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Abstract In this work we present two commitment schemes based on hardness assumptions arising from super-
singular elliptic curve isogeny graphs, which possess strong security properties. The first is based on the CGL
hash function while the second is based on the SIDH framework, both of which require a trusted third party for the
setup phase. The proofs of security of these protocols depend on properties of non-backtracking random walks on
regular graphs. The optimal efficiency of these protocols depends on the size of a certain constant, defined in the
paper, related to relevant isogeny graphs, which we give conjectural upper bounds for.
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1 INTRODUCTION
Over the past several years, there has been an extensive effort to design cryptographic protocols that are believed

to be resistant to quantum attacks. Thanks to Shor’s celebrated breakthrough algorithm in 1994 [29], modern public
key cryptosystems based on the integer factorisation problem or discrete logarithm problem are not secure when
presented with a quantum adversary. The field of post-quantum cryptography is the study of such protocols and it is
widely considered that there are six main categories of post-quantum schemes. These are code-based, hash-based,
multivariate-based, lattice-based, isogeny-based and MPC-based cryptography - each of which uses either a new
problem which is conjectured to be hard to solve, or uses symmetric primitives to build new cryptosystems.
Commitment schemes [5] have played a central role in the age of modern public-key cryptography. It allows

a party to securely commit to particular value in such a way that other parties can be assured that it hasn’t been
tampered with. They have many useful applications: in secure electronic voting [9, 11], signature schemes [20]
and zero knowledge proofs [10], to name a few.
One of themost important commitment schemes is the Pedersen commitment scheme [26] based on the hardness

of the discrete logarithm problem in a finite cyclic group. As such, it is vulnerable to Shor’s algorithm which
renders it insecure if a sufficiently large quantum computer is available. Therefore, one might hope to design a
commitment scheme which is secure against quantum adversaries. There has been some work on constructing
lattice-based commitment schemes [3, 33]. They use well known lattice based assumptions such as Ring-LWE,
Module-LWE and Module-SIS as a basis for their security. There has also been some work on constructing
code-based commitment schemes [25] and multivariate-based commitment schemes [27].
Isogeny based cryptography is one of the younger frameworks being considered as a basis for post-quantum

cryptography. Supersingular isogeny graphs were introduced as a hard problem in cryptography by Charles, Goren
and Lauter when they presented the CGL hash function at the NIST hash function competition in 2005 [6]. Later,
key exchange protocols [12] and signature schemes [13, 18] were proposed based on supersingular isogeny graphs.
For these cryptosystems, the underlying security depends on the hardness of finding a path in the supersingular
ℓ-isogeny graph, sometimes with extra auxiliary information.
At the time of writing, as far as we are aware, there are no published commitment schemes based on isogeny

assumptions. Just as SIDH is an analogue of traditional Diffie-Hellman, one would hope that an analogue of
Pedersen commitments exists in the isogeny setting. It is therefore surprising that this is not currently the case.
Galbraith has declared this to be a “huge open problem" in isogeny-based cryptography [17].

1.1 CONTRIBUTIONS
In this work we present the first provably secure commitment schemes based on supersingular elliptic curve

isogeny graphs. Underlying our protocols is the well-known idea of using a hash function to obtain a secure
*Corresponding Author: b.sterner@surrey.ac.uk
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commitment scheme. In particular, we use the isogeny-based hash function from [6] as a fundamental building
block for our commitment scheme. We also use a trusted third party in the setup phase. This is to ensure that the
endomorphism ring of the starting curve is not revealed.
Traditionally, proving the security of the resulting commitment scheme is done with the help of the random

oracle model to show that it is information-theoretically hiding. However, in this work we obtain such a scheme
without using the random oracle model: instead we use mathematical properties of isogenies and their associated
isogeny graphs to obtain a commitment scheme which is both information-theoretically hiding and computationally
binding.

1.2 OUTLINE
In Section 2 we begin with the necessary preliminaries needed for this work. This includes background on

supersingular elliptic curve isogenies and we review the techniques used for computing such isogenies. We also
give a formal definition of a commitment scheme and introduce the necessary security models. In Section 3 we
introduce the mixing constant for any regular graph and analyse its properties. In Sections 4 and 5 we present our
commitment schemes based on supersingular isogeny graphs and use the result fromSection 3 to prove their security.
In Section 6 we estimate the performance of our commitment schemes, both from a perspective of efficiency and
size of the commitment values. We also attempt to compare our schemes to that of a lattice counterpart. Finally,
in Section 7 we summarise the presented work and suggest avenues for future work.

2 PRELIMINARIES
We refer to [30] for a comprehensive background on elliptic curves and isogenies as well as [31, Chapter 20]

for more background on commitment schemes.

2.1 SUPERSINGULAR ELLIPTIC CURVE ISOGENIES
An isogeny between two elliptic curves 𝐸 and 𝐸 ′ over a finite field F𝑞 is a non-zero rational map which maps

points on 𝐸 (F𝑞) to 𝐸 ′(F𝑞) and also defines a group homomorphism on these points. We call an isogeny F𝑞𝑛 -rational
if the mapping is defined over F𝑞𝑛 . Two elliptic curves are isogenous if there is an isogeny between the two curves.
The degree of an isogeny, denoted by deg(𝜙), is its degree as a rational map. We call an isogeny an ℓ-isogeny if it
has degree ℓ. For the special case of separable isogenies, the degree is the number of points in its kernel and, given
any subgroup 𝐺 ⊆ 𝐸 (F𝑞), there exists a unique1 separable isogeny 𝜙 : 𝐸 → 𝐸 ′ whose kernel is 𝐺. If the degree
of an isogeny is 1 then the map defines an isomorphism. Moreover there is an isomorphism between two elliptic
curves if and only if their j-invariants are the same.
An endomorphism of an elliptic curve 𝐸 is an isogeny from 𝐸 to itself. The set of all endomorphisms of 𝐸

including the zero map forms a ring with addition and composition. This ring is called the endomorphism ring,
denoted by End(𝐸), and it is isomorphic to either an order in an imaginary quadratic field or a maximal order in a
quaternion algebra. We say 𝐸 is ordinary in the first case and supersingular in the second case. For example, when
𝑝 ≡ 3 mod 4 the curve 𝐸/F𝑝2 : 𝑦2 = 𝑥3 + 𝑥 is supersingular, has j-invariant 1728 and has an endomorphism ring
End(𝐸) = ⟨1, 𝜄, 𝜄+𝜋

2 , 1+ 𝜄◦𝜋2 ⟩, where 𝜋 is the Frobenius endomorphism and 𝜄(𝑥, 𝑦) = (−𝑥,
√
−1𝑦).

Given an isogeny 𝜙 : 𝐸 → 𝐸 ′ there exists a unique isogeny 𝜙 : 𝐸 ′ → 𝐸 such that 𝜙 ◦ 𝜙 = 𝜙 ◦ 𝜙 = [deg(𝜙)],
where [·] is the scalar multiplication map. This isogeny 𝜙 is called the dual isogeny.
Given primes ℓ, 𝑝 where ℓ is small (typically 2 or 3) and 𝑝 is large, the supersingular ℓ-isogeny graph is the

graph whose vertex set is the isomorphism classes of supersingular elliptic curves2 defined over F𝑝2 (labelled by
the j-invariants) and two vertices are connected by a directed edge if there is an isogeny between the two curves of
degree ℓ. In most circumstances this graph can be thought of as undirected since every isogeny has a dual isogeny.
For each ℓ this graph is connected in the sense that any two vertices can be connected by a path in this graph, or
equivalently, for each pair of supersingular elliptic curves 𝐸 and 𝐸 ′ there is an isogeny of degree ℓ𝑘 between these
curves. It is also (ℓ + 1)-regular in the sense that to each vertex there are ℓ + 1 outgoing edges.
For such a graph, one can freely walk on the graph. Given a string 𝑚 ∈ Z/(ℓ + 1)Z × (Z/ℓZ)𝑘−1, we denote

by Φℓ (𝐸, 𝑚) the supersingular elliptic curve obtained by going on a non-backtracking walk in the supersingular
ℓ-isogeny graph starting at 𝐸 and dictated by the entries in the string 𝑚. Namely we get a sequence 𝐸 = 𝐸0 −→
𝐸1 −→ · · · −→ 𝐸𝑘 = Φℓ (𝐸, 𝑚) of supersingular elliptic curves each of which is connected by an ℓ-isogeny. To
get the next curve from 𝐸𝑖−1 we first compute the irreducible factors (of degree up to (ℓ − 1)/2) of the ℓ-division
polynomial of 𝐸𝑖−1. Roots of these factors correspond to points of order ℓ [16, Section 25.2]. Up to generating the

1Up to isomorphism.
2Apriori defined over F𝑝 .

41



Sterner, B.

1. PP← KeyGen()
2. (m0, m1) ← A(PP)
3. b ∈R {0, 1}
4. c = Commit(PP, mb, r)
5. b′← A(c)
6. return b == b′

1. PP← KeyGen()
2. (m, m′, r, r′, c) ← A(PP)
3. return (m ≠ m′) && (Open(PP, 𝑚, 𝑟, 𝑐) ==

Open(PP, m′, r′, c) == 1)

Figure 1: Hiding and binding games (resp.) for a commitment scheme.

same subgroup and avoiding backtracking3, label these roots as 𝑃0, 𝑃1, · · · , 𝑃ℓ−1 and choose the point 𝑄𝑖 B 𝑃𝑚𝑖
.

Then compute the curve 𝐸𝑖+1 B 𝐸𝑖/⟨𝑄𝑖⟩ and its corresponding isogeny using Vélu’s formula [32]. Associated to
Φℓ (𝐸, 𝑚) is the isogeny 𝜙𝑚 : 𝐸 → Φℓ (𝐸, 𝑚) of degree is ℓ𝑘 obtained as a composition of ℓ-isogenies.
Alternatively, one can walk freely on these isogeny graphs direct from a cyclic subgroup [7, Corollary 4.5].

Namely given an ℓ-power cyclic subgroup 𝐺 = ⟨𝑅⟩ ⊆ 𝐸 [ℓ𝑘] ⊆ 𝐸 (F𝑞) one can compute the isogeny 𝜙 : 𝐸 → 𝐸 ′

whose kernel is 𝐺. This can be done by computing a chain of degree ℓ isogenies whereby the kernel of the 𝑛-th
isogeny in this chain is equal to ⟨ℓ𝑘−𝑛𝑅𝑛⟩ where 𝑅𝑛 = 𝜙𝑛 (𝑅𝑛−1) and 𝑅1 = 𝑅. Then composing these isogenies
gives 𝜙. This might look exactly the same the previous approach but the difference here is one can exploit optimal
strategies [12, Section 4.2.2] to make this computation faster.
The former approach mentioned for computing isogenies was done by [6] to achieve the isogeny-based hash

function. The latter approach was done in [12] to achieve the isogeny-based key exchange SIDH and its counterpart
SIKE.

2.2 COMMITMENT SCHEMES
Throughout this section and the rest of this work we abbreviate “probabilistic polynomial-time" by PPT and

denote any negligible function by negl.
Formally speaking, a commitment scheme consists of three algorithms: KeyGen(), Commit() and Open() -

each of which has an implicit input 1𝜆 where 𝜆 is a security parameter. KeyGen() is a PPT algorithm that outputs
the necessary public parameters needed for the protocol as well as the definition of the message space. Commit()
is a PPT algorithm that, given the public parameters, a message 𝑚 in the message space and a random 𝑟 ∈ {0, 1}𝜆,
outputs a value 𝑐 which serves as the commitment to𝑚 and 𝑟 . Open() is a deterministic polynomial-time algorithm
that given the public parameters, the message 𝑚, the random 𝑟 and the value 𝑐 outputs a boolean value 𝑏 ∈ {0, 1}
according to whether or not 𝑐 is a valid commitment to 𝑚 and 𝑟 .
Cryptographic applications of commitment schemes require the following two properties, known as hiding and

binding. Informally, the hiding property ensures that the outputted commitment does not reveal anything about
the message, while the binding property ensures that it should be hard to replicate the same commitment using a
different message. We formally define these properties with aid of the games described in Figure 1. The hiding
game is modelled like an indistinguishability game where the adversary is given the commitment of one of two
messages and he is tasked to determine which message was used to derive the commitment. The binding game
asks the adversary to find two distinct messages from the message space that gives the same commitment.

Definition 1. Let C be a commitment scheme with a security parameter 𝜆 and A be an adversary. The hiding
advantage for the adversary A, denoted Advhid

C (A), is defined to be 2 |Pr[A wins the hiding game] − 1/2|. More
specifically, we have

Advhid
C (A) = 2

����Pr[A(PP, 𝑚0, 𝑚1, 𝑐) = 1���� PP← KeyGen(),
𝑚0, 𝑚1, 𝑐 = Commit(PP, 𝑚𝑏, 𝑟)

]
− 1
2

���� .
We say that C is information-theoretically (resp. computationally) hiding if for all adversaries (resp. PPT

adversaries)A there is a negligible function, negl, such that the advantage of winning the hiding game is bounded
above by negl(𝜆). Furthermore we say C has perfect hiding if the hiding advantage is zero for any adversary.

The following is a reformulation of the hiding advantage.

Lemma 1. Given a commitment scheme C and an adversary A, we have

3Which amounts to the next isogeny being the dual of the previous one.
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Advhid
C (A) =

�����Pr[A(PP, 𝑚0, 𝑚1, 𝑐) = 1���� PP← KeyGen(),
𝑚0, 𝑚1, 𝑐 = Commit(PP, 𝑚1, 𝑟)

]
− Pr

[
A(PP, 𝑚0, 𝑚1, 𝑐) = 1

���� PP← KeyGen(),
𝑚0, 𝑚1, 𝑐 = Commit(PP, 𝑚0, 𝑟)

] �����.
Definition 2. Let C be a commitment scheme with a security parameter 𝜆 and A be an adversary. The bind-
ing advantage for the adversary A, denoted Advbind

C (A), is defined to be Pr[A wins the binding game]. More
specifically, we have

Advbind
C (A) = Pr

[
A(PP) = (𝑚, 𝑚′, 𝑟, 𝑟 ′, 𝑐)

s.t. 𝑚 ≠ 𝑚′ & Open(PP, 𝑚, 𝑟, 𝑐) = Open(PP, 𝑚′, 𝑟 ′, 𝑐) = 1

���� PP← KeyGen()
]
.

We say that C is information-theoretically (resp. computationally) binding if for all adversaries (resp. PPT
adversaries)A there is a negligible function, negl, such that the advantage of winning the binding game is bounded
above by negl(𝜆). Furthermore we say C has perfect binding if the binding advantage is zero for any adversary.

3 WALKING ON REGULAR GRAPHS
Let 𝐺 be a graph with vertex set 𝑉 (𝐺) and let (𝑣𝑘)𝑘≥0 denote a random walk in 𝐺. For a positive integer 𝑑

(which throughout this work will always be at least 3), we say𝐺 is 𝑑-regular if for each vertex 𝑣 ∈ 𝑉 (𝐺) the number
of edges incident to the vertex4 𝑣 is 𝑑. We say the random walk (𝑣𝑘) is non-backtracking if it does not traverse on
the same edge twice in a row, i.e., for each 𝑘 ≥ 1 the edges [𝑣𝑘−1, 𝑣𝑘] and [𝑣𝑘 , 𝑣𝑘+1] are different.
The adjacency matrix of the 𝑑-regular graph𝐺, 𝐴, is the matrix whose (𝑖, 𝑗)-th entry is the number of (directed)

edges at the vertex 𝑖 going to the vertex 𝑗 . Note that the powers of this matrix describes the number of paths (that
may include backtracking paths) between two vertices of a given length. The transition matrix of𝐺, 𝑃, is the matrix
whose (𝑖, 𝑗)-th entry is 𝐴(𝑖, 𝑗)/𝑑. Finally, a stationary distribution on 𝑉 (𝐺), 𝜋, is a probability distribution on the
set of vertices of 𝐺 such that 𝜋 = 𝜋𝑃 or equivalently 𝜋(𝑦) = ∑

𝑥∈𝑉 (𝐺) 𝜋(𝑥)𝑃(𝑥, 𝑦). If 𝐺 is strongly connected, this
stationary distribution is unique [21, Corollary 1.17].
Given a random walk (𝑣𝑘) in 𝐺, we define the worst-case total-variation distance to stationarity at time 𝑡 to be

𝑑 (𝑡) B 1
2
max

𝑣∈𝑉 (𝐺)


∑︁

𝑥∈𝑉 (𝐺)

����Pr𝑣 (𝑣𝑡 = 𝑥) − 𝜋(𝑥)
����

where Pr𝑣 denotes the probability given 𝑣0 = 𝑣 and 𝜋 is the stationary distribution on 𝐺. We define 𝑡MIX (𝜖), the
total-variation mixing time of (𝑣𝑘) for 0 < 𝜖 < 1, as

𝑡MIX (𝜖) B min{𝑡 : 𝑑 (𝑡) < 𝜖}.

Theorem 1 (Rapid Mixing of Non-Backtracking Walks). Let 𝐺 be a random 𝑑-regular graph with 𝑁 vertices and
𝑑 ≥ 3. Let (𝑣𝑘) be a non-backtracking random walk in 𝐺. Then for any fixed 𝜖 > 0, the worst case total-variation
mixing time with high probability satisfies

𝑡MIX (1 − 𝜖) ≥ ⌈log𝑑−1 (𝑑𝑁)⌉ − ⌈log𝑑−1 (1/𝜖)⌉,
𝑡MIX (𝜖) ≤ ⌈log𝑑−1 (𝑑𝑁)⌉ + 3⌈log𝑑−1 (1/𝜖)⌉ + 4.

Proof. See [22, Theorem 2]. □

In other words, for a sufficiently small 𝜖 , this theorem says that the output of a non-backtracking randomwalk of
length𝑂 (log𝑑−1 (𝑑𝑁)) on a random regular graph is indistinguishable from choosing a random vertex in the graph.
It turns out that, compared to simple random walks that allow backtracking, the mixing time of non-backtracking
walks is 𝑑

𝑑−2 times smaller [22, Theorem 1].
In previous work including [19], powers of the adjacency matrix, 𝐴𝑘 , were used to get some mixing results on

certain 𝑑-regular graph known as expander graphs. We are interested in the study of non-backtracking paths and
for that we consider the following matrices: 𝐴1 = 𝐴, 𝐴2 = 𝐴2 − 𝑑𝐼 and 𝐴𝑟+1 = 𝐴1𝐴𝑟 − (𝑑 − 1)𝐴𝑟−1 for 𝑟 ≥ 2.
Then 𝐴𝑟 is the matrix whose (𝑖, 𝑗)-th entry is equal the number of non-backtracking walks from 𝑖 to 𝑗 of length
𝑟 [23, Section 6].

4If the graph 𝐺 is directed then we specify that the number of outgoing edges from 𝑣 is 𝑑.
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Lemma 2. Let 𝐺 be a connected 𝑑-regular graph with 𝑑 ≥ 3. Then there exists some positive integer 𝑘0 such that
for all 𝑘 ≥ 𝑘0, 𝐴𝑘 has entries which are all non-zero.

Proof. For any vertex 𝑖, the number of length 𝑟 non-backtracking walks starting at 𝑖 is precisely 𝑑 (𝑑 − 1)𝑟−1 and so
we have

#𝑉 (𝐺)∑︁
𝑘=1

𝐴𝑟 (𝑖, 𝑘) = 𝑑 (𝑑 − 1)𝑟−1.

Since 𝑑 ≥ 3, as 𝑟 → ∞ this sum tends to ∞ and hence there is some vertex 𝑗0 such that 𝐴𝑟 (𝑖, 𝑗0) → ∞. For
any vertex 𝑗 , fix two paths (of length 𝑚0, 𝑚1) between 𝑗0 → 𝑗 (which can be done since the graph is connected).
We ensure that the first step in these paths are different. Consider all paths 𝑖 → 𝑗0 → 𝑗 whereby we first go
to 𝑗0 and then traverse to 𝑗 using one of our fixed paths making sure we avoid any backtracking. Then we have
𝐴𝑟 (𝑖, 𝑗0) ≤ 𝐴𝑟+𝑚0 (𝑖, 𝑗) + 𝐴𝑟+𝑚1 (𝑖, 𝑗) and therefore 𝐴𝑟 (𝑖, 𝑗) → ∞.
Hence for each 𝑖, 𝑗 there is some positive integer 𝑘 (𝑖, 𝑗) such that for all 𝑘 ≥ 𝑘 (𝑖, 𝑗), we have 𝐴𝑘 (𝑖, 𝑗) is strictly

positive. Setting 𝑘0 to be the maximum of 𝑘 (𝑖, 𝑗) over all pairs of vertices (𝑖, 𝑗) gives the result. □

Definition 3. We define 𝑘𝐺 to be the minimal 𝑘0 such that Lemma 2 holds and call 𝑘𝐺 the mixing constant for the
graph 𝐺.

The minimality of 𝑘𝐺 means that there exists 𝑖0, 𝑗0 such that 𝐴𝑘𝐺−1 (𝑖0, 𝑗0) = 0, and for all 𝑖, 𝑗 and 𝑘 ≥ 𝑘𝐺 ,
𝐴𝑘 (𝑖, 𝑗) ≠ 0. Rephrasing this in the context of non-backtracking walks we obtain the following.

Corollary 1. For a connected 𝑑-regular graph 𝐺 (with 𝑑 ≥ 3) let 𝑘𝐺 be the corresponding mixing constant. Then
for all 𝑘 ≥ 𝑘𝐺 and every pair of vertices (𝑖, 𝑗), there exists a non-backtracking path between 𝑖 and 𝑗 of length 𝑘 .

We now provide a lower bound on the mixing constant 𝑘𝐺 . The following is a generalisation of the calculation
done in [2, Section 6]. There are at most 𝑑 (𝑑 − 1)𝑘−1 possible outputs to a non-backtracking walk of length 𝑘 . For
some large enough 𝑘 this number of walks exceeds the number of vertices in 𝐺: 𝑑 (𝑑 − 1)𝑘−1 ≥ 𝑁 . Rearranging
this gives us a lower bound for the mixing constant:

Lemma 3. The mixing constant 𝑘𝐺 of a connected 𝑑-regular graph is bounded below by

𝑘𝐺 ≥ log𝑑−1 (𝑁) − log𝑑−1 (𝑑) + 1.

Theorem 1 hints at an upper bound for 𝑘𝐺 . Namely for a suitably small 𝜖 > 0 we expect that 𝑘𝐺 ≤ 𝑡MIX (𝜖). In
particular, if 𝜖 is negligibly small then the mixing constant may be at most 𝑡MIX (𝜖). For instance 𝜖 = 1/𝑑𝑁 , then
by Theorem 1 we get that 𝑡MIX (1/𝑑𝑁) ≤ 4⌈log𝑑−1 (𝑑𝑁)⌉ + 4. To summarise we make the following conjecture.

Conjecture 1. The mixing constant 𝑘𝐺 of a connected 𝑑-regular graph 𝐺 has the following upper bound:

𝑘𝐺 ≤ 4⌈log𝑑−1 (𝑑𝑁)⌉ + 4.

This upper bound can be thought of as a worst case bound among all regular graphs. Some regular graphs
have faster mixing rates, such as expander graphs or Ramanujan graphs, so one would hope expect that the mixing
constant would be smaller. Later we conjecture better upper bounds for this mixing constant in the context of
supersingular isogeny graphs as well as providing some experimental data to support the conjecture.

4 A COMMITMENT SCHEME FROM ISOGENY ASSUMPTIONS
The idea of using Ramanujan graphs, that have optimal mixing properties [1], in cryptographywas first proposed

by [6]. More precisely they proposed to construct hash functions by going on random walks on certain Ramanujan
graphs where path-finding is hard. This includes supersingular isogeny graphs which were proved by Pizer [28] to
be Ramanujan.
In this section we use supersingular elliptic curve isogeny graphs to construct a commitment scheme and use

the graph theoretic results from Section 3 to prove its security. The idea behind our commitment scheme is, given
a message 𝑚 and a random 𝑟 that someone wants to commit to, compute the isogeny-based hash of 𝑚 concatenated
by 𝑟 . The output of this concatenation will be used as the commitment of the message 𝑚. Initially we present it in
the supersingular 2-isogeny setting graph and later generalise it to the supersingular ℓ-isogeny with ℓ an odd prime.
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4.1 OUR PROTOCOL
Let 𝜆 be a security parameter. The key generation of the commitment scheme is as follows. Choose a prime

number 𝑝 of 2𝜆 bits, a supersingular elliptic curve 𝐸/F𝑝2 whose endomorphism ring is unknown and a positive
integer 𝑘 to be chosen later. Apart from a few notable exceptions, constructing a supersingular curve with unknown
endomorphism ring is currently a hard problem and such a curve is commonly refereed to as a hard curve. Classical
isogeny-based protocols use the j-invariant 1728 as the starting curve5. However, as alluded in Section 2.1 this curve
has a special endomorphism ring which has an explicit form. Hence this curve cannot be used in our protocol. To
get around this, we suggest that a trusted third party generates such a supersingular curve 𝐸 by going on a random
walk starting at a known node in the graph (for instance the curve of j-invariant 1728). As long as the trusted party
does not reveal the path it took to get the curve 𝐸 , the endomorphism ring of 𝐸 should remain unknown. Finally,
choose two random edges incident to 𝑗 (𝐸) in the isogeny graph.
To commit to a message 𝑚 ∈ {0, 1}𝑘 first compute the curve 𝐸𝑚 B Φ2 (𝐸, 𝑚) (making sure the first step in

the graph is one of the two edges chosen above). Then choose uniformly at random a binary string 𝑟 ∈𝑅 {0, 1}𝑘
and compute the curve 𝐸 ′ B Φ2 (𝐸𝑚, 𝑟). When you go from 𝐸𝑚 to 𝐸 ′, make sure to avoid any backtracking in the
isogeny graph. Then return 𝑐 B 𝑗 (𝐸 ′) as the commitment of the message 𝑚.
Given the message 𝑚, the random 𝑟 and the commitment 𝑐, to open the commitment first compute the curve

Φ2 (Φ2 (𝐸, 𝑚), 𝑟). Then return the boolean value 𝑐 == 𝑗 (Φ2 (Φ2 (𝐸, 𝑚), 𝑟)).

Remark 1. The necessity of the endomorphism ring of 𝐸 remaining unknown is due to an attack by [15]. They
are able to break the second preimage resistance of the isogeny hash function when the endomorphism ring of 𝐸 is
known. This will be important in the context of binding of our protocol.

4.2 HIDING
The graph theoretic results presented in Section 3 along with the following well known result on random

walks on isogeny graphs will be used here to show that the commitment scheme presented in Section 4.1 is
information-theoretically hiding.

Theorem 2. Given a prime number 𝑝, let 𝑗0 be a supersingular j-invariant in characteristic 𝑝, 𝑁𝑝 be the number
of supersingular j-invariants in characteristic 𝑝 and 𝑛 =

∏
𝑖 ℓ

𝑒𝑖
𝑖

be an integer where ℓ𝑖 are small primes. Let 𝑗 be
the j-invariant reached by a random walk of degree 𝑛 starting at 𝑗0. Then for every j-invariant 𝑗 we have����Pr [ 𝑗 = 𝑗

]
− 1

𝑁𝑝

���� ≤∏
𝑖

(
2
√
ℓ𝑖

ℓ𝑖 + 1

)𝑒𝑖
.

Proof. See [18, Theorem 1]. □

Theorem 3. Let 𝑘2, 𝑝 be the mixing constant for the supersingular 2-isogeny graph in characteristic 𝑝. Then for
any 𝑘 ≥ 𝑘2, 𝑝 , the commitment scheme described in Section 4.1 is information-theoretically hiding.

Proof. Fix two message strings 𝑚0, 𝑚1, a randomly chosen bit 𝑏 ∈𝑅 {0, 1} and a resulting commitment 𝐸 ′ =
Φ(𝐸𝑚𝑏

, 𝑟). The goal for an adversary is to determine which message was used to get the commitment. Since
the supersingular 2-isogeny graph is 3-regular, 𝑘2, 𝑝 is well-defined. For any 𝑘 ≥ 𝑘2, 𝑝 , by Corollary 1, there is
guaranteed to be a path of length 𝑘 from 𝐸𝑚0 to 𝐸 ′ and 𝐸𝑚1 to 𝐸 ′. Set 𝛼 B

3
2
√
2
> 1. Using Theorem 2 we have

Pr [𝑐 = 𝐸 ′ | message is 𝑚0] − Pr [𝑐 = 𝐸 ′ | message is 𝑚1] ≤ 2𝛼−𝑘 .

Similarly this difference is bounded below by −2𝛼−𝑘 . Therefore the advantage of winning the hiding game is
at most 2𝛼−𝑘 ≤ 2𝛼−𝑘2, 𝑝 ≤ 2𝛼−2𝜆+log2 (36) (last inequality is a consequence of Lemma 3 and 𝑁𝑝 ≥ 𝑝/12− 1), which
proves the theorem. □

By the conjectural upper bound on the mixing constant, Conjecture 1, we can choose 𝑘 = 4⌈log2 (𝑝)⌉ − 4. With
this choice of 𝑘 we achieve information-theoretic hiding for our commitment scheme. As mentioned earlier, it
could be possible to improve on this choice of 𝑘 when specific graphs are used. Since supersingular isogeny graphs
are Ramanujan graphs, one hopes that the mixing constant for these graphs is smaller. In particular we conjecture
the following upper bound which we believe to be sharp for supersingular 2-isogeny graphs.

Conjecture 2. With 𝑘2, 𝑝 be as defined previously, we have the following upper bound

𝑘2, 𝑝 ≤ log2 (𝑝) + log2 (log2 (𝑝)) +𝑂 (1).

In particular the constant in the big-Oh notation is at most 1.
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Figure 2: Mixing constant in prime characteristic 𝑝 for all 𝑝 ≤ 65600. The lower bound
curve is log2 (𝑥) and the upper bound curve is log2 (𝑥) + log2 (log2 (𝑥)).

Experimental results on this conjecture show that for every prime 𝑝 ≤ 65600 and some primes between
123000 ≤ 𝑝 ≤ 131100 and 234000 ≤ 𝑝 ≤ 218, the associated mixing constant for the supersingular 2-isogeny
graph is no more than log2 (𝑝) + log2 (log2 (𝑝)) + 3

10 . These mixing constants were calculated by first computing
the adjacency matrix, 𝐴, for the graph and sequentially compute 𝐴𝑘 , as defined in Section 3, until you find a value
�̂� such that the each entry of 𝐴�̂� is non-zero. We verify that 𝑘2, 𝑝 = �̂� by computing 𝐴�̂�+1, 𝐴�̂�+2, · · · , 𝐴�̂�+𝑖 for some
small 𝑖 and see if the entries in these matrices are non-zero. Since the entries of these matrices grow as we increase
𝑘 , then as long as these matrices have non-zero entries, we can conclude that 𝑘2, 𝑝 = �̂� . Figure 2 tabulates the
mixing constant in the supersingular 2-isogeny graph in characteristic 𝑝 for all 𝑝 ≤ 65600.
If this conjecture is true then we can choose 𝑘 = ⌈log2 (𝑝) + log2 (log2 (𝑝)) + 1⌉ and it would significantly speed

up the performance of the protocol.

4.3 BINDING
We will prove that the binding of our protocol is secure under the following hard problem.

Problem 1 (Supersingular Smooth Endomorphism Problem). Given a prime 𝑝, a supersingular elliptic curve 𝐸

over F𝑝2 and a small prime ℓ, compute a non-trivial cyclic endomorphism6 of 𝐸 whose degree is a prime power ℓ𝑒.

A similar problem was presented in the SQISign identification protocol [13]. The only difference is that
this problem is more restrictive in the degree of the endomorphism. In their setting the degree of computed
endomorphism has smooth degree.
Also, as remarked in [13], this problem is equivalent to the endomorphism ring problem, namely compute a

Z-basis for this endomorphism ring of an elliptic curve. For more details on this equivalence see [15].

Theorem 4. The commitment scheme as described in Section 4.1 is computationally binding under the assumption
that the Supersingular Smooth Endomorphism Problem for the curve 𝐸 and the prime ℓ = 2 is hard.

Proof. Suppose that A is a PPT adversary which successfully solves the binding game for this commitment
scheme. We shall construct an PPT adversary A ′ using A as a black box that solves the Supersingular Smooth
Endomorphism Problem on the curve 𝐸 .

5Updated versions of SIKE use the j-invariant 287496 as the starting curve which is the neighbour of the j-invariant 1728 in the 2-isogeny
graph.

6By non-trivial we mean an endomorphism which is not a multiplication-by-𝑚 map, [𝑚], and by cyclic we mean an endomorphism whose
kernel is cyclic.
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Upon receiving the curve 𝐸 , A ′ queries A and successfully outputs 𝑚, 𝑚′, 𝑟, 𝑟 ′ such that 𝑚 ≠ 𝑚′ and
𝐸 ′ = Φ2 (𝐸𝑚, 𝑟) = Φ2 (𝐸𝑚′ , 𝑟

′). Let 𝜙𝑚 : 𝐸 → 𝐸𝑚, 𝜙𝑚′ : 𝐸 → 𝐸𝑚′ , 𝜙𝑟 : 𝐸𝑚 → 𝐸 ′, 𝜙𝑟 ′ : 𝐸𝑚′ → 𝐸 ′ be the
associated isogenies each of which has degree 2𝑘 .
Then the composition of 𝜙𝑚◦𝜙𝑟 ◦𝜙𝑟 ′ ◦ ˆ𝜙𝑚′ is an endomorphism of 𝐸 whose degree is the prime power 24𝑘 . First

we need to verify that this composition is non-trivial. Suppose for a contradiction that 𝜙𝑚 ◦ 𝜙𝑟 ◦ 𝜙𝑟 ′ ◦ ˆ𝜙𝑚′ = [22𝑘].
Since the compositions 𝜙𝑚 ◦ 𝜙𝑟 and 𝜙𝑚′ ◦ 𝜙𝑟 ′ are isogenies from 𝐸 to 𝐸 ′ of same degree, then 𝜙𝑟 ′ ◦ ˆ𝜙𝑚′ is the dual
of 𝜙𝑚 ◦ 𝜙𝑟 . Since 𝜙𝑚′ ◦ 𝜙𝑟 ′

∧
= 𝜙𝑟 ′ ◦ ˆ𝜙𝑚′ , we get 𝜙𝑚 ◦ 𝜙𝑟 = 𝜙𝑚′ ◦ 𝜙𝑟 ′ . As a result 𝑚 = 𝑚′ and 𝑟 = 𝑟 ′ – which gives

the contradiction.
By removing any potential backtracking to the composition 𝜙𝑚 ◦ 𝜙𝑟 ◦ 𝜙𝑟 ′ ◦ ˆ𝜙𝑚′ that might occur as we approach

𝐸 ′, we get a cyclic endomorphism 𝜓. The adversaryA ′ outputs this endomorphisms and solves the Supersingular
Smooth Endomorphism Problem on 𝐸 in PPT. Therefore the advantage of winning the binding game is at most the
advantage of solving the above problem. □

4.4 GENERALISATION
In this sectionwe generalise the above idea and construct a commitment schemewhichworks in the supersingular

ℓ-isogeny graph for a small odd prime ℓ. Once again, key generation of the protocol is the same as described in
Section 4.1.
To commit to a message 𝑚 ∈ {0, 1, · · · , ℓ − 1}𝑘 first compute the curve 𝐸𝑚 B Φℓ (𝐸, 𝑚). Then choose

uniformly at random a binary string 𝑟 ∈𝑅 {0, 1, · · · , ℓ − 1}𝑘 and compute the curve 𝐸 ′ B Φℓ (𝐸𝑚, 𝑟). Once again,
when you go from 𝐸𝑚 to 𝐸 ′, making sure to avoid any backtracking in the isogeny graph. Then return 𝑐 B 𝑗 (𝐸 ′)
as the commitment of the message 𝑚.
Given the message 𝑚, the random 𝑟 and the commitment 𝑐, to open the commitment scheme first compute the

curve Φℓ (Φℓ (𝐸, 𝑚), 𝑟). Then return the boolean value 𝑐 == 𝑗 (Φℓ (Φℓ (𝐸, 𝑚), 𝑟)).
Much like in the setting of the 2-isogeny graph, we have the following theorems proving the security of this

commitment scheme.

Theorem 5. Let 𝑘ℓ, 𝑝 be the mixing constant for the supersingular ℓ-isogeny graph in characteristic 𝑝. Then for
any 𝑘 ≥ 𝑘ℓ, 𝑝 , the commitment scheme described above is information-theoretically hiding.

Proof. The proof is analogous to the proof of Theorem 3. □

Much like in Section 4.2, choosing 𝑘 = 4⌈logℓ (𝑝)⌉ + 8 would be sufficient to get information-theoretic hiding.

Theorem 6. The commitment scheme described above is computationally binding under the assumption that the
Supersingular Smooth Endomorphism Problem for the curve 𝐸 and the prime ℓ is hard.

Proof. The proof is analogous to the proof of Theorem 4. □

Along with this we make the following conjecture on an upper bound of 𝑘ℓ, 𝑝 which we believe to be sharp for
supersingular ℓ-isogeny graphs.

Conjecture 3. With 𝑘ℓ, 𝑝 as above, we have

𝑘ℓ, 𝑝 ≤ logℓ (𝑝) + logℓ (logℓ (𝑝)) +𝑂 (1).

In particular the constant in the big-Oh notation is at most 1.

5 COMMITMENTS USING THE SIDH APPROACH
In this section we describe a variant of the protocol from the previous section which uses the SIDH framework.

Instead of using SIDH friendly primes we use primes of the form 2𝑛 𝑓 −1 and achieve the same security requirements
that were achieved in the previous section. One advantage of doing this is to exploit SIDH strategies [12,
Section 4.2.2] to speed up isogeny computations. (Similar ideas in the context of the hash function construction
can be found here [14]).
Let 𝑝 = 2𝑛 𝑓 − 1 be a prime with 2𝜆 bits and 𝑓 is a small integer. In the same manner as described in the

previous section, choose a supersingular elliptic curve 𝐸/F𝑝2 whose endomorphism ring is unknown but this time
we make sure that #𝐸 (F𝑝2 ) = (2𝑛 𝑓 )2. This is done intentionally so that the 2𝑙-torsion subgroup of 𝐸 entirely
consists of points whose coordinates are in F𝑝2 . Let 𝑃0, 𝑃1 ∈ 𝐸 [2𝑛] be points on 𝐸 that form a basis for this
2𝑛-torsion subgroup of 𝐸 .
Much like in the Section 4, we will go on walks in the supersingular 2-isogeny graph but instead of choosing at

each step which edge to traverse, we compute the kernel subgroup and corresponding the isogeny whose kernel is
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this subgroup. However the longest isogeny that can be computed as a sequence of 2-isogenies using this approach
has degree 2𝑛. So in order to attain the same security as a obtained in Section 4.2, namely computing an isogeny
of degree 2𝑘 with 𝑘 = 4⌈log2 (𝑝)⌉ ≈ 4𝑛, we must do this isogeny computation 4 times each for the message used
and the randomly generated element.
Recall that given𝑚0 ∈ Z/2𝑛Z the subgroup of 𝐸 [2𝑛] defined by ⟨𝑃+𝑚0𝑄⟩ induces an isogeny 𝜙𝑚0 : 𝐸 → 𝐸𝑚0

whose kernel is this subgroup. If we wish to extend this walk by going on another walk of degree 2𝑛, then we
must find points 𝑃′, 𝑄 ′ on 𝐸𝑚0 that form a basis for the respective 2𝑛-torsion subgroup. Also we need a procedure
of computing these points in a deterministic manner. Ensuring that if replicated by another party we get the same
points. We already know that 𝜙𝑚0 (𝑄) has order 2𝑛, so set 𝑄 ′ B 𝜙𝑚0 (𝑄).
To deterministically compute a point 𝑃′ we use techniques from [8]. We briefly summarise this method. Use

the Elligator 2 method for deterministically computing points 𝑅 in 𝐸 (F𝑝2 ) [4], then check that 𝑅 ∈ 𝐸 \ [2]𝐸 , where
[2]𝐸 is the set of all 2-divisible points on 𝐸 . If so then the point 𝑓 𝑅 is a point of order 2𝑛. A check has to be made
to see if this point is independent from 𝑄 ′. If not then it cannot be used as a second basis element and we repeat
the whole process until you compute a point 𝑃′ which can be used as the second basis element. For more details
on this see [8, Section 3.2].

Remark 2. The choice of 𝑄 ′ = 𝜙𝑚0 (𝑄) was done purposefully. It ensures that the isogeny induced by a kernel of
the form ⟨𝑃′ + 𝑚1𝑄 ′⟩ will not result in backtracking through part of the first isogeny. This is because the kernel of
the dual isogeny, ker(𝜙𝑚0 ), is generated by the point 𝑄 ′ [24, Proposition 3].

5.1 PROTOCOL DESCRIPTION AND SECURITY
The key generation is as described above.
To commit to a message 𝑚 ∈ Z/24𝑛Z do as follows. Compute 𝑚0 B 𝑚 mod 2𝑛, 𝑚1 B (𝑚 − 𝑚0)/2𝑛

mod 2𝑛, 𝑚2 B (𝑚 − 𝑚1 − 𝑚02𝑛)/22𝑛 mod 2𝑛 and 𝑚3 B (𝑚 − 𝑚2 − 𝑚12𝑛 − 𝑚022𝑛)/23𝑛 mod 2𝑛. Notice
that 𝑚0, 𝑚1, 𝑚2, 𝑚3 ∈ Z/2𝑛Z. Compute the subgroup 𝑀0 B ⟨𝑃 + 𝑚0𝑄⟩ and hence the corresponding isogeny
𝜙𝑚0 : 𝐸 → 𝐸𝑚0 whose kernel is 𝑀0. Compute the point 𝑄 ′ B 𝜙𝑚0 (𝑄) and a point 𝑃′ as described above. Now
compute the subgroup 𝑀1 B ⟨𝑃′ + 𝑚1𝑄 ′⟩ and hence the corresponding isogeny 𝜙𝑚0 : 𝐸𝑚0 → 𝐸𝑚1 whose kernel
is 𝑀1. Again compute the points 𝑃′′, 𝑄 ′′. Repeat this for the integers 𝑚2, 𝑚3 to get isogenies 𝜙𝑚𝑖

: 𝐸𝑚𝑖−1 → 𝐸𝑚𝑖

whose kernel is 𝑀𝑖 (𝑖 = 2, 3). Henceforth the curve 𝐸𝑚 B 𝐸𝑚3 and the composition 𝜙𝑚 = 𝜙𝑚3 ◦ 𝜙𝑚2 ◦ 𝜙𝑚1 ◦ 𝜙𝑚0

is the curve and isogeny obtained from the message 𝑚.
As remarked above, the choice of basis points for the 2𝑛-torsion subgroup is done so that we don’t get any

backtracking in the isogeny graph.
From here choose a random 𝑟 ∈ Z/24𝑛Z and repeat the same procedure as done above. Once again you make

sure that there is no backtracking through 𝜙𝑚 by making sure that you have an appropiate basis for the 2𝑛-torsion
subgroup. The result is an isogeny 𝜙𝑟 : 𝐸𝑚 → 𝐸 ′. Then return the curve 𝑐 B 𝑗 (𝐸 ′) as the commitment of the
message 𝑚.
Much like in Section 4, given the message and the random 𝑚, 𝑟 ∈ Z/24𝑛Z (resp.), to open the commitment you

recompute the curve 𝐸 ′ and return the boolean value 𝑐 == 𝑗 (𝐸 ′). The deterministic nature of computing the new
basis for the next 2𝑛-torsion subgroup means that, as long as the message 𝑚 and the random 𝑟 are as intended, then
anyone can open the message and be assured that this is the correct message used.

Theorem 7. The commitment scheme described above is information-theoretically hiding and computationally
binding under the Supersingular Smooth Endomorphism Problem on the curve 𝐸 for the prime ℓ = 2.

Proof. Application of Theorem 3 & Theorem 4. □

6 COMPARISON
In this section we estimate the performance of these schemes, only in the setting when ℓ = 2, and attempt to

compare them to other post-quantum commitment schemes.
In the work by [14], they attempted to compare the performance of the CGL hash function with a hash function

that is analogous to the idea presented in Section 5. If a prime of the form 𝑝 = 2𝑛 𝑓 −1 is used and 𝑘 is the length of
the walk you want to compute, they estimated the complexity of the CGL hash function as 𝑘𝑛(5.7𝑛+110)m and the
complexity of the SIDH variant as 𝑘𝑛(13.5 log(𝑛)+42.4)m, wherem is the cost of performing a fieldmultiplication.
These performance timings translate to our commitment scheme constructions by choosing 𝑘 = 4⌈log2 (𝑝)⌉ − 4
with one exception. In the SIDH variant of our commitment scheme a little more work is needed then that presented
above since we need to generate the basis elements for the new torsion subgroup. This requires computing one
isogeny image as well as the cost of doing the Elligator 2 method to determine the second basis element. Since this
is done at most 3 times, it doesn’t add much to the complexity mentioned above. Approximately it adds 𝑂 (𝑛m) to
the overall complexity which is primarily dominated by the isogeny image computations.
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Therefore, the performance ratio of the scheme described in Section 4 versus that of this Section 5 is approxi-
mately (5.7𝑛 + 110)/(13.5 log(𝑛) + 46.4 + 𝑂 (1/𝑘)). This implies an exponential speed up in the performance of
the commitment scheme presented in this Section 5 versus that described in Section 4 (especially when the prime
𝑝 is of cryptographic size).
As mentioned earlier, if the validity of Conjecture 2 holds then the performance of these procotols will

significantly speed up by up to a factor of 4.
Lets now look at the size of the commitment values in our schemes. In both variants, these values just consist

of one j-invariant of a supersingular elliptic curve which is an element in F𝑝2 . Equivalently, given a 2-dimensional
representation of F𝑝2 = F𝑝 [𝑖], we can express this j-invariant as two F𝑝 elements. Hence, given a prime 𝑝 of 2𝜆
bits with 𝜆 a security parameter, the size of the commitment value is approximately 4𝜆 bits or 𝜆/2 bytes. It is worth
mentioning that the size of the commitment value does not depend on the size of 𝑘 . This point is consistent with
most isogeny schemes, including the CGL hash function.
One can compare these commitment scheme to that of other post-quantum alternative. One clear advantage

this has over other alternatives is that the size of the committed values. To target 128 bits of security, the size of the
committed value in our scheme is approximately 64B. In comparison to that of lattice based commitment schemes
taken from [3, Table 2], to achieve the same level of security, the committed values is approximately 9 kB. This is
much larger than that of our isogeny commitment schemes. There are a few notable drawbacks when comparing
our schemes to its alternatives. First one is the performance of our schemes. Even the faster variant described in
Section 5 is not as fast as its lattice counterpart. This point is again consistent with most isogeny schemes. Second
drawback is that it is not a homomorphic commitment scheme. This is in contrast to the lattice counterpart which is
homomorphic. This additional property would be desirable to have in a commitment scheme since there are some
strong applications that rely on homomorphic commitment schemes.

7 CONCLUSION
In this work we presented two commitment schemes based on isogeny assumptions. This is the first provably

secure commitment scheme in the isogeny literature. The scheme follows the approach of [6] whereby we go on
walks in supersingular isogeny graphs. We proved that this commitment scheme is secure attaining information-
theoretic hiding and computational binding. We obtained information-theoretic hiding based on the existence of a
mixing constant, 𝑘𝐺 , implying that any two vertices in the graph can be connected by a non-backtracking path of
fixed length 𝑘 for any 𝑘 ≥ 𝑘𝐺 . We conjectured an upper bound on this constant for both the generic setting and
the specific setting of supersingular isogeny graphs. We obtained computationally binding by reducing a binding
instance to a well known isogeny problem which is believed to be hard even for quantum adversaries.
We also presented a variant of this commitment scheme which is constructed through a kernel subgroup to

compute the isogenies instead of going through step by step and choosing which edge to continue. Its security
follows directly from the security of the previous scheme. The main advantage that this variant has over the previous
commitment scheme is that of efficiency.
There are a number of open problems that arise from this work.
• Proving the explicit upper bounds for the mixing constant in both the generic setting and the special setting
of the supersingular isogeny graphs.

• See how sharp we can makes these upper bounds and see if we can get close to the bound presented in
Conjecture 2 and Conjecture 3 in the specific setting of supersingular isogeny graphs.

• Constructing a homomorphic commitment scheme based on isogeny assumptions. This problem would be
considered a major breakthrough in this area.
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