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Abstract For an odd prime 𝑝, let 𝐸0 be a supersingular elliptic curve over F𝑝2 with O0 = End(𝐸0). The Deuring
correspondence gives a one-to-one correspondence between isogenies 𝜑𝐼 : 𝐸0 −→ 𝐸𝐼 and left O0-ideals 𝐼. The
constructive Deuring correspondence is equivalent to the problem that computes the 𝑗-invariant of the curve 𝐸𝐼

corresponding to given 𝐼. In this paper, we compute the 𝑗-invariant of 𝐸𝐼 via the Kohel-Lauter-Petit-Tignol (KLPT)
algorithm that seeks an ideal 𝐽 of smooth reduced norm Nrd(𝐽) such that 𝐸𝐽 ≃ 𝐸𝐼 . The target 𝑗-invariant can be
obtained by computing 𝜑𝐽 : 𝐸0 −→ 𝐸𝐽 . For every prime factor ℓ of Nrd(𝐽), we use symbolic formulas related with
isogenies to compute a basis of the ℓ-torsion group 𝐸0 [ℓ], a bottleneck part in computing 𝜑𝐽 . We demonstrate the
efficacy of our method by showing our implementation results for numerical examples in primes 𝑝 of up to 25 bits.
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1 INTRODUCTION
Since proposals of the hash function of [7] and the key exchange of [21], isogenies between supersingular

elliptic curves have been actively used in building modern cryptosystems. In particular, SIKE [22] was selected
in July 2020 as an alternate candidate in the standardization project of post-quantum cryptography by the National
Institute of Standards and Technology [29, 31]. Furthermore, a number of new isogeny-based cryptosystems have
been recently proposed, such as CSIDH [4] and OSIDH [8] for key exchange, SÉTA [20] and SiGamal [30] for
public-key encryption, and SeaSign [11] and SQISign [12] for signature. The security of supersingular isogeny-
based cryptography relies on the hardness of finding an isogeny connecting two given supersingular elliptic curves.
For every prime 𝑝, there exists a one-to-one correspondence, called the Deuring correspondence [10], between the
𝑗-invariants of supersingular elliptic curves over F𝑝2 and the maximal orders in a quaternion algebra 𝐵𝑝,∞ over Q
ramified at both 𝑝 and the point at infinity. In [26], Kohel-Lauter-Petit-Tignol provided a probabilistic polynomial-
time algorithm solving the quaternion analogue of an isogeny problem under the Deuring correspondence. It is
important for both cryptanalyses [14] and cryptographic constructions [12, 18]. (Recently, a generalization of the
KLPT algorithm was proposed in [12] to build a compact signature scheme.) In computational number theory, the
KLPT algorithm is also a useful tool in [14, 15] for a reduction from the problem of computing the endomorphism
ring of a supersingular elliptic curve to the path-finding problem in an isogeny graph.
The constructive Deuring correspondence is the problem that computes the 𝑗-invariant of a supersingular

elliptic curve corresponding to a given maximal order in 𝐵𝑝,∞ under the Deuring correspondence. It is related to
computational problems for supersingular elliptic curves, their isogeny graphs, and endomorphism rings, which are
closely connected to the security of some isogeny-based cryptosystems [14]. A simple approach for the constructive
Deuring correspondence is to list all isomorphism classes of supersingular elliptic curves together with information
of their maximal order in 𝐵𝑝,∞ (see [5, 27], and also [6] for an improvement). This approach has complexity at
least exponential in log 𝑝 since there are roughly

⌊ 𝑝

12
⌋
isomorphism classes of supersingular elliptic curves over

F𝑝2 . Then we consider another approach. Fix a supersingular elliptic curve 𝐸0 over F𝑝2 , and set O0 = End(𝐸0) that
is a maximal order in 𝐵𝑝,∞. The Deuring correspondence gives a one-to-one correspondence between isogenies
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𝐸0 −→ 𝐸 and left O0-ideals [25, 41]. Then the constructive Deuring correspondence is equivalent to the problem
that computes the 𝑗-invariant of the supersingular elliptic curve 𝐸𝐼 corresponding to a given left O0-ideal 𝐼 [14].
In this paper, we aim to solve the equivalent problem of the constructive Deuring correspondence via the KLPT

algorithm [26] that seeks an equivalent ideal 𝐽 of 𝐼 with smooth norm Nrd(𝐽). (See [34] for his implementation
report of the same approach for small primes 𝑝.) Instead of directly computing an isogeny 𝜑𝐼 : 𝐸0 −→ 𝐸𝐼 , the
target 𝑗-invariant 𝑗 (𝐸𝐼 ) can be obtained by computing another isogeny 𝜑𝐽 : 𝐸0 −→ 𝐸𝐽 since 𝐸𝐼 ≃ 𝐸𝐽 , and the
isogeny 𝜑𝐽 can be computed more efficiently for smaller Nrd(𝐽) since deg 𝜑𝐽 = Nrd(𝐽). Specifically, we use the
modified KLPT algorithm in [23] that performs an exhaustive search in the prime norm algorithm of [26] to find an
ideal 𝐽 with small Nrd(𝐽). Our main contribution is to improve a basis computation of the ℓ-torsion group 𝐸0 [ℓ]
for every prime factor ℓ of Nrd(𝐽), a dominant part of computing the isogeny 𝜑𝐽 . In general, the ℓ-th division
polynomial 𝜓ℓ (𝑥) is useful to compute a basis of 𝐸0 [ℓ], but it is computationally expensive to handle 𝜓ℓ (𝑥) for large
ℓ. To resolve the difficulty, we compute a kernel polynomial [38] (or called an Elkies polynomial) that is a factor
of 𝜓ℓ (𝑥). (In elliptic curve cryptography, kernel polynomials play a central role in the Schoof-Elkies-Atkin (SEA)
algorithm for determining the order of an elliptic curve over a finite field. E.g., see [2, Chapter VII].) Specifically,
we make use of symbolic formulas related with isogenies over Q in [32], which had been obtained using Gröbner
basis computation for algebraic constraints derived from Vélu’s formula [40]. Such symbolic formulas enable us
to obtain the first coefficient of a kernel polynomial 𝐹 (𝑥) and then recover the whole polynomial like in the SEA
algorithm. An ℓ-torsion point in 𝐸0 can be obtained by factorizing 𝐹 (𝑥) into irreducible factors over F𝑝2 . The
complexity is 𝑂 (ℓ3 log 𝑝) arithmetic operations in F𝑝2 since deg 𝐹 (𝑥) = ℓ−1

2 while that of factorization of 𝜓ℓ (𝑥) is
𝑂 (ℓ6 log 𝑝) arithmetic operations in F𝑝2 since deg𝜓ℓ (𝑥) = ℓ2−1

2 . In other words, we use pre-computed symbolic
formulas to reduce the online running time of a basis computation of 𝐸0 [ℓ]. (Symbolic formulas are available for
several primes ℓ in [32] like modular polynomials.) There is a trade-off between the cost of (offline) Gröbner basis
computation for symbolic formulas and the cost of online computation of 𝐸0 [ℓ]. To demonstrate the efficacy of
our method, we show our implementation results for several numerical examples. While experiments for primes 𝑝
of up to around 10 bits were conducted in [34], our method enables us to run in practice for larger primes 𝑝.

2 MATHEMATICAL PRELIMINARIES
In this section, we review basic definitions and properties of quaternion algebras and elliptic curves over finite

fields to introduce the Deuring correspondence over supersingular elliptic curves.

2.1 QUATERNION ALGEBRAS, THEIR ORDERS, AND IDEALS
For a prime 𝑝 with 𝑝 ≡ 3 (mod 4), we handle quaternion algebras over Q ramified at 𝑝 and the point at

infinity. Such any algebra can be written as 𝐵𝑝,∞ B Q⟨i, j⟩ with i2 = −1, j2 = −𝑝 and k B ij = −ji. Every
element of 𝐵𝑝,∞ can be expressed as 𝛼 = 𝑎 + 𝑏i + 𝑐j + 𝑑k with 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q, and its conjugation is defined as
𝛼̄ B 𝑎−𝑏i−𝑐j−𝑑k. The reduced trace and the reduced norm of 𝛼 are respectively defined as Trd(𝛼) B 𝛼+ 𝛼̄ = 2𝑎
and Nrd(𝛼) B 𝛼 · 𝛼̄ = 𝑎2+𝑏2+ 𝑝(𝑐2+𝑑2). The reduced trace and norm are additive and multiplicative, respectively.
A Z-lattice O ⊆ 𝐵𝑝,∞ of rank 4 is called an order if it forms a subring of 𝐵𝑝,∞. In particular, it is said maximal

if it is not properly contained in any other order. The quaternion algebra 𝐵𝑝,∞ includes several maximal orders
such as

〈
1, i, 1+k

2 ,
i+j
2

〉
Z
. Fix a maximal order O of 𝐵𝑝,∞. An (integral) left O-ideal is a Z-lattice 𝐼 ⊆ O that satisfies

𝛼𝐼 ⊆ 𝐼 for every 𝛼 ∈ O. The reduced norm of 𝐼 is defined as Nrd(𝐼) B gcd({Nrd(𝛼) : 𝛼 ∈ 𝐼}). Every left O-ideal
can be represented as 𝐼 = O𝑁 + O𝛼 with 𝑁 = Nrd(𝐼) for some 𝛼 ∈ 𝐼. Two non-zero left O-ideals 𝐼 and 𝐽 are said
equivalent if and only if there exists an element 𝑞 of 𝐵𝑝,∞ such that 𝐽 = 𝐼𝑞.

2.2 ELLIPTIC CURVES, THEIR ISOGENIES, AND ENDOMORPHISM RINGS
Every elliptic curve over a finite field F𝑞 of characteristic 𝑝 ≥ 5 is defined by a (short) Weierstrass equation

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 with 𝑎, 𝑏 ∈ F𝑞 . Its discriminant and 𝑗-invariant are defined as Δ(𝐸) = −16(4𝑎3 + 27𝑏2) ≠ 0
and 𝑗 (𝐸) = −1728 (4𝑎)3

Δ(𝐸) , respectively. Two curves are isomorphic over an algebraic closure F𝑞 of F𝑞 if and only if
they have the same 𝑗-invariant. In addition, there exists an elliptic curve 𝐸 over F𝑞 with 𝑗-invariant 𝑗 (𝐸) equal to
a given element 𝑗 ∈ F𝑞 . The set of F𝑞-rational points on 𝐸 as 𝐸 (F𝑞) = {(𝑥, 𝑦) ∈ F2

𝑞 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏} ∪ {∞𝐸}
forms an abelian group, where ∞𝐸 denotes the point at infinity that plays the zero element. The order of 𝐸 (F𝑞) is
represented as #𝐸 (F𝑞) = 𝑞 + 1 − 𝑡, where 𝑡 denotes the trace of the 𝑞th-power Frobenius map. An elliptic curve
over F𝑞 is said supersingular if its trace 𝑡 is divisible by 𝑝. Every supersingular curve has its 𝑗-invariant defined
over F𝑝2 . Let 𝐸 [𝑛] denote the subgroup of 𝐸 (F𝑞) of 𝑛-torsion points for every 𝑛 ≥ 2.
An isogeny is a morphism 𝜙 : 𝐸 −→ 𝐸 ′ between two elliptic curves 𝐸 and 𝐸 ′ satisfying 𝜙(∞𝐸) = ∞𝐸′ . A

non-zero isogeny 𝜙 : 𝐸 −→ 𝐸 ′ induces an injection of function fields 𝜙∗ : F𝑞 (𝐸 ′) −→ F𝑞 (𝐸). The degree of 𝜙 is
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defined as deg 𝜙 = [F𝑞 (𝐸) : 𝜙∗F𝑞 (𝐸 ′)] . In particular, we say that 𝜙 is separable if the extension F𝑞 (𝐸)/𝜙∗F𝑞 (𝐸 ′)
is separable. A non-zero isogeny 𝜙 also induces a surjective group homomorphism from 𝐸 (F𝑞) to 𝐸 ′(F𝑞), and its
kernel is a finite subgroup of 𝐸 (F𝑞), denoted by 𝐸 [𝜙]. It holds deg 𝜙 = #𝐸 [𝜙] if 𝜙 is separable. Conversely, given
a finite subgroup 𝐶 of 𝐸 (F𝑞), there are an elliptic curve 𝐸 ′ and a separable isogeny 𝜙 : 𝐸 −→ 𝐸 ′ with 𝐸 [𝜙] = 𝐶
(see [39, Chapter III]). An isogeny 𝜙 : 𝐸 −→ 𝐸 is called an endomorphism. The set of endomorphisms, denoted
by End(𝐸), has a ring structure (see [39]). If 𝐸 is supersingular, the endomorphism ring of 𝐸 is a maximal order
O of the quaternion algebra 𝐵𝑝,∞.

2.3 THE DEURING CORRESPONDENCE OVER SUPERSINGULAR ELLIPTIC CURVES
It was shown in [10] that for every prime 𝑝, the map 𝐸 ↦−→ End(𝐸) gives a bijection between the 𝑗-invariants

of supersingular elliptic curves over F𝑝2 up to Galois conjugacy, and the maximal orders in the quaternion algebra
𝐵𝑝,∞ up to the equivalence relation given by O ∼ O ′ if and only if O = 𝛼−1O ′𝛼 for some 𝛼 ∈ 𝐵𝑝,∞. Fixed a
supersingular elliptic curve 𝐸0 over F𝑝2 with O0 = End(𝐸0), the Deuring correspondence gives an equivalence
of categories between supersingular elliptic curves and left O0-ideals [25, Chapter 5]. In particular, a one-to-one
correspondence between isogenies 𝐸0 −→ 𝐸 and left O0-ideals is given as below [41, Chapter 42]; For a left
O0-ideal 𝐼 with reduced norm Nrd(𝐼) coprime to 𝑝, define its corresponding kernel 𝐸0 [𝐼] ⊆ 𝐸0 (F𝑝) to be the set

𝐸0 [𝐼] B
{
𝑃 ∈ 𝐸0 (F𝑝) : 𝛼(𝑃) = ∞𝐸0 ,∀𝛼 ∈ 𝐼

}
.

Then the isogeny corresponding to 𝐼 is given by 𝜑𝐼 : 𝐸0 −→ 𝐸𝐼 B 𝐸0/𝐸0 [𝐼] . We have deg 𝜑𝐼 = Nrd(𝐼) by
[41, Proposition 42.2.16]. Two curves 𝐸𝐼 and 𝐸𝐽 are isomorphic if their corresponding left O0-ideals 𝐼 and 𝐽 are
equivalent [41, Lemma 42.2.13]. Conversely, for an isogeny 𝜑 : 𝐸0 −→ 𝐸 , the corresponding ideal is given by

𝐼𝜑 B
{
𝛼 ∈ O0 : 𝛼(𝑃) = ∞𝐸0 ,∀𝑃 ∈ ker 𝜑

}
.

3 BASIS COMPUTATION OF TORSION GROUPS
In this section, we give a new method to find a basis of each torsion group of an elliptic curve over a finite field.

This can solve a bottleneck part of basis computation for the constructive Deuring correspondence (see Step B-2
in Subsection 4.1.2 below). We first recall the simplest method for computing a basis using division polynomials,
and then present our method using kernel polynomials. Our method can be considered as an analogue of the SEA
algorithm for counting the number of points of an elliptic curve over a finite field.

3.1 DIVISION POLYNOMIALS
Let 𝐸0 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be an elliptic curve over a finite field F𝑞 of characteristic 𝑝 ≥ 5. Division polynomials

associated with 𝐸0 are recursively defined as
𝜓0 = 0, 𝜓1 = 1, 𝜓2 = 2𝑦, 𝜓3 = 3𝑥4 + 6𝑎𝑥2 + 12𝑏𝑥 − 𝑎2,

𝜓4 = 4𝑦(𝑥6 + 5𝑎𝑥4 + 20𝑏𝑥3 − 5𝑎2𝑥2 − 4𝑎𝑏𝑥 − 8𝑏2 − 𝑎3),
𝜓2𝑚+1 = 𝜓𝑚+2𝜓

3
𝑚 − 𝜓𝑚−1𝜓

3
𝑚+1 (𝑚 ≥ 2),

𝜓2𝑚 = (𝜓𝑚+2𝜓
2
𝑚−1 − 𝜓𝑚−2𝜓

2
𝑚+1)𝜓𝑚/2𝑦 (𝑚 ≥ 3).

For every odd integer 𝑛 ≥ 3, the 𝑛-th division polynomial 𝜓𝑛 is a polynomial in 𝑥 over F𝑞 of degree 𝑛2−1
2 .

Furthermore, the roots of 𝜓𝑛 (𝑥) are the 𝑥-coordinates of 𝑛-torsion points in 𝐸0 [𝑛] \ {∞𝐸0 } (see [39]), that is,
(𝑥, 𝑦) ∈ 𝐸0 [𝑛] ⇐⇒ 𝜓𝑛 (𝑥) = 0. Thus division polynomials are useful to compute a basis of a torsion group in 𝐸0.
However, it becomes more computationally expensive to compute the 𝑛-th division polynomial for larger 𝑛.

3.2 VÉLU’S FORMULA AND KERNEL POLYNOMIALS
Let ℓ be an odd prime number with ℓ ≠ 𝑝. Let 𝑆 be a subgroup of 𝐸0 (F𝑞) of order ℓ, and set 𝑆∗ = 𝑆 \ {∞𝐸0 }.

Then a separable isogeny 𝜙𝑆 : 𝐸0 −→ 𝐸0 B 𝐸0/𝑆 with kernel 𝑆 can be written as

𝜙𝑆 (𝑥, 𝑦) =
(
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

, 𝑦

(
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

) ′)
, (1)

where 𝐷𝑆 (𝑥) is the polynomial defined by 𝐷𝑆 (𝑥) =
∏

𝑃∈𝑆∗ (𝑥 − 𝑥𝑃) = 𝑥ℓ−1 − 𝑠1𝑥
ℓ−2 + 𝑠2𝑥

ℓ−3 − 𝑠3𝑥
ℓ−4 + · · · + 𝑠ℓ−1

and the polynomial 𝑁𝑆 (𝑥) is related to 𝐷𝑆 (𝑥) through the formula
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

= ℓ𝑥 − 𝑠1 − (3𝑥2 + 𝑎)
𝐷 ′

𝑆
(𝑥)

𝐷𝑆 (𝑥)
− 2(𝑥3 + 𝑎𝑥 + 𝑏)

(
𝐷 ′

𝑆
(𝑥)

𝐷𝑆 (𝑥)

) ′
. (2)
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Here𝑇 ′(𝑥) denotes the derivative of a function𝑇 (𝑥) and 𝑥𝑃 the 𝑥-coordinate of a point 𝑃 ∈ 𝐸0\{∞𝐸0 }. This is called
Vélu’s formula [40]. (Precisely, this is a modified form in [3]. Such formwas discovered much earlier in [13].) With
the first three coefficients 𝑠1, 𝑠2, 𝑠3 of𝐷𝑆 (𝑥), set 𝑣 = 𝑎(ℓ−1)+3(𝑠2

1−2𝑠2) and𝑤 = 3𝑎𝑠1+2𝑏(ℓ−1)+5(𝑠3
1−3𝑠1𝑠2+3𝑠3).

Then the Weierstrass equation for 𝐸0 is given by 𝑦2 = 𝑥3 + 𝑎̃𝑥 + 𝑏̃ with 𝑎̃ = 𝑎−5𝑣 and 𝑏̃ = 𝑏−7𝑤. Now we partition
the set 𝑆∗ into two parts 𝑆+ and 𝑆− such that 𝑆∗ = 𝑆+ ∪ 𝑆− and 𝑆− = {−𝑃 : 𝑃 ∈ 𝑆+}. The kernel polynomial (or
called the Elkies polynomial) associated with 𝑆 is defined as

𝐹𝑆 (𝑥) =
∏
𝑃∈𝑆+

(𝑥 − 𝑥𝑃) = 𝑥𝑘 + 𝑡1𝑥𝑘−1 + 𝑡2𝑥𝑘−2 + · · · + 𝑡𝑘 (3)

with 𝑘 = ℓ−1
2 . It is clear that 𝐷𝑆 (𝑥) = 𝐹𝑆 (𝑥)2 and 𝑠1 = −2𝑡1. Thus, by (2), the coefficients of 𝐷𝑆 (𝑥) and 𝑁𝑆 (𝑥)

are represented as polynomials in 𝑎, 𝑏, 𝑡1, . . . , 𝑡𝑘 and so coefficients of rational functions in the formula (1). An
interesting relation among 𝑡𝑖’s is given in [38]; To the curve 𝐸0, associate the reduced Weierstrass ℘-function by

℘(𝑧) = 1
𝑧2 +

∞∑︁
𝑘=1

𝑐𝑘𝑧
2𝑘 with 𝑐1 = −𝑎

5
, 𝑐2 = −𝑏

7
, 𝑐𝑘 =

3
(𝑘 − 2) (2𝑘 + 3)

𝑘−2∑︁
𝑗=1
𝑐 𝑗𝑐𝑘−1− 𝑗 (𝑘 ≥ 3).

For the curve 𝐸0, consider its isomorphic curve 𝐸0 : 𝑦2 = 𝑥3 + 𝑎̂𝑥 + 𝑏̂ with 𝑎̂ = ℓ4𝑎̃ and 𝑏̂ = ℓ6𝑏̃, and define the
function ℘̂(𝑧) and its coefficients 𝑐𝑘’s for 𝐸0 in the same manner. Then the kernel polynomial 𝐹𝑆 (𝑥) satisfies

𝑧ℓ−1𝐹𝑆 (℘(𝑧)) = exp

(
−1

2
𝑡1𝑧

2 −
∞∑︁
𝑘=1

𝑐𝑘 − ℓ𝑐𝑘
(2𝑘 + 1) (2𝑘 + 2) 𝑧

2𝑘+2

)
. (4)

Precisely, this is obtained by reduction from C, and hence a prime 𝑝 must be large enough for it to hold over a finite
field of characteristic 𝑝. From this equation, every coefficient 𝑡𝑖 for 𝑖 ≥ 2 can be represented using 𝑡1, 𝑐𝑘’s and
𝑐𝑘’s. For examples, the first few coefficients of 𝐹𝑆 (𝑥) are given as below:

𝑡2 =
𝑡21
2
− 𝑐1 − ℓ𝑐1

12
− ℓ − 1

2
𝑐1,

𝑡3 =
𝑡31
6
− 𝑐2 − ℓ𝑐2

30
− 𝑐1 − ℓ𝑐1

12
𝑡1 −

ℓ − 1
2

𝑐2 −
ℓ − 3

2
𝑐1𝑡1,

...

(5)

3.3 SYMBOLIC FORMULAS OF ISOGENIES
For the isogeny 𝜙𝑆 : 𝐸0 −→ 𝐸0 ≃ 𝐸0, we apply the formula (1) to the Weierstrass equation of 𝐸0 as

𝑦2
{(
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

) ′}2

=

(
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

)3
+ 𝑎̂

(
𝑁𝑆 (𝑥)
𝐷𝑆 (𝑥)

)
+ 𝑏̂.

We expand this equation as polynomials in 𝑥 by using the relation 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to obtain a system of algebraic
equations. When we consider 𝑎, 𝑏, 𝑎̂, 𝑏̂ and the coefficients 𝑡𝑖’s of 𝐹𝑆 (𝑥) as variables, the system of algebraic
equations is defined over Q[𝑎, 𝑏, 𝑎̂, 𝑏̂, 𝑡1, . . . , 𝑡𝑘], since the coefficients of 𝐷𝑆 (𝑥) and 𝑁𝑆 (𝑥) can be rewritten as
polynomials in 𝑎, 𝑏, 𝑡1, . . . , 𝑡𝑘 described above. From the system of algebraic equations, several explicit symbolic
formulas of isogenies of degree ℓ are shown in [32] for odd primes ℓ. Specifically, Weierstrass coefficients 𝑎, 𝑏
of 𝐸0 are regarded as symbolic variables in [32], and symbolic formulas of isogenies from 𝐸0 are given using
symbolic variables 𝑎, 𝑏 over Q. In this setting, all of 𝑡1, . . . , 𝑡𝑘 , 𝑎̂ and 𝑏̂ are shown to be integral over Q[𝑎, 𝑏] [32,
Lemma 3.2]. In particular, the minimal polynomial 𝑚ℓ (𝑡1; 𝑎, 𝑏) of the first coefficient 𝑡1 of the kernel polynomial
𝐹𝑆 (𝑥) is calculated over Q[𝑎, 𝑏] in [32] for a subgroup 𝑆 of 𝐸0 of order ℓ. The actual calculation was performed
by using efficient Gröbner basis computation of the ideal associated with the system of algebraic equations. The
polynomial 𝑚ℓ (𝑡1; 𝑎, 𝑏) depends on ℓ (rather on 𝑆), and its degree is ℓ + 1 [32, Lemma 3.5]. For an elliptic curve
𝐸0 over a finite field F𝑞 , we can substitute its Weierstrass coefficients 𝑎, 𝑏 into 𝑚ℓ (𝑡1; 𝑎, 𝑏) to obtain a polynomial
𝑚ℓ (𝑡1) over F𝑞 of degree ℓ + 1. The roots of 𝑚ℓ (𝑡1) correspond to ℓ + 1 subgroups 𝑆1, . . . , 𝑆ℓ+1 of order ℓ in 𝐸0 [ℓ]
if the characteristic 𝑝 of F𝑞 does not divide ℓ. Precisely, the roots of 𝑚ℓ (𝑡1) coincide with the first coefficients of
kernel polynomials 𝐹𝑆𝑖 (𝑥) for 1 ≤ 𝑖 ≤ ℓ + 1. (Recall Equation (3) for the first coefficient 𝑡1 of a kernel polynomial.)
Indeed, the ℓ-th division polynomial 𝜓ℓ (𝑥) can be factored with the kernel polynomials as

𝜓ℓ (𝑥) = ℓ
ℓ+1∏
𝑖=1

𝐹𝑆𝑖 (𝑥). (6)

13



Kambe, Y. et al.

In addition, it follows from [32, Theorem 3.9] that Weierstrass coefficients 𝑎̂ and 𝑏̂ of 𝐸0 have a rational univariate
representation (RUR) with respect to 𝑡1 as

𝑎̂ =
𝐴(𝑡1; 𝑎, 𝑏)
𝑚′

ℓ
(𝑡1; 𝑎, 𝑏) , 𝑏̂ =

𝐵(𝑡1; 𝑎, 𝑏)
𝑚′

ℓ
(𝑡1; 𝑎, 𝑏) (7)

for some elements 𝐴(𝑡1; 𝑎, 𝑏) and 𝐵(𝑡1; 𝑎, 𝑏) ofQ[𝑡1, 𝑎, 𝑏], where𝑚′
ℓ
(𝑡1; 𝑎, 𝑏) denotes the derivative of𝑚ℓ (𝑡1; 𝑎, 𝑏)

with respect to 𝑡1 (see [36] for the notion and properties of RUR). In other words, Weierstrass coefficients 𝑎̂ and
𝑏̂ of 𝐸0 can be recovered from a root of 𝑚ℓ (𝑡1; 𝑎, 𝑏) and 𝑎, 𝑏 by substituting them for the RUR formula (7). (In
contrast, the RUR formula (7) indicates that a multiple root of 𝑚ℓ (𝑡1; 𝑎, 𝑏) can not determine the values of 𝑎̂ and
𝑏̂.) Moreover, from the associated ideal, for each coefficient 𝑡𝑖 (2 ≤ 𝑖 ≤ 𝑘), its polynomial representation in
𝑎, 𝑏, 𝑡1, . . . , 𝑡𝑖−1 can be computed, which corresponds to the formulas (5). Then, 𝑡2, . . . , 𝑡𝑘 can be recovered from
𝑎, 𝑏 and 𝑎̂, 𝑏̂, and hence all coefficients of 𝐹𝑆 (𝑥) can also be recovered using Equation (4) like (5).

3.4 APPLICATION OF SYMBOLIC FORMULAS TO FINDING TORSION POINTS
Here we apply symbolic formulas of isogenies in [32] to computing a basis of the ℓ-torsion group 𝐸0 [ℓ] for a

(supersingular) elliptic curve 𝐸0 : 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 over F𝑝2 and an odd prime ℓ ≠ 𝑝. A basic procedure is below:
(i) Get the minimal polynomial 𝑚ℓ (𝑡1; 𝑎, 𝑏) of the first coefficient 𝑡1 of a kernel polynomial over Q(𝑎, 𝑏) from
[32] with symbolic variables 𝑎, 𝑏. Then substitute Weierstrass coefficients 𝑎, 𝑏 ∈ F𝑝2 of 𝐸0 to obtain a
polynomial 𝑚(𝑡1) over F𝑝2 whose degree is ℓ + 1.

(ii) Take a root 𝑡1 = 𝜉 of 𝑚(𝑡1), and recover a kernel polynomial 𝐹𝑆 (𝑥) for some subgroup 𝑆 of 𝐸0 [ℓ] with order
ℓ. Specifically, we perform the below steps:

• Substitute 𝑡1 = 𝜉, 𝑎, 𝑏 into the RUR formula (7) to compute Weierstrass coefficients 𝑎̂, 𝑏̂ of 𝐸0.
• Compute coefficients 𝑡2, . . . , 𝑡𝑘 and recover a kernel polynomial 𝐹𝑆 (𝑥) using Equation (4).

(iii) Take a root 𝑥 = 𝛼1 of the kernel polynomial 𝐹𝑆 (𝑥) to obtain a point 𝑃 = (𝛼1, 𝛽1) in 𝐸0 [ℓ] for some 𝛽1 ∈ F𝑝2

satisfying 𝛽2
1 = 𝛼3

1 + 𝑎𝛼1 + 𝑏. By factorization of 𝐹𝑆 (𝑥) over F𝑝2 , one of its irreducible factor 𝐺 (𝑥) shall
be taken as the defining polynomial of 𝛼1 over F𝑝2 and also, by factorization of 𝑦2 − 𝛼3

1 − 𝑎𝛼1 − 𝑏 over
F𝑝2 [𝑥]/(𝐺 (𝑥)), its irreducible factor is taken as the defining polynomial of 𝛽1 over F𝑝2 [𝑥]/(𝐺 (𝑥)).

(iv) In the same way, we can obtain another point 𝑄 = (𝛼2, 𝛽2) in 𝐸0 [ℓ] by taking another root 𝑡1 = 𝜂 of the
polynomial 𝑚(𝑡1) for another kernel polynomial 𝐹𝑆′ . Then the two points 𝑃,𝑄 span the ℓ-torsion group as
𝐸0 [ℓ] = ⟨𝑃,𝑄⟩ since 𝑄 ∉ ⟨𝑃⟩ due to 𝜉 ≠ 𝜂. In these computation, by factorization of 𝐹𝑆′ (𝑥) and that of
𝑦2 − 𝛼3

2 − 𝑎𝛼2 − 𝑏, the coordinates 𝛼2, 𝛽2 of 𝑄 are expressed as polynomials in 𝛼1, 𝛽1 over F𝑝2 . (It can be
shown that 𝐹𝑆′ (𝑥) is factorized into linear factors.)

We note that 𝑚ℓ (𝑡1) is factorized into linear factors over F𝑝2 and its factorization can be done in 𝑂 (ℓ3 log 𝑝)
arithmetic operations in F𝑝2 (see [19]). For each root of 𝑚ℓ (𝑡1), we compute 𝑎̂, 𝑏̂ by the RUR formula (7) and
recover 𝐹𝑆 (𝑥) by using the formula (4) like (5). By using an efficient computation in [3], the computation of
𝐹𝑆 (𝑥) can be done in 𝑂 (ℓ2) arithmetic operations in F𝑝2 (see also Remark 5 below). While the ℓ-th division
polynomial 𝜓ℓ (𝑥) has degree ℓ2−1

2 , our method computes two kernel polynomials of degree
ℓ−1

2 which are factors
of 𝜓ℓ (𝑥) (recall Equation (6)). In particular, while the complexity of factorization of 𝜓ℓ (𝑥) is𝑂 (ℓ6 log 𝑝) arithmetic
operations in F𝑝2 , factorization of 𝐹𝑆 (𝑥) only requires 𝑂 (ℓ3 log 𝑝) arithmetic operations in F𝑝2 . This shows that
our computation is much faster than using the division polynomial 𝜓ℓ (𝑥) for large ℓ. But for (iv), the complexity of
factorization 𝐹𝑆′ (𝑥) over F𝑝2 [𝑥]/(𝐺 (𝑥)) is 𝑂 (ℓ3 deg(𝐺 (𝑥))3 log 𝑝) arithmetic operations in F𝑝2 . Hence it would
be much better if we could avoid such factorization over the extended field. For this purpose, we can use some
endomorphism of 𝐸0, since actions of the endomorphism group are given in explicit and computable manner in
our experimental setting (see the next subsection for our experiments).

3.4.1 SPECIAL CASE
Here we consider a special case where 𝐸0 is defined over F𝑝 . (We take such a curve in our experiments. See

Equation (10) below.) In this case, the 𝑝-th Frobenius map 𝜋 on 𝐸0 satisfies 𝜋2 + 𝑝 = 0 as endomorphisms of 𝐸0
(see [39]). This implies that 𝜋2 acts as scalar multiplication by −𝑝 on 𝐸0. Therefore any subgroup 𝑆 of 𝐸0 [ℓ] of
order ℓ is stable by the action of 𝜋2, that is, 𝜋2 (𝑆) = 𝑆. Thus any kernel polynomial 𝐹𝑆 (𝑥) is also stable by the 𝑝2-th
Frobenius action, and all coefficients of 𝐹𝑆 (𝑥) are defined over F𝑝2 , namely, 𝐹𝑆 (𝑥) ∈ F𝑝2 [𝑥] . In particular, the 𝑝-th
Frobenius action on 𝐹𝑆 (𝑥) generates another kernel polynomial 𝐹𝑆′ (𝑥) if 𝐹𝑆 (𝑥) ∈ F𝑝2 [𝑥] \ F𝑝 (𝑥). We can obtain
a basis of the ℓ-torsion group 𝐸0 [ℓ] from roots of different kernel polynomials 𝐹𝑆 (𝑥) and 𝐹𝑆′ (𝑥). More generally,
given a point 𝑃 ∈ 𝐸0 [ℓ], another point 𝑄 ∉ ⟨𝑃⟩ can be obtained as 𝑄 = 𝑓 (𝑃) for some endomorphism 𝑓 of 𝐸0
when the structure of End(𝐸0) is explicitly known (e.g., see Section 4.2.1 below for input data in our experiments).
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Remark 1. A kernel polynomial 𝐹𝑆 (𝑥) can be applied to computing a point of 𝐸0 of ℓ-power order. Indeed, we can
recover two polynomials 𝐷𝑆 (𝑥) and 𝑁𝑆 (𝑥) from 𝐹𝑆 (𝑥), and compute the isogeny 𝜙𝑆 (𝑥, 𝑦) defined by Equation (1).
Then we can obtain a point 𝑅 of order ℓ2 by taking it such that 𝜙𝑆 (𝑅) = 𝑃 for an ℓ-torsion point 𝑃. We repeat this
procedure to compute a point of 𝐸0 of order ℓ𝑘 and a basis of 𝐸0 [ℓ𝑘] (see also [28] for details).

3.4.2 COMPARISON WITH OTHER METHODS

Using modular polynomials Same as in the SEA algorithm for counting points on an elliptic curve, we may
use the ℓ-th modular polynomial Φℓ (𝑥, 𝑦) for recovering a kernel polynomial 𝐹𝑆 (𝑥). Specifically, given an elliptic
curve 𝐸0 with 𝑗-invariant 𝑗0, the roots ofΦℓ (𝑥, 𝑗0) are in correspondence with the ℓ + 1 cyclic subgroups of 𝐸0 [ℓ].
In a method using modular polynomials, we take such a root to recover its corresponding kernel polynomial 𝐹𝑆 (𝑥)
by using derivatives 𝜕Φℓ/𝜕𝑥 and 𝜕Φℓ/𝜕𝑦 like [16, Algorithm 27] (see also [28] for such idea). The order of
computational complexity is the same as ours. But our method is much faster in practice since [16, Algorithm 27]
uses more computational steps such as computation of derivatives. (In other words, symbolic formulas of isogenies
in [32] simplifies complicated calculation steps in advance.) Furthermore, the method using modular polynomials
is applicable only to a case where Φℓ (𝑥, 𝑗0) has a single root since it uses derivatives of Φℓ (𝑥, 𝑦). In particular,
the method using modular polynomials cannot be applied to our experiments with 𝑗0 = 1728 in the next section.
Indeed, we verified from our preliminary experiments with 𝑗0 = 1728 that the roots of Φℓ (𝑥, 𝑗0) are all multiple
(see Subsection 4.2.1 for input curves in our experiments).

Random sampling method This method is probabilistic while ours and the method using modular polynomials
are deterministic. This method starts to find the smallest integer 𝑟 such that the order of 𝐸0 (F𝑝2𝑟 ) is divisible
by ℓ2. The order #𝐸0 (F𝑝2𝑟 ) is efficiently computed from the order #𝐸0 (F𝑝2 ). Precisely, we have #𝐸0 (F𝑝2𝑟 ) =

(1− 𝛼𝑟 ) (1− 𝛽𝑟 ) when we represent #𝐸0 (F𝑝2 ) = (1− 𝛼) (1− 𝛽) with 𝛼, 𝛽 ∈ C. We then take a point 𝑅 in 𝐸0 (F𝑝2𝑟 )
randomly, and compute 𝑃 = 𝑐𝑅 for the cofactor 𝑐 = #𝐸0 (F𝑝2𝑟 )/ℓ𝑒, where 𝑒 is maximal such that 𝑐 is an integer.
Then the order of 𝑅 is exactly equal to ℓ with a high probability for large ℓ. Since #𝐸0 (F𝑝2𝑟 ) = 𝑂 (𝑝2𝑟 ), this method
requires 𝑂 (𝑟 log 𝑝) additions on 𝐸 (F𝑝2𝑟 ). Moreover, since 𝑟 = 𝑂 (ℓ), the complexity is 𝑂 (ℓ3 log 𝑝) arithmetic
operations in F𝑝2 , which is the same as that of ours. When 𝑟 ≪ ℓ, the random sampling method is much faster than
ours in practice. When 𝑟 ≈ ℓ, the running time of the random sampling method depends on the cost of addition on
𝐸0 (F𝑝2𝑟 ), and our method is comparable to the random sampling method in performance.

Remark 2. Factorization of the division polynomial 𝜓𝑑 (𝑥) with 𝑂 (𝑑) = 𝑂 (log 𝑝) is considered in the proof of
[18, Lemma 5] to obtain a basis of the 𝑑-torsion group 𝐸0 [𝑑] in complexity analysis of computing the isogeny
𝜑𝐼 corresponding to a given left O0-ideal 𝐼 under the Deuring correspondence with O0 = End(𝐸0) (see also [18,
Algorithm 2] for its procedure). The proof of [18, Lemma 5] estimates that factorization of 𝜓𝑑 (𝑥) can be done
in 𝑂 (log4 𝑝) bit operations by fast polynomial factorization in [24] since deg𝜓𝑑 = 𝑂 (log2 𝑝). In contrast, our
method enables us to handle kernel polynomials 𝐹𝑆 (𝑋) with deg 𝐹𝑆 (𝑥) = 𝑂 (log 𝑝) for obtaining a basis of 𝐸0 [𝑑],
and factorization of 𝐹𝑆 (𝑥) can be done in much less complexity than that of 𝜓𝑑 (𝑥). In particular, by using our
method, the basis computation part might be not dominant in [18, Algorithm 2]. Indeed, our experimental results
in Subsection 4.3.1 show that the basis computation part is not dominant in solving the constructive Deuring
correspondence (the isogeny computation part is dominant in our experiments).

4 SOLVING THE CONSTRUCTIVE DEURING CORRESPONDENCE
Given a maximal order O in a quaternion algebra 𝐵𝑝,∞, the constructive Deuring correspondence asks us to

compute the 𝑗-invariant of a supersingular elliptic curve such that its endomorphism ring is isomorphic to O. As in
the previous section, take a supersingular elliptic curve 𝐸0 over F𝑝2 and set O0 = End(𝐸0) that is a maximal order in
𝐵𝑝,∞. By [14, Algorithm 12], the constructive Deuring correspondence can be reduced to the following problem 1;
“Given a left O0-ideal 𝐼, compute the 𝑗-invariant of the supersingular elliptic curve 𝐸𝐼 = 𝐸0/𝐸0 [𝐼] corresponding
to 𝐼.” In this section, we present how to solve this problem in practice via the KLPT algorithm [26] that finds an
equivalent ideal 𝐽 of an input leftO0-ideal 𝐼 with smooth reduced normNrd(𝐽). A key idea is to compute the isogeny
𝜑𝐽 , alternative to the isogeny 𝜑𝐼 , to obtain the target 𝑗-invariant 𝑗 (𝐸𝐼 ). Since deg 𝜑𝐽 = Nrd(𝐽) [41, Proposition
42.2.16], the isogeny 𝜑𝐽 can be factored as a composition of isogenies of degrees ℓ𝑒𝑖𝑖 when Nrd(𝐽) = ∏𝑟

𝑖=1 ℓ
𝑒𝑖
𝑖
with

distinct small primes ℓ𝑖 and 𝑒𝑖 ≥ 1. (We always assume that 𝑝 ≠ ℓ𝑖 for all 1 ≤ 𝑖 ≤ 𝑟 .) Thus the isogeny 𝜑𝐽 can be
computed more efficiently as the reduced norm Nrd(𝐽) is smaller and more smooth.

1Specifically, given two maximal orders O0, O in 𝐵𝑝,∞, consider the set 𝐼 = 𝐼 (O0, O) =
{
𝛼 ∈ 𝐵𝑝,∞ : 𝛼O 𝛼̄ ⊆ 𝑀O0

}
where 𝑀 = [O0 :

O0 ∩ O] denotes the index of the Eichler order O0 ∩ O in O0. Then 𝐼 is both a left O0-ideal and a right O-ideal of reduced norm𝑀 [26, Lemma
8]. (The set 𝐼 is called a connecting ideal.) Thus the endomorphism ring of 𝐸𝐼 is isomorphic to O since End(𝐸𝐼 ) ≃ {𝛼 ∈ 𝐵𝑝,∞ : 𝐼 𝛼 ⊆ 𝐼 } = O
(see [41, Chapter 17] for details).
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4.1 OUTLINE OF PROCEDURE
Given a left O0-ideal 𝐼 with O0 = End(𝐸0), the main procedure to compute the 𝑗-invariant 𝑗 (𝐸𝐼 ) is divided

into the below two steps:
Step A: By applying the KLPT algorithm [26], find an equivalent ideal 𝐽 of the input ideal 𝐼 such that the reduced

norm of 𝐽 is smooth.
Step B: Compute the isogeny 𝜑𝐽 : 𝐸0 −→ 𝐸𝐽 corresponding to 𝐽 to obtain the 𝑗-invariant 𝑗 (𝐸𝐽 ) = 𝑗 (𝐸𝐼 ) since

𝐸𝐼 ≃ 𝐸𝐽 (see the below commutative diagram).

𝐸0
𝜑𝐼 //

𝜑𝐽   

𝐸𝐼

𝐸𝐽

≃

4.1.1 DETAILS OF STEP A: THE KLPT ALGORITHM
Given a bound 𝐵 > 0, an integer 𝑛 =

∏𝑟
𝑖=1 ℓ

𝑒𝑖
𝑖
with distinct primes ℓ𝑖 is said 𝐵-powersmooth if ℓ𝑒𝑖

𝑖
≤ 𝐵 for all

1 ≤ 𝑖 ≤ 𝑟 . The KLPT algorithm takes a maximal order O0 in 𝐵𝑝,∞ and a left O0-ideal 𝐼 as input, and finds an
equivalent left O0-ideal 𝐽 of 𝐼 with 𝐵-powersmooth reduced norm Nrd(𝐽) for 𝐵 ≈ 7

2 log 𝑝 (see [26] for heuristic
analysis on 𝐵). The below lemma plays a key role in the KLPT algorithm:

Lemma 1 ([26]). Let 𝐼 be a left O0-ideal and 𝛼 an element of 𝐼. Then an equivalent ideal 𝐽 = 𝐼𝛾 with 𝛾 = 𝛼̄/Nrd(𝐼)
is a left O0-ideal of reduced norm Nrd(𝛼)/Nrd(𝐼).

A basic procedure of Step A is as below (see [18, Algorithm 1] or [23, Section 3.1]). We take 𝐵 = 7
2 log 𝑝 as an

initial smooth bound, and we increase it until we find an equivalent ideal 𝐽 of 𝐼 with smooth reduced norm Nrd(𝐽).
Step A-1: Find 𝛿 ∈ 𝐼 such that an equivalent left O0-ideal 𝐼 ′ B 𝐼𝛿/Nrd(𝐼) of 𝐼 has a prime reduced norm 𝑁 .

(i) Compute a Minkowski-reduced basis {𝛼1, 𝛼2, 𝛼3, 𝛼4} of 𝐼 as a Z-lattice.
(ii) Generate a random element 𝛿 =

∑4
𝑖=1 𝑥𝑖𝛼𝑖 with small integers 𝑥1, 𝑥2, 𝑥3, 𝑥4, until the reduced norm of

𝛿 is equal to Nrd(𝐼) times a prime 𝑁 . Then Nrd(𝐼 ′) = Nrd(𝛿)/Nrd(𝐼) = 𝑁 by Lemma 1.
Step A-2: Find 𝛽 ∈ 𝐼 ′ with reduced norm 𝑁𝑆 for some odd 𝐵-powersmooth 𝑆.

(i) Find 𝛼 ∈ 𝐼 ′ with 𝐼 ′ = O0𝑁 + O0𝛼, by taking 𝛼 as a small linear combination of a basis of 𝐼 ′ until the
condition gcd(Nrd(𝛼), 𝑁2) = 𝑁 is satisfied.

(ii) Find 𝛽1 = 𝑎 + 𝑏i + 𝑐j + 𝑑k ∈ O0 with odd reduced norm 𝑁𝑆1 for some 𝐵-powersmooth number 𝑆1.
Specifically, for a large enough 𝐵-powersmooth number 𝑆1, generate a pair of small random integers
(𝑐, 𝑑) until the norm equation 𝑎2 + 𝑏2 = 𝑁𝑆1 − 𝑝(𝑐2 + 𝑑2) can be efficiently solved by Cornacchia’s
algorithm [9] to find a pair of integral solutions (𝑎, 𝑏).

(iii) Find 𝛽2 = 𝐶j + 𝐷k with 𝐶, 𝐷 ∈ Z satisfying 𝛼 ≡ 𝛽1𝛽2 (mod 𝑁O0) by linear algebra.
(iv) Find 𝛽′2 ∈ O0 with a powersmooth reduced norm 𝑆2 and 𝜆 ∈ Z such that 𝛽′2 ≡ 𝜆𝛽2 (mod 𝑁O0). Write

𝛽′2 = 𝜆𝛽2 + 𝑁 (𝑎 + 𝑏i + 𝑐j + 𝑑k) to search five integers 𝑎, 𝑏, 𝑐, 𝑑, 𝜆 with 𝜆 ∉ 𝑁Z satisfying

𝑁2 (𝑎2 + 𝑏2) + 𝑝
{
(𝜆𝐶 + 𝑐𝑁)2 + (𝜆𝐷 + 𝑑𝑁)2} = 𝑆2 (8)

for a large enough powersmooth number 𝑆2. Specifically, given 𝑆2, we perform the below steps:
• Consider Equation (8) modulo 𝑁 as 𝑝𝜆2 (𝐶2 + 𝐷2) ≡ 𝑆2 (mod 𝑁), from which a solution of 𝜆 is
obtained. (We multiply 𝑆2 by small primes if the equation cannot be solved.)

• Once 𝜆 is obtained, consider Equation (8) modulo 𝑁2 as

𝑝𝜆2 (𝐶2 + 𝐷2) + 2𝑝𝜆𝑁 (𝑐𝐶 + 𝑑𝐷) ≡ 𝑆2 (mod 𝑁2). (9)

Pick 𝑐 ∈ Z randomly to solve the equation for 𝑑.
• Given a triple of integers (𝜆, 𝑐, 𝑑), solve the equation

𝑎2 + 𝑏2 =
𝑆2 − 𝑝

{
(𝜆𝐶 + 𝑐𝑁)2 + (𝜆𝐷 + 𝑑𝑁)2}

𝑁2

by Cornacchia’s algorithm for a pair of integral solutions (𝑎, 𝑏). (We pick a different pair of
integers (𝑐, 𝑑) if the equation cannot be solved.)

(v) Set 𝛽 = 𝛽1𝛽
′
2, whose reduced norm is 𝑁𝑆1𝑆2.

Step A-3: Output an equivalent ideal 𝐽 B 𝐼 ′𝛽/𝑁 of 𝐼, whose reduced norm is 𝑆 B 𝑆1𝑆2 by Lemma 1.

16



Solving the Constructive Deuring Correspondence via the Kohel-Lauter-Petit-Tignol Algorithm

4.1.2 DETAILS OF STEP B: COMPUTING ISOGENIES
For the equivalent ideal 𝐽 of the input 𝐼 with smooth reduced norm, we compute the isogeny 𝜑𝐽 : 𝐸0 −→ 𝐸𝐽

in Step B. A basic procedure of Step B is as below (see [34, Section 3.2] or [18, Section 2]):
Step B-1: Factor the reduced norm of 𝐽 as Nrd(𝐽) = ∏𝑟

𝑖=1 ℓ
𝑒𝑖
𝑖
with distinct primes ℓ𝑖 and 𝑒𝑖 ≥ 1, and find a set of

generators of 𝐽 as 𝐽 = ⟨𝑔1, 𝑔2, 𝑔3, 𝑔4⟩Z.
Step B-2: Set 𝜑0 = id𝐸0 , and repeat the following procedure for 1 ≤ 𝑖 ≤ 𝑟:

(i) Compute a basis {𝑃𝑖 , 𝑄𝑖} of the torsion group 𝐸0 [ℓ𝑒𝑖𝑖 ] by our method described in the previous section.
(ii) Compute 𝑔 𝑗 (𝑃𝑖) and 𝑔 𝑗 (𝑄𝑖) for every generator element 𝑔 𝑗 of 𝐽, and find a point 𝑅𝑖 of order ℓ𝑒𝑖𝑖
satisfying 𝑔 𝑗 (𝑅𝑖) = ∞𝐸0 for all generators 𝑔 𝑗 . The point 𝑅𝑖 generates the group ker 𝜑𝐽 ∩ 𝐸0 [ℓ𝑒𝑖𝑖 ].

(iii) Compute an isogeny 𝜙𝑖 : 𝐸𝑖−1 −→ 𝐸𝑖 with kernel generated by the point 𝜑𝑖−1 (𝑅𝑖), and then compute a
composition map 𝜑𝑖 = 𝜙𝑖 ◦ 𝜑𝑖−1 : 𝐸0 −→ 𝐸𝑖 .

Step B-3: The target curve 𝐸𝐽 can be obtained by computing 𝜑𝑟 : 𝐸0 −→ 𝐸𝑟 , since ker 𝜑𝑟 = 𝐸0 [𝐽] and hence
𝜑𝑟 = 𝜑𝐽 . (It holds ker 𝜑𝑟 ⊆ 𝐸0 [𝐽] and deg 𝜑𝑟 = Nrd(𝐽) = deg 𝜑𝐽 by construction, and ker 𝜑𝑟 = 𝐸0 [𝐽].)

𝑅𝑖 ∈ 𝐸0
𝜑𝑟=𝜑𝐽 //

𝜑𝑖−1

��

𝜑𝑖

**

𝐸𝐽 ≃ 𝐸𝐼

𝐸𝑖−1
𝜙𝑖 // 𝐸𝑖−1/⟨𝜑𝑖−1 (𝑅𝑖)⟩ = 𝐸𝑖

4.2 IMPLEMENTATION
4.2.1 INPUT CURVES AND IDEALS
For an odd prime 𝑝 such that 𝑝 ≡ 3 (mod 4), we fix a supersigular elliptic curve

𝐸0 : 𝑦2 = 𝑥3 + 𝑥 (10)

over F𝑝2 satisfying 𝑗 (𝐸0) = 1728 and #𝐸0 (F𝑝2 ) = (𝑝 + 1)2. The endomorphism ring of 𝐸0 is isomorphic to a

maximal order O0 =

〈
1, i,

1 + k
2

,
i + j

2

〉
Z

in the quaternion algebra 𝐵𝑝,∞. The explicit isomorphism is given by

𝐵𝑝,∞ −→ End(𝐸0) ⊗Z Q with (1, i, j, k) ↦−→ (1, 𝜙, 𝜋, 𝜋𝜙), (11)

where 𝜋 : (𝑥, 𝑦) ↦→ (𝑥𝑝 , 𝑦𝑝) is the 𝑝-th Frobenius map and 𝜙 : (𝑥, 𝑦) ↦→ (−𝑥, 𝑢𝑦) with 𝑢2 = −1. To generate
an input left O0-ideal 𝐼, we begin with using the method described in [34, Chapter 4]. Specifically, we repeat to
randomly generate an integral square matrix U of size 4 with coefficients in [−⌈log 𝑝⌉, ⌈log 𝑝⌉], until the Z-lattice
of rank 4 spanned by the row vectors of Ub forms a left O0-ideal ℑ, where a column vector b =

(
1, i, 1+k

2 ,
i+j
2

)⊤
represents a canonical Z-basis of the maximal order O0. The absolute value ofUmust be at least a square integer for
ℑ to form a left O0-ideal. In particular, we have Nrd(ℑ) =

√︁
|det(U) | when the rows of Ub generate a left O0-ideal

ℑ. In general, the reduced norm of such an ideal ℑ is very small, and we add the following procedure to obtain
an input ideal 𝐼 with a large reduced norm; We select a random element 𝛾 =

∑4
𝑖=1 𝛾𝑖𝑏𝑖 in ℑ with coefficients 𝛾𝑖 in

[−√𝑝 log 𝑝,√𝑝 log 𝑝] such that Nrd(𝛾)/Nrd(ℑ) > √
𝑝, where 𝑏𝑖 denotes the 𝑖-th entry of b for each 1 ≤ 𝑖 ≤ 4.

Then we take an equivalent ideal ℑ(𝛾̄/Nrd(ℑ)) of ℑ as an input left O0-ideal 𝐼. It follows from Lemma 1 that the
reduced norm of the input ideal 𝐼 is guaranteed to be greater than √𝑝. As well as for ℑ, the input ideal 𝐼 is spanned
over Z by the rows of Vb for some integral 4 × 4 matrix V, and its reduced norm is given by

√︁
|det(V) |.

Remark 3. We denote the normalized norm map associated with ℑ by 𝑞 : ℑ −→ Z with 𝑞(𝛼) =
Nrd(𝛼)
Nrd(ℑ) . For

simplicity, we assume that integers of form 𝑞(𝛼) behave like random numbers. Under this assumption, we expect
that the above method could find an ideal 𝐼 such that Nrd(𝐼) > √

𝑝 with high probability. The below experiments
show that it can find an ideal 𝐼 with a very large reduced norm Nrd(𝐼) ≫ 𝑝 in practice.

4.2.2 IMPLEMENTATION DETAILS AND COMPLEXITY ANALYSIS
For Step A Our implementation for Step A is based on the modified KLPT algorithm in [23]. Different from
the original KLPT algorithm [26], we perform an exhaustive search for Step A-1 to take the minimum prime
for 𝑁 = Nrd(𝐼 ′). Specifically, we make the list of all pairs (𝑁, 𝛿), where 𝛿 =

∑4
𝑖 𝑥𝑖𝛼𝑖 ∈ 𝐼 is an element with

𝑥𝑖 ∈ [−⌈log 𝑝⌉, ⌈log 𝑝⌉] and 𝑁 = Nrd(𝛿)/Nrd(𝐼) is a prime. We then run the remaining part of the algorithm
with the smallest 𝑁 . If the remaining part does not find a solution, then we return to Step A-1 to change 𝑁 to
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the next one until we obtain a solution. We also adopt Petit-Smith’s improvement [33] that finds a small integral
solution of Equation (9) for us to take a small size of 𝑆2 in Step A-2 (iv). Specifically, if we have 𝑆2, 𝑁, 𝐶, 𝐷
on Equation (9), then the solutions for 𝑐, 𝑑 ∈ Z form a two-dimensional affine lattice in Z2. Since it follows
from Equation (8) that 𝑆2 ≥ 𝑝

{
(𝜆𝐶 + 𝑐𝑁)2 + (𝜆𝐷 + 𝑑𝑁)2}, we want to choice an integral pair (𝑐, 𝑑) such that{

(𝜆𝐶 + 𝑐𝑁)2 + (𝜆𝐷 + 𝑑𝑁)2} is smallest among the solutions. It gives an instance of the closest vector problem,
so we can find desired solution (𝑐, 𝑑) by Babai’s algorithms [1]. As in the original KLPT algorithm [26], we take
𝐵 = 7

2 log 𝑝 as an initial smooth bound, but we often increase it to find an integral solution of Equation (8) in Step
A-2. (As seen from the below numerical examples, we increased a smooth bound up to about twice the initial
bound 7

2 log 𝑝 in our experiments.) We implemented Step A in SageMath [37], and ran this step on Intel Corei7-
8750H@2.20GHz with 32GByte RAM. Since the running time of Step A-2 is dominant in the KLPT algorithm,
we estimate that the running time of our program follows the complexity of the original KLPT algorithm. The
complexity of the KLPT algorithm is heuristically known as 𝑂 (log3 𝑝) [18, Lemma 4].

Remark 4. According to the implementation report in [23], the modified KLPT algorithm enables us to take
smaller 𝑁 and 𝑆2 than the original algorithm. Specifically, Petit-Smith’s improvement [33] enables us to find 𝑆2
of size 𝑂 (𝑝𝑁3), and hence an exhaustive search for small 𝑁 can reduce the output quality of the KLPT algorithm.
More specifically, the modified algorithm outputs a norm Nrd(𝐽) that is about 50 bits smaller than the original
algorithm for primes 𝑝 from 15 to 45 bits. As for the running time, it is reported in [23] that the modified KLPT
algorithm is slightly slower than the original algorithm for small primes 𝑝 up to 35 bits due to an exhaustive search
for Step A-1 (note that the exhaustive search is not dominant for the whole algorithm). On the other hand, it is
faster in total for large primes such as 45 bits, since taking smaller 𝑁 accelerates the processing of Step A-2.

For Step B For an output ideal 𝐽 of Step A, it is not computationally expensive to factorize smooth Nrd(𝐽), and
a set of generators {𝑔1, 𝑔2, 𝑔3, 𝑔4} of 𝐽 can be obtained from input generators of 𝐼 by construction in the KLPT
algorithm. As described in Subsection 3.4, for every large prime factor ℓ of Nrd(𝐽), we use symbolic formulas in
[32] to recover a kernel polynomial 𝐹𝑆 (𝑥) for some subgroup 𝑆 of 𝐸0 [ℓ]. (For small ℓ, we can use the division
polynomial 𝜓ℓ (𝑥).) Note that symbolic formulas for 𝐸0 had been computed in [32] for odd primes ℓ up to 81 with
parameters 𝑎, 𝑏. Thus, we added "special" symbolic formulas for 𝐸0 up to 131with a parameter 𝑎 = 1 and 𝑏 = 0. We
first find roots of𝑚ℓ (𝑡1) by its factorization into linear factors over F𝑝2 , which can be done in𝑂 (ℓ3 log 𝑝) arithmetic
operations in F𝑝2 (see [19]). For each root of 𝑚ℓ (𝑡1), we compute 𝑎̂, 𝑏̂ by the RUR formula (7) and recover 𝐹𝑆 (𝑥)
by using the formula (4). By using an efficient computation in [3], the computation of 𝐹𝑆 (𝑥) can be done in 𝑂 (ℓ2)
arithmetic operations in F𝑝2 (see Remark 5 for the cost of recovering 𝐹𝑆 (𝑥)). We then factor 𝐹𝑆 (𝑥) into irreducible
polynomials over F𝑝2 to obtain an ℓ-torsion point 𝑃 = (𝛼1, 𝛽1) ∈ 𝐸0 [ℓ]. In our implementation, we represent F𝑝2 as
F𝑝 [𝑢]/(𝑢2 +1), and take an irreducible factor of 𝐹𝑆 (𝑥) as the minimal polynomial of 𝛼1 over F𝑝2 . Since the degree
of 𝐹𝑆 (𝑥) is 𝑘 = ℓ−1

2 , the complexity of this factorization is 𝑂 (ℓ3 log3 (𝑝2)) = 𝑂 (ℓ3 log3 𝑝) bit operations in using
classical arithmetic in F𝑝2 . We take a square-root of 𝛼3

1 + 𝛼1 for 𝛽1 since 𝑃 ∈ 𝐸0. Its complexity is 𝑂 (ℓ2 log3 𝑝)
bit operations. Thus it requires 𝑂 (ℓ3 log3 𝑝) bit operations to find a point 𝑃 in 𝐸0 [ℓ]. As discussed in Subsection
3.4.1, we can generate another point 𝑄 ∈ 𝐸0 [ℓ] from 𝑃 by computing 𝑄 = 𝑓 (𝑃) for some endomorphism 𝑓 of
𝐸0. We often used the endomorphism 𝜙 corresponding to i ∈ 𝐵𝑝,∞ to take 𝑄 = 𝜙(𝑃) = (−𝛼1, 𝑢𝛽1) (see the
explicit isomorphism (11)). Indeed, the set {𝑃,𝑄} gives a basis of 𝐸0 [ℓ] if 𝐹𝑆 (−𝛼1) ≠ (−1)𝑘𝐹𝑆 (𝛼1). It is not
computationally expensive to compute 𝜙(𝑃), which is ignorable in complexity analysis.
Given a basis {𝑃,𝑄} of 𝐸0 [ℓ], we compute 𝑔 𝑗 (𝑃), 𝑔 𝑗 (𝑄) for every generator 𝑔 𝑗 of 𝐽. We then find a point

𝑅 in a form 𝑃, 𝑄 or 𝑃 + 𝑠𝑄 (𝑠 = 1, . . . , ℓ − 1) such that 𝑔 𝑗 (𝑅) = ∞𝐸0 for all generators 𝑔 𝑗 of 𝐽. For checking
𝑔 𝑗 (𝑅) = ∞𝐸0 , we first examine if 𝑔 𝑗 (𝑃), 𝑔 𝑗 (𝑄) = ∞𝐸0 , and then find an integer 𝑠 such that 𝑔 𝑗 (𝑃) + 𝑠𝑔 𝑗 (𝑄) = ∞𝐸0

by using the idea of so-called the Baby-Step Giant-Step (BSGS) method. Specifically, we consider two sets
{𝑔 𝑗 (𝑃) + 𝑔 𝑗 (𝑄), . . . , 𝑔 𝑗 (𝑃) + 𝑢𝑔 𝑗 (𝑄)} and {𝑣𝑔 𝑗 (𝑄), 2𝑣𝑔 𝑗 (𝑄), . . .} for 𝑢, 𝑣 ∼

√
ℓ and find a pair of the same

𝑥-coordinate. The point 𝑅 generates ker(𝐽) ∩ 𝐸0 [ℓ]. Let 𝐾 denote the extension field of F𝑝 defining all elements
of 𝐸0 [ℓ], and let 𝑑 = [𝐾 : F𝑝] denote its extension degree. The procedure of finding 𝑅 requires 𝑂 (ℓ) additions
on the ℓ-torsion group 𝐸0 [ℓ] and 𝑂 (log 𝑝) arithmetic operations in F𝑝𝑑 for evaluating 𝑔 𝑗 (𝑃), 𝑔 𝑗 (𝑄) (see Remark
5 for the cost of evaluating 𝑔 𝑗 (𝑃), 𝑔 𝑗 (𝑄)), and 𝑂

(√
ℓ

1+𝜀)
additions on the ℓ-torsion group 𝐸0 [ℓ] for finding an

integer 𝑠 such that 𝑔 𝑗 (𝑃) + 𝑠𝑔 𝑗 (𝑄) = ∞𝐸0 . Thus its computational cost depends on the degree 𝑑 ≤ 4𝑘 = 2(ℓ − 1).
The complexity of finding 𝑅 is at most 𝑂 ((ℓ + log 𝑝) log2 (𝑝4𝑘)) = 𝑂 (ℓ3 log2 𝑝 + ℓ2 log3 𝑝) bit operations. Finally,
we compute the isogeny 𝜙𝐶 : 𝐸0 −→ 𝐸0/𝐶 for the subgroup 𝐶 = ⟨𝑅⟩ of 𝐸0 [ℓ]. Due to Vélu’s formula (1), the
isogeny computation is almost equivalent to recovering the kernel polynomial 𝐹𝐶 (𝑥) associated with 𝐶 in theory.
In our implementation for computing 𝐹𝐶 (𝑥) =

∏𝑘
𝑖=1 (𝑥 − 𝑥𝑖𝑅), we use a naive method where we simply multiply

𝑥 − 𝑥𝑅, 𝑥 − 𝑥2𝑅 and so on. This naive method requires 𝑘 elliptic additions over F𝑝𝑑 , and it requires at most
𝑂 (ℓ3 log2 𝑝) bit operations. We implemented Step B in Risa/Asir [35], a computer algebra system, and ran this
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step on MacBookPro16 (2019). We remark that the complexity of making the RUR formula (7) over Z to that over
F𝑝 is omitted since the size of coefficients of the RUR formula (7) for smaller ℓ are not so large and its timings are
ignorable in our experiments.

Remark 5. We give remarks for some detailed steps.
• The cost of evaluating 𝑔 𝑗 (𝑃) and 𝑔 𝑗 (𝑄): Each 𝑔 𝑗 is given as a linear sum of endmorphisms 1, 𝜙, 𝜋, 𝜋𝜙.

Since 𝑃 is of exact order ℓ, we can reduce coefficients modulo ℓ and the computation can be done in 𝑂 (ℓ)
point additions among four points 𝑃, 𝜙(𝑃), 𝜋(𝑃), 𝜋𝜙(𝑃). In particular, two points 𝜋(𝑃), 𝜋𝜙(𝑃) involve the
Frobenius calculation that takes 𝑂 (log 𝑝) operations over F𝑝𝑑 . Thus, in total, the cost of evaluation is done
in 𝑂 (log(𝑝)) + ℓ) arithmetic operations in F𝑝𝑑 and in 𝑂 ((log 𝑝 + ℓ)𝑑2 log2 𝑝) bit operations.

• The cost of evaluating formulae on the coefficients 𝑡𝑖’s of 𝐹𝑆 (𝑥): According to [3], once 𝑡1, 𝑎̂, 𝑏̂ are known,
all evaluations can be done in 𝑂 (ℓ2) arithmetic operations over F𝑝2 by using fast algorithms for power
series expansion of the Weierstrass ℘-function (see also [2, VII.4.1]). Thus this part is not dominant. In our
experiments, we used a naive method using a polynomial representation of each 𝑡𝑖 shown in (5) that can be
obtained as bi-product of isogeny formulas.

Remark 6. As described above, the minimal polynomial of the 𝑥-coordinate of an ℓ-torsion point 𝑃 = (𝛼1, 𝛽1)
is given by an irreducible factor 𝐺 (𝑥) of a kernel polynomial over F𝑝2 . In our implementation, we represent
𝛼1 as 𝑇 in the extension field F𝑝2 [𝑇]/(𝐺 (𝑇)) with a symbolic variable 𝑇 . We can also find another ℓ-torsion
point 𝑄 by factoring another kernel polynomial 𝐹𝑆′ (𝑥) into irreducible factors over F𝑝2 . But such polynomial
factorization should be performed over the extension field F𝑝2 [𝑇]/(𝐺 (𝑇)) to find an extension field where we can
represent 𝑢𝑃 + 𝑣𝑄 for any integers 𝑢, 𝑣. The complexity of factoring 𝐹𝑆′ (𝑥) over F𝑝2 [𝑇]/(𝐺 (𝑇)) is 𝑂 (ℓ6 log3 𝑝)
bit operations in the worst-case since deg𝐺 (𝑇) ≤ 𝑘 = ℓ−1

2 . However, in our experimental settings, we can avoid
such factorization over F𝑝2 [𝑇]/(𝐺 (𝑇)) by generating another point 𝑄 = 𝑓 (𝑃) for some endomorphism 𝑓 of 𝐸0 as
mentioned in Subsection 3.4.1.

4.3 EXPERIMENTS
4.3.1 NUMERICAL EXAMPLES
Below we present numerical examples for primes 𝑝 of 15, 20, and 25 bits for Steps A and B in solving the

constructive Deuring correspondence.

Example 1. We take a 15-bit prime 𝑝 = 28499, and consider a left O0-ideal 𝐼 spanned by the rows of Vb with

V =

©­­­«
−12706 14940 −2267 15696
30636 14973 −15696 −2267

−111803364 −16137402 −30636 −14973
16152375 −111834000 −14973 30636

ª®®®¬ ,
where b is the same column vector as in Subsection 4.2.1. The reduced norm of 𝐼 is given by Nrd(𝐼) =

√︁
|det(V) |,

decomposed into prime factors as 3 · 597537282301. Our implementation of the KLPT algorithm (Step A) took
about 30 seconds to find an equivalent ideal 𝐽 of 𝐼 spanned by the rows of Wb with

W =

©­­­«
8512322886 375980085 39824784 −75837522
300142563 −8552147670 75837522 39824784

540642486813 275199438330 −300142563 8552147670
−283751586000 540342344250 8552147670 300142563

ª®®®¬ .
In particular, we selected 𝑁 = 5 in Step A-1 of the KLPT algorithm. The reduced norm of 𝐽 is factored as

Nrd(𝐽) = 33 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 43 · 47 · 53,

whose maximal prime factor does not exceed twice an initial smooth bound 𝐵 = 7
2 log 𝑝 ≈ 35.9 of the KLPT

algorithm. In Table 1, we show the average running times of main procedures in Step B for every prime factor ℓ of
Nrd(𝐽). (We ran each procedure 5 times, and show its average running time in the table.) As described in 4.2.2, the
extension degree [𝐾 : F𝑝] affects running times of finding a generator of 𝑅 of ker(𝐽) ∩ 𝐸0 [ℓ] and computing the
kernel polynomial 𝐹𝐶 (𝑥) corresponding to the isogeny 𝜙𝐶 : 𝐸0 −→ 𝐸0/𝐶 for the subgroup 𝐶 = ⟨𝑅⟩ of 𝐸0. From
𝐹𝐶 (𝑥), the formula (1) can be computed immediately. We see from Table 1 that the running time of computing a
basis of 𝐸0 [ℓ] monotonically increases with the size of ℓ, but the running times of other procedures depend on the
extension degree [𝐾 : F𝑝]. The total running time of Step B is approximately equal to the sum of the running times
in Table 1.
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Table 1: Average running times (seconds) of main procedures in Step B in the case of a 15-bit prime (We also
display the extension degree [𝐾 : F𝑝], where 𝐾 denotes the field of defining all elements of 𝐸0 [ℓ])
Prime factors ℓ ≥ 17 of Nrd(𝐽) 17 19 23 29 31 37 43 47 53

Extension degree [𝐾 : F𝑝] 32 2 44 56 60 36 42 92 26

Time of computing a basis of 𝐸0 [ℓ] 0.02 0.03 0.04 0.05 0.05 0.07 0.12 0.11 0.15
Time of finding a generator of kernel 0.23 0.01 0.55 0.67 1.03 0.46 0.22 5.28 0.17
Time of computing an isogeny 0.06 0.003 0.19 0.46 0.60 0.23 0.11 2.88 0.33

Example 2. We take a 20-bit prime 𝑝 = 795299, and consider a left O0-ideal 𝐼 spanned by the rows of Vb with

V =

©­­­«
36588 20732 −12737 16125
−36857 23851 16125 12737

1266198584 −1603014637 19988 24797
1603026428 1266239304 12060 −3863

ª®®®¬
as an input of the KLPT algorithm. The reduced norm of 𝐼 is factored as 29 · 1447497510289. Our implementation
of the KLPT algorithm (Step A) took about 266 seconds to output an ideal 𝐽 spanned by the rows of Wb with

W =
©­­«

−471644229843708735 −607934833983252567 −314526437963564 −777357662522713
608712191645775280 −471958756281672299 −777357662522713 314526437963564

31572215609875693790 77043089247398369963 −236368056972097506 −304198832603905858
−77210534644638172840 30727912718920343717 −304513359041869422 235590699309574793

ª®®¬ .
In particular, we selected 𝑁 = 99431 in the KLPT algorithm. The reduced norm of 𝐽 is factored as

Nrd(𝐽) = 34 · 52 · 72 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 61 · 67 · 73 · 79 · 97 · 101 · 103,

whose maximal prime factor is around twice an initial smooth bound 𝐵 = 7
2 log 𝑝 ≈ 47.6. In Table 2, we summarize

the average running times of main procedures in Step B for every prime factor ℓ of Nrd(𝐽).

Table 2: Same as Table 1, but in the case of a 20-bit prime
Prime factors ℓ ≥ 47 of Nrd(𝐽) 47 53 61 67 73 79 97 101 103

Extension degree [𝐾 : F𝑝] 92 104 60 44 36 78 48 100 204

Time of computing a basis of 𝐸0 [ℓ] 0.11 0.14 0.21 0.25 0.28 0.62 0.65 0.82 0.86
Time of finding a generator of kernel 4.83 6.59 1.93 0.93 0.52 1.75 1.40 6.87 55.41
Time of computing an isogeny 2.89 4.58 1.37 0.73 0.54 4.73 1.55 9.66 70.73

Example 3. We take a 25-bit prime 𝑝 = 17795587. As an input of the KLPT algorithm, we take a left O0-ideal 𝐼
spanned by the rows of Vb with

V =

©­­­«
3409696 661453 −2562520 2805198
3466651 −847176 −2805198 −2562520

3800130335697 −4160012604594 −652674 301377
−4160012303217 −3800129683023 −301377 −652674

ª®®®¬ .
The reduced norm of 𝐼 is given by Nrd(𝐼) = 3 · 11 · 19 · 101 · 338048020593727. Our implementation of the KLPT
(Step A) took about 162 seconds to find an equivalent ideal 𝐽 of 𝐼 generated by the rows of Wb with

W=

( −1627936621022510319552096 −2543404782317971145803683 −775548448806479442762 710841406162323199425
−2542693940911808822604258 1628712169471316798994858 −710841406162323199425 −775548448806479442762

1149264157769629388214309752 −1053610495727289959384429789 −543141003625826374064761 −847823163120205100682340
−1054458318890410164485112129 −1148721016766003561840244991 847823163120205100682340 −543141003625826374064761

)
.

In particular, we selected 𝑁 = 1482967 in the KLPT algorithm. The reduced norm of 𝐽 is factorized as

34 · 53 · 72 · 112 · 13 · 19 · 23 · 29 · 31 · 37 · 43 · 47 · 53 · 61 · 67 · 73 · 79 · 83 · 89 · 97 · 101 · 103 · 107 · 109 · 113 · 127 · 131,

whose maximal prime factor is around twice an initial smooth bound 𝐵 = 7
2 log 𝑝 ≈ 58.4 as in the 20-bit case. In

Table 3, we summarize the average running times of main procedures in Step B for every prime factor ℓ of Nrd(𝐽).

20



Solving the Constructive Deuring Correspondence via the Kohel-Lauter-Petit-Tignol Algorithm

Table 3: Same as Table 1, but in the case of a 25-bit prime
Prime factors ℓ ≥ 97 of Nrd(𝐽) 97 101 103 107 109 113 127 131

Extension degree [𝐾 : F𝑝] 16 200 102 106 108 56 126 130

Time of computing a basis of 𝐸0 [ℓ] 0.65 0.85 1.41 1.63 1.07 1.15 3.44 4.23
Time of finding a generator of kernel 0.15 39.16 2.87 3.81 1.35 1.87 7.03 8.23
Time of computing an isogeny 0.17 65.97 11.82 13.53 3.71 2.66 24.81 27.86

4.3.2 SUMMARY AND DISCUSSION
In Table 4, we give a summary of numerical examples presented in Subsection 4.3.1 for solving the constructive

Deuring correspondence. Note that the running times for Step B are approximately consistent with the sums of
running times of Tables 1, 2 and 3, respectively, since the running times for small ℓ are not dominant for the total
time of Step B. We see from Table 4 that as well as the KLPT algorithm [26] for Step A, our method for Step B can
run in practice for primes 𝑝 of up to 25 bits. In particular, our implementation of the KLPT algorithm outputs an
ideal 𝐽 whose reduced normNrd(𝐽) roughly has size𝑂 (𝑝4) ∼ 𝑂 (𝑝6), depending on the size of the prime 𝑁 selected
in Step A-1. Moreover, as mentioned in Subsection 4.3.1, the size of the maximum prime factor of Nrd(𝐽) is around
twice an initial smooth bound 𝐵 = 7

2 log 𝑝. From this, we estimate that the complexity of our method for Step B is
roughly𝑂 (log6 𝑝) bit operations since the factorization of a kernel polynomial requires𝑂 (ℓ3 log3 𝑝) bit-complexity
(in using classical arithmetic operations in F𝑝2 ) for every prime factor ℓ of Nrd(𝐽) from Subsection 4.2.2. In our
method for Step B, symbolic formulas related to isogenies are the most important ingredient for us to obtain a
kernel polynomial 𝐹𝑆 (𝑥) that is a factor of the ℓ-th division polynomial 𝜓ℓ (𝑥) with deg 𝐹𝑆 (𝑥) = ℓ−1

2 . If we have
no such symbolic formulas, we must factor 𝜓ℓ (𝑥) with deg𝜓ℓ (𝑥) = ℓ2−1

2 , which requires𝑂 (ℓ6 log3 𝑝) = 𝑂 (log9 𝑝)
bit-complexity since it requires at most ℓ ≈ log 𝑝. Indeed, in his master thesis [34], Ray directly factorized division
polynomials 𝜓ℓ (𝑥) to obtain bases of torsion groups and reported that it took about 718 seconds to compute Step
B in an 11-bit prime 𝑝. (As mentioned in Remark 2, factorization of 𝜓ℓ (𝑥) is considered also in the proof of
[18, Lemma 5].) Table 4 shows that our method is much faster than the implementation report [34, Figure 4.1].
However, our method is currently only for primes 𝑝 of up to around 25 bits since symbolic formulas related to
isogenies are available in [32] for odd primes ℓ up to 131 for the curve 𝐸0 defined by (10). For example, a case of
a 30-bit prime 𝑝 (resp., 40-bit prime 𝑝) requires symbolic formulas for primes around 2𝐵 = 7 log 𝑝 ≈ 146 (resp.,
7 log 𝑝 ≈ 194).

Table 4: A summary of numerical examples (Examples 1, 2, 3) of cases of 15, 20, and 25-bit primes 𝑝
Bit-size Running time (seconds) Bit-size Maximum prime
of 𝑝 Step A Step B Total time of Nrd(𝐽) factor of Nrd(𝐽)
15 30 15 45 67 53
20 266 181 447 119 103
25 162 230 392 162 131

5 CONCLUSION AND FUTURE WORK
The constructive Deuring correspondence is a central problem in computational number theory, and it is also

closely connected to the security of some isogeny-based cryptosystems (see [14]). When we fix a supersingular
elliptic curve 𝐸0 over F𝑝2 with O0 = End(𝐸0), it is equivalent to the problem that computes the 𝑗-invariant of the
supersingular elliptic curve 𝐸𝐼 corresponding to a given left O0-ideal 𝐼 under the Deuring correspondence. We
demonstrated by experiments that we can solve the equivalent problem via the KLPT algorithm [26] in practice
for primes 𝑝 of up to around 25-bits. Specifically, we used the modified KLPT algorithm in [23] to output an
equivalent ideal 𝐽 of 𝐼 with smaller reduced norm Nrd(𝐽). Compared to the implementation report of [34], our key
ingredient was to make use of symbolic formulas of isogenies in [32]. (Such formulas are available like modular
polynomials.) For every prime ℓ dividing Nrd(𝐽), such formulas allow us to recover a factor of the ℓ-th division
polynomial 𝜓ℓ (𝑥) to efficiently obtain an ℓ-torsion point in 𝐸0. However, our method has a limit since symbolic
formulas for the elliptic curve (10) are available only for odd primes up to ℓ = 131 in [32].
As future work, there are two research directions for larger characteristics 𝑝. A direction is to compute symbolic

formulas for larger primes ℓ like [32]. Another direction is to improve the output quality of the KLPT algorithm.
In particular, for the latter direction, we might be able to make use of the generalized KLPT algorithm in [12] to
find a small and smooth reduced norm Nrd(𝐽) in large characteristics 𝑝.
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