b is found, one can compute a = _−1𝑀z (b, d)−1𝑀v = 𝑀z (b, c)−1w. By Proposition 3, this gives a
solution to the DPD problem 𝑠ℎ𝑡 = 𝛾. □

We now state an algorithm to cryptanalyze the key exchange. Its correctness follows from the above discussion. All
the parameters suggested for Protocol 1 by the authors of [4] use 𝑛 = 𝑝, so this algorithm provides a constant-time
cryptanalysis.

Algorithm 1: Cryptanalysis of Key Exchange over F𝛼𝑞𝐷2𝑛

Input Parameter _ and the cocycle 𝛼 = 𝛼_, public element ℎ =
𝑛−1∑
𝑖=0

𝑐𝑖𝑥
𝑖 +

𝑛−1∑
𝑖=0

𝑑𝑖𝑥
𝑖𝑦, public key

𝛾 =
𝑛−1∑
𝑖=0

𝑣𝑖𝑥
𝑖 +

𝑛−1∑
𝑖=0

𝑤𝑖𝑥
𝑖𝑦.

Output A solution (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼 satisfying 𝑠ℎ𝑡 = 𝛾. This tuple is a solution to the DPD problem.
1: Define vectors in F𝑛𝑞: c = (𝑐0, . . . , 𝑐𝑛−1), d = (𝑑0, . . . , 𝑑𝑛−1), v = (𝑣0, . . . , 𝑣𝑛−1), w = (𝑤0, . . . , 𝑤𝑛−1).
2: If 𝑀c or 𝑀d is not invertible

Return Fail
3: Pick a vector b = (𝑏0, . . . , 𝑏𝑛−1) ← Γ𝛼 at random.
4: If 𝑀b is not invertible, repeat step (3). If it is invertible, go to step (5).
5: Compute a = _−1𝑀z (b, c)−1w (= 𝑀−1

b 𝑀−1
d v).

6: With a = (𝑎0, . . . , 𝑎𝑛−1), set 𝑠 =
∑𝑛−1

𝑖=0 𝑎𝑖𝑥
𝑖 and 𝑡 =

∑𝑛−1
𝑖=0 𝑏𝑖𝑥

𝑖𝑦.
7: Return (𝑠, 𝑡).

Remark 2. The solution (𝑠, 𝑡) to the DPD returned by Algorithm 1 and referenced in Corollary 2 is a legitimate
secret key, but not necessarily the same as the originally chosen secret key. In fact, as is clear from the discussion

above, 𝑡 =
𝑛−1∑
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 ∈ Γ𝛼 can be selected at random, and a solution for 𝑠 ∈ F𝛼𝑞𝐶𝑛 is found long as 𝑀b is invertible..

Now, since c and d are random in F𝑛𝑞 , the circulant matrices 𝑀c and 𝑀d are invertible with high probability. The
probability that the algorithm fails is the probability that at least one of them is not invertible, which is given by
1 − (1 − 1

𝑞
)2. Clearly this quantity shrinks with increasing values of 𝑞 and 𝑛. In [4] the smallest values of these

parameters are 𝑞 = 𝑛 = 19, for which this probability is ≈ 0.1. Thus, Algorithm 1 succeeds in cryptanalyzing the
system with a probability of at least 90 percent.

An immediate corollary of the above argument is that the two-sided multiplication action

(F𝛼𝑞𝐶𝑛 × Γ𝛼) × F𝛼𝑞𝐷2𝑛 → F𝛼𝑞𝐷2𝑛
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(𝑠, 𝑡) · ℎ ↦→ 𝑠ℎ𝑡, 𝑠 ∈ F𝛼𝑞𝐶𝑛, 𝑡 ∈ Γ𝛼

is far from being injective, contrary to the assumption of the authors. In fact, for most values of 𝑡 and 𝛾 ∈ F𝛼𝑞𝐷2𝑛,
there is a unique pre-image 𝑠 ∈ F𝛼𝑞𝐶𝑛 such that 𝑠ℎ𝑡 = 𝛾. Thus, the probability that random choosing yields the
right solution is not 1/|F𝛼𝑞𝐶𝑛 × Γ𝛼 |, as claimed by the authors. The real probability is greater than or equal to
probability that the matrices 𝑀c and 𝑀d are invertible and that the correct value of 𝑠 corresponding to 𝑡 is chosen,
which is ≈ 1/|F𝛼𝑞𝐶𝑛 | (we already saw that the probability of the matrices being invertible is very close to 1).
From this, one also sees that the run time of an exhaustive search would be linear in |F𝛼𝑞𝐶𝑛 | = 𝑝𝑛𝑚, rather than in
|F𝛼𝑞𝐶𝑛 × Γ𝛼 | = 𝑝𝑛𝑚𝑝𝑚⌊

𝑛+1
2 ⌋ , as claimed by the authors of [4].

5.3 EXAMPLES
In this subsection, we present some examples generated by computer search, using the algebra software package
SageMath [19]. For the structure of the twisted group algebra and the generation of the keys, we made use of
the original source code of the authors. Our entire working code including the cryptanalysis can be found at:
https://github.com/simran-tinani/Cryptanalysis-of-twisted-group-algebra-system

In the following examples, an element
𝑛−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 +

𝑛−1∑
𝑖=0

𝑏𝑖𝑥
𝑖𝑦 of F𝛼𝑞𝐷2𝑛 is denoted by the 2𝑛-tuple (𝑎0, . . . , 𝑎𝑛−1,

𝑏0, . . . , 𝑏𝑛−1).

Example 1. For parameters 𝑛 = 23, 𝑞 = 23, _ = 11, and using the notations above, consider the randomly
generated public element ℎ, and secret key (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼.

ℎ =(19, 9, 4, 14, 6, 13, 21, 18, 18, 10, 9, 2, 5, 15, 13, 22, 18, 13, 16, 20, 11, 2, 11, 6, 18, 7, 17, 8, 20, 20, 17, 7, 15, 1, 11, 9, 17, 4, 11,
16, 5, 17, 19, 18, 19, 20),

𝑠 =(20, 17, 20, 22, 18, 18, 11, 12, 2, 3, 18, 11, 2, 18, 3, 14, 10, 2, 13, 14, 3, 9, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0)

𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 14, 3, 2, 19, 4, 15, 1, 21, 3, 6, 6, 3, 21, 1, 15, 4, 19, 2, 3, 14, 0)

Using the method in Section 5, the program computed the solution (𝑠, 𝑡) to the DPD, where

𝑠 =(13, 16, 5, 1, 21, 1, 2, 8, 17, 2, 12, 11, 4, 0, 20, 7, 19, 16, 3, 14, 22, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 2, 17, 16, 12, 16, 12, 10, 6, 8, 3, 0, 0, 3, 8, 6, 10, 12, 16, 12, 16, 17, 2)

It was verified that 𝑠ℎ𝑡 = 𝑠ℎ𝑡, so a legitimate private key was recovered.

Example 2. For parameters 𝑛 = 19, 𝑞 = 19, _ = 18, and using the notations above, consider the randomly
generated public element ℎ, and secret key (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼.

ℎ =(14, 5, 13, 4, 10, 12, 8, 6, 17, 18, 15, 1, 14, 14, 15, 15, 13, 4, 6, 7, 7, 11, 13, 4, 11, 12, 3, 11, 18, 8, 3, 3, 6, 11, 17, 1, 7, 10),
𝑠 =(18, 14, 1, 0, 15, 5, 7, 0, 1, 7, 10, 5, 9, 18, 2, 12, 17, 12, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 17, 4, 10, 18, 5, 5, 9, 15, 18, 18, 15, 9, 5, 5, 18, 10, 4, 17)

Using the method in Section 5, the program computed the solution (𝑠, 𝑡) to the DPD, where

𝑠 =(12, 6, 4, 10, 12, 4, 5, 7, 0, 15, 8, 7, 1, 0, 2, 15, 6, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 13, 11, 10, 3, 3, 1, 1, 3, 16, 16, 3, 1, 1, 3, 3, 10, 11, 13)

It was verified that 𝑠ℎ𝑡 = 𝑠ℎ𝑡, so a legitimate private key was recovered.

Example 3. For parameters 𝑛 = 41, 𝑞 = 41, _ = 29, and using the notations above, consider the randomly
generated public element ℎ, and secret key (𝑠, 𝑡) ∈ F𝛼𝑞𝐶𝑛 × Γ𝛼.

ℎ =(33, 2, 29, 20, 9, 5, 36, 13, 26, 15, 38, 27, 33, 4, 20, 4, 14, 23, 12, 0, 35, 5, 38, 40, 1, 6, 16, 26, 9, 0, 29, 6, 32, 26, 14, 32,
18, 29, 13, 35, 7, 8, 38, 26, 20, 25, 24, 18, 30, 28, 22, 8, 21, 1, 33, 29, 2, 22, 25, 6, 13, 24, 18, 26, 30, 38, 3, 1, 39, 11, 15,
10, 9, 16, 3, 7, 36, 26, 22, 6, 0, 15),

𝑠 =(24, 2, 12, 32, 10, 2, 27, 1, 5, 7, 17, 32, 7, 24, 28, 26, 17, 8, 32, 18, 13, 8, 19, 17, 0, 11, 33, 17, 27, 1, 36, 3, 33, 9, 30, 34,
22, 26, 21, 5, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 8, 18, 11, 31,
9, 34, 3, 16, 39, 32, 0, 15, 31, 3, 26, 0, 31, 39, 4, 40, 40, 4, 39, 31, 0, 26, 3, 31, 15, 0, 32, 39, 16, 3, 34, 9, 31, 11, 18, 8)
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Using the method in Section 5, the program computed the solution (𝑠, 𝑡) to the DPD, where

𝑠 =(39, 9, 4, 23, 8, 8, 10, 40, 31, 27, 22, 36, 11, 14, 35, 28, 25, 0, 0, 10, 16, 33, 24, 6, 33, 17, 15, 13, 17, 10, 18, 31, 33, 16, 13,
28, 2, 36, 37, 13, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

𝑡 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 6, 8, 35, 23, 22, 39,
12, 22, 36, 34, 1, 29, 8, 16, 40, 29, 16, 24, 14, 31, 31, 14, 24, 16, 29, 40, 16, 8, 29, 1, 34, 36, 22, 12, 39, 22, 23, 35, 8, 6)

It was verified that 𝑠ℎ𝑡 = 𝑠ℎ𝑡, so a legitimate private key was recovered.

Clearly, in each of the above examples, 𝑠 ≠ 𝑠 and 𝑡 ≠ 𝑡, but 𝑠ℎ𝑡 = 𝑠ℎ𝑡. Thus, each of these examples also serves as
a counterexample to the injectivity of the two-sided action.

6 CONCLUSION
In this paper, we provided a method for cryptanalysis of the protocol in [4] which is based on a double-sided
multiplication problem in the twisted dihedral group algebra F𝛼𝑞𝐷2𝑛. We first showed that the underlying DPD
algorithmic problem is equivalent to a commutative semigroup action problem. For our cryptanalysis, we showed
that the task for an adversary attempting to solve the underlying DPD problem is equivalent to the solution of two
equations in F𝑞 involving circulant matrices. We further demonstrated a solution for these equations using linear
algebra, which works with a success rate of at least 90 percent for the proposed values of the parameters in [4].
The key exchange system in [4] and its underlying algorithmic problem are both therefore clearly insecure, even in
a classical setting.
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