
Mathematical Cryptology, 1(2): 70–84

Provably Solving the Hidden Subset Sum
Problem via Statistical Learning
Jean-Sébastien Coron*, Agnese Gini
University of Luxembourg

Received: 1st June 2021 | Revised: 1st August 2021 | Accepted: 1st September 2021

Abstract At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum
problem, a variant of the classical subset sum problem where the 𝑛 weights are also hidden. As an application, they
showed how to break the Boyko et al. fast generator of random pairs (𝑥, 𝑔𝑥 (mod 𝑝)). The Nguyen-Stern algorithm
works quite well in practice for moderate values of 𝑛, but its complexity is exponential in 𝑛. A polynomial-time
variant was recently described at Crypto 2020, based on a multivariate technique, but the approach is heuristic
only. In this paper, we describe a proven polynomial-time algorithm for solving the hidden subset-sum problem,
based on statistical learning. In addition, we show that the statistical approach is also quite efficient in practice:
using the FastICA algorithm, we can reach 𝑛 = 250 in reasonable time.

Keywords: Cryptanalysis, lattice reduction, statistical attack, FastICA
2010 Mathematics Subject Classification: 94A60, 11Y40, 62-04

1 INTRODUCTION
The hidden subset-sum problem. At Crypto ’99, Nguyen and Stern described a lattice-based algorithm for
solving the hidden subset sum problem [11], with an application to the cryptanalysis of the fast generator of random
pairs (𝑥, 𝑔𝑥 (mod 𝑝)) from Boyko et al. from Eurocrypt ’98 [1]. The hidden subset sum problem is a variant of
the classical subset sum problem where the 𝑛 weights 𝛼𝑖 are also hidden.

Definition 1 (Hidden Subset Sum Problem). Let 𝑞 be an integer, and let 𝛼1, . . . , 𝛼𝑛 be random integers in Z𝑞 . Let
x1, . . . , x𝑛 ∈ Z𝑚 be random vectors with components in {0, 1}. Let h = (ℎ1, . . . , ℎ𝑚) ∈ Z𝑚 satisfying:

h = 𝛼1x1 + 𝛼2x2 + · · · + 𝛼𝑛x𝑛 (mod 𝑞) (1)

Given 𝑞 and h, recover the vector 𝜶 = (𝛼1, . . . , 𝛼𝑛) and the vectors x𝑖’s, up to a permutation of the 𝛼𝑖’s and x𝑖’s.

Recall that the classical subset sum problem with known weights 𝛼𝑖’s can be solved in polynomial time by a
lattice based algorithm [7], when the density 𝑑 = 𝑛/log 𝑞 is O(1/𝑛). Provided a shortest vector oracle, the classical
subset sum problem can be solved when the density 𝑑 is less than ≃ 0.94. The algorithm is based on finding a
shortest vector in a lattice built from ℎ, 𝛼1, . . . , 𝛼𝑛, 𝑞; see [4]. For the hidden subset sum problem, the attack is
clearly not applicable since the weights 𝛼𝑖’s are hidden.

The Nguyen-Stern algorithm. For solving the hidden subset-sum problem, the Nguyen-Stern algorithm relies
on the technique of the orthogonal lattice. If a vector u is orthogonal modulo 𝑞 to the public vector of samples h,
then from (1) we must have:

⟨u, h⟩ ≡ 𝛼1⟨u, x1⟩ + · · · + 𝛼𝑛⟨u, x𝑛⟩ ≡ 0 (mod 𝑞)

This implies that the vector pu = (⟨u, x1⟩, . . . , ⟨u, x𝑛⟩) is orthogonal to the hidden vector 𝜶 = (𝛼1, . . . , 𝛼𝑛) modulo
𝑞. Now, if the vector u is short enough, the vector pu will be short (since the vectors x𝑖 have components in {0, 1}
only), and if pu is shorter than the shortest vector orthogonal to 𝜶 modulo 𝑞, we must have pu = 0, and therefore
the vector u will be orthogonal in Z to all vectors x𝑖 . The orthogonal lattice attack consists in generating with LLL
many short vectors u orthogonal to h; this reveals the lattice of vectors orthogonal to the x𝑖’s, and eventually the
lattice Lx generated by the vectors x𝑖’s. In a second step, by finding sufficiently short vectors in the lattice Lx, one
can recover the original vectors x𝑖’s, and eventually the hidden weight 𝜶 by solving a linear system.
While the Nguyen-Stern algorithm works quite well in practice for moderate values of 𝑛, its complexity is

actually exponential in the number of weights 𝑛; see [3]. Namely, in the first step one only recovers a basis of
*Corresponding Author: jean-sebastien.coron@uni.lu

70

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

the lattice Lx generated by the binary vectors x𝑖 , but not necessarily the original vectors x𝑖’s, because the basis
vectors that we recover via LLL can be much larger than the x𝑖’s. In order to recover the x𝑖’s, in a second step one
must therefore compute a very short basis of the 𝑛-dimensional lattice Lx. In principle, this takes exponential-time
in 𝑛, as one must apply BKZ reduction [13] with increasingly large block-sizes; this was confirmed by practical
experiments in [3].

Cryptographic application. As an application, the authors of [11] showed how to break the fast generator of
random pairs (𝑥, 𝑔𝑥 (mod 𝑝)) from Boyko, Peinado and Venkatesan from Eurocrypt ’98 [1]. Such generator can
be used to speed-up the generation of discrete-log pairs with fixed base 𝑔, as in Schnorr identification, and in
Schnorr, ElGamal and DSS signatures. Namely, for a prime number 𝑝 and for 𝑔 ∈ Z∗𝑝 of order 𝑞, the generator first
precomputes 𝑛 values 𝛽 𝑗 = 𝑔𝛼𝑗 for random 𝛼 𝑗 ∈ Z𝑞; it can then repeatedly generate a random 𝑥 =

∑𝑛
𝑖=1 𝛼𝑖 ·𝑥𝑖 mod 𝑞

for 𝑥𝑖 ← {0, 1}, with the corresponding group element:

𝑔𝑥 =

𝑛∏
𝑖=1

𝛽
𝑥𝑖
𝑗

mod 𝑝. (2)

This requires on average 𝑛/2 multiplications where 𝑛 is the number of hidden weights 𝛼 𝑗 , instead of a full
exponentiation in Z∗𝑝 .

The Coron-Gini algorithm. At Crypto 2020, Coron and Gini described a variant of the Nguyen-Stern algorithm
for solving the hidden subset sum problem that works in heuristic polynomial-time. The first step is still the same
orthogonal lattice attack with LLL as in Nguyen-Stern. In the second step, instead of applying BKZ, the authors
use a multivariate technique that recovers the short lattice vectors and finally the hidden secrets in polynomial time.
However, such multivariate approach requires 𝑚 ≃ 𝑛2/2 samples instead of 𝑚 = 2𝑛 as in [11]. Asymptotically, the
heuristic complexity of the full algorithm is O(𝑛9). The authors performed some practical experiments to compare
it with the BKZ approach; with the new multivariate approach they could reach 𝑛 = 250 in a reasonable amount
of time, instead of 𝑛 = 170 with BKZ. Their multivariate algorithm enables to break the Boyko et al. generator
in polynomial-time instead of exponential-time as in the original Nguyen-Stern attack, albeit with a significantly
larger number of samples from the generator, namely 𝑚 ≃ 𝑛2/2 samples instead of 𝑚 = 2𝑛, respectively.

Our contribution. Our main contribution is to describe a proven polynomial-time algorithm for solving the
hidden subset-sum problem, while the Coron-Gini algorithm was heuristic only. Our algorithm proceeds in two
steps. The first step is the same as in Nguyen-Stern’s algorithm, and reveals a basis of the completed lattice L̄x
generated by the 𝑛 vectors x𝑖 , via an orthogonal lattice attack. In the second step, we use a statistical learning
technique to disclose the hidden vectors and weights, using an approach introduced by Nguyen and Regev for the
cryptanalysis of GGH and NTRU signatures [9]. Indeed, our main observation is that from a basis of L̄x it is
possible to derive a set of samples from an unknown discrete distribution, and identifying such distribution solves
the hidden subset-sum problem.
We also describe a heuristic extension to a variant of the hidden subset-sum problem where the coefficients

x𝑖’s lie in a discrete interval [0, 𝐵] ∩ Z instead of {0, 1}; we call this the hidden linear combination problem. This
corresponds to a generalization of the Boyko et al. pseudo-random generator of discrete-log pairs (𝑔, 𝑔𝑥 (mod 𝑝)),
where in Equation (2) the exponents 𝑥𝑖 lie in [0, 𝐵] ∩ Z instead of {0, 1}; this allows to increase the entropy of
the generator, for a fixed number 𝑛 of pre-computed group elements 𝛽 𝑗 . The original Nguyen-Stern algorithm can
still be adapted to the generalized problem, and its heuristic complexity remains exponential in 𝑛, as in the binary
case, and polynomial in log 𝐵. For this variant the multivariate approach from [3] does not apply, because it would
lead to multivariate polynomials of degree 𝐵 + 1; namely, the technique would remain polynomial-time only for
constant 𝐵, and be essentially unpractical. We argue that for the generalized problem our statistical approach has
heuristic complexity polynomial in 𝑛 and 𝐵. We summarize in Table 1 the algorithm complexities.

Practical attack. We show that the statistical approach is also quite efficient in practice when based on FastICA
[6], which is an algorithm to solve the signal source separation problem in the context of Independent Component
Analysis (ICA). Namely, we describe a practical implementation using 𝑚 ≃ 𝑛2 samples as in [3], but with space
complexity O(𝑛3) instead of O(𝑛4). We provide the source code in:

https://pastebin.com/WzGXHmpW

71

https://pastebin.com/WzGXHmpW

Coron, J.S. & Gini, A.

complexity status

Hidden subset sum (𝐵 = 1)
Nguyen-Stern [11] 2Ω(𝑛) heuristic
Coron-Gini [3] O(𝑛9) heuristic
Statistical attack poly(𝑛) proven

Hidden linear combination
Nguyen-Stern [11] 2Ω(𝑛) · logO(1) 𝐵 heuristic
Statistical attack poly(𝑛, 𝐵) heuristic

Table 1: Algorithmic complexity for solving the hidden subset sum problem (𝐵 = 1) and the hidden linear
combination problem.

2 BACKGROUND ON LATTICES
Lattices and bases. Let b1, . . . , b𝑘 ∈ Z𝑚 be linearly independent vectors for 𝑘 ≤ 𝑚. The (integral) lattice
generated by the basis 𝔅 = {b1, . . . , b𝑘} is

L(𝔅) =
{

𝑘∑︁
𝑖=1

𝑣𝑖b𝑖 | 𝑣1, . . . , 𝑣𝑘 ∈ Z
}
.

A matrix B whose rows are a basis of a lattice is called base matrix. It is possible to prove that two basis B,B′
generate the same lattice if and only if there exists a unimodular matrix U ∈ GL𝑘 (Z) such that UB = B′. Given
any basis B its Gram-determinant is 𝑑 (B) =

√︁
det(BB⊺); then this number is invariant under base change. Thus,

the determinant of a lattice L , i.e. the Gram-determinant of any of its basis B, det(L) = 𝑑 (B) is well defined.
The dimension dim(L), or rank, of a lattice is the dimension as vector space of 𝐸L B SpanR (L). If L ′ ⊆ L,
then we say that L ′ is a sublattice of a lattice L and L is a superlattice of L ′. L ′ is a full-rank sublattice of L
if dim(L ′) = dim(L). In particular, if L ⊆ Z𝑚 is a full-rank sublattice, we simply say that L is full-rank. For a
full-rank sublattice it holds det(L) ≤ det(L ′).

Orthogonal lattice. The orthogonal lattice of a lattice L ⊆ Z𝑚 is

L⊥ B {v ∈ Z𝑚 | ∀b ∈ L, ⟨v, b⟩ = 0} = 𝐸⊥L ∩ Z
𝑚

where ⟨·, ·⟩ denotes the standard scalar product of R𝑚. The completion of a lattice L is the lattice L̄ = 𝐸L ∩ Z𝑚 =

(L⊥)⊥. Moreover, a lattice is called complete if it coincides with its completion, i.e. L̄ = L. Notice that L is a
full-rank sublattice of L̄, and recall dimL + dimL⊥ = 𝑚 and det(L⊥) = det(L̄) ≤ det(L) (proofs of these facts
are recalled in [3, Appendix A]). By Hadamard’s inequality, we have det(L) ≤ ∏

b∈𝑏 ∥b∥ for any basis 𝐵 of L;
this implies that det(L⊥) ≤ ∏

b∈𝐵 ∥b∥.

Lattice minima. For each 1 ≤ 𝑖 ≤ dimL, the 𝑖-th minimum 𝜆𝑖 (L) of a lattice L is the minimum of the
max 𝑗

{
∥v 𝑗 ∥

}
among all sets

{
v 𝑗

}
𝑗≤𝑖 of 𝑖 linearly independent lattice points. Notice that the first minimum 𝜆1 (L) is

the minimum of the norm of its non-zero vectors; hence, the lattice points whose norm is 𝜆1 (L) are called shortest
vectors, accordingly.
The Hermite constant 𝛾𝑘 (in dimension 𝑘) is the supremum of 𝜆1 (L)2/det(L) 2

𝑘 over all the lattices of rank 𝑘 .
Using Minkowski convex body theorem, one can prove that for each 𝑘 ∈ N+, 0 ≤ 𝛾𝑘 ≤ 𝑘/4 + 1. This constant is
also involved in the Minkowski’s Second Theorem, which asserts that for each 1 ≤ 𝑖 ≤ 𝑘

©­«
𝑖∏
𝑗=1

𝜆𝑖 (L)
ª®¬

1
𝑖

≤ √𝛾𝑘 det(L) 1
𝑘 .

Lattice reduction. The notion of LLL-reduced basis was introduced in [8], along with an algorithm to produce
such bases. Those have many good properties, for instance the first vector of an LLL-reduced basis is not much
longer than the shortest vector of the lattice.

Lemma 1 (LLL-reduced basis). Let b1, . . . , b𝑘 ∈ Z𝑚 an LLL-reduced basis of a latticeL. Then ∥b1∥ ≤ 2 𝑘−1
2 𝜆1 (L),

and ∥b 𝑗 ∥ ≤ 2 𝑘−1
2 𝜆𝑖 (L) for each 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑘 .

72

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

The LLL algorithm produces an LLL-reduced basis in time O(𝑘5𝑚 log3 𝛽), given a basis of vectors of norm less
than 𝛽 of a 𝑘-rank sublattice of Z𝑚. Nguyen and Stehlé in [10] proposed a variant, based on proven floating point
arithmetic and called 𝐿2, whose complexity is O(𝑘4𝑚(𝑘 + log 𝛽) log 𝛽) without fast arithmetic. In this paper, when
we apply LLL, we always mean the 𝐿2 variant. There exist other notions of reduced basis. If a better approximation
of the shortest vector is needed, one can use Schnorr’s algorithm BKZ [13]. In this paper, when we apply BKZ, we
generally refer to BKZ 2.0 [2].

Heuristics. By the Gaussian Heuristic, for a "random lattice" we can expect 𝜆1 (L) ≈
√
𝑘 det(L) 1

𝑘 . In such case
we can also expect that all lattice minima have approximately the same value. In general, we can suppose that a
lattice L generated by a set of 𝑘 "random" vectors in Z𝑚 for 𝑘 < 𝑚 has rank 𝑘 , and that the short vectors of L⊥
have norm approximately (detL⊥)1/(𝑚−𝑘) ≃ (detL)1/(𝑚−𝑘) ≃ (∏𝑘

𝑖=1 ∥b𝑖 ∥)1/(𝑚−𝑘) , up to a
√
𝑘 factor.

3 THE NGUYEN-STERN ALGORITHM
We recall the Nguyen-Stern algorithm [11] for solving the hidden subset-sum. We also recall the complexity

analysis from [3]. In the hidden subset-sum problem, we are given a modulus 𝑞 and h = (ℎ1, . . . , ℎ𝑚) ∈ Z𝑚
satisfying

h = 𝛼1x1 + 𝛼2x2 + · · · + 𝛼𝑛x𝑛 (mod 𝑞) (3)

and we must recover the vector 𝜶 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛𝑞 and the vectors x𝑖 ∈ {0, 1}𝑚. The Nguyen-Stern algorithm
comprises two steps:
1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the x𝑖’s.
2. From L̄x, recover the hidden vectors x𝑖’s using BKZ. From h, the x𝑖’s and 𝑞, recover the weights 𝛼𝑖 .

3.1 FIRST STEP: ORTHOGONAL LATTICE ATTACK
In the first step the goal is to recover L̄x from h and 𝑞. Let L0 be the lattice of vectors orthogonal to h modulo

𝑞:
L0 B Λ⊥𝑞 (h) = {u ∈ Z𝑚 | ⟨u, h⟩ ≡ 0 (mod 𝑞) }

For any u ∈ L0, the vector
pu = (⟨u, x1⟩, . . . , ⟨u, x𝑛⟩)

is orthogonal to the vector 𝜶 modulo 𝑞, since from (3) we obtain:

⟨u, h⟩ ≡ 𝛼1⟨u, x1⟩ + · · · + 𝛼𝑛⟨u, x𝑛⟩ ≡ 0 (mod 𝑞).

Then, if pu is shorter than the shortest non-zero vector orthogonal to 𝜶 modulo 𝑞, we must have pu = 0, and
therefore u ∈ L⊥x . Therefore, the orthogonal lattice attack first obtains an LLL-reduced basis of L0, from which it
extracts a generating set for L⊥x ; subsequently, it computes the orthogonal of L⊥x obtaining L̄x.

Algorithm 1 Orthogonal lattice attack
Input: h, 𝑞, 𝑛.
Output: A basis of L̄x.
1: Compute an LLL-reduced basis u1, . . . , u𝑚 of L0.
2: Extract a generating set of u1, . . . , u𝑚−𝑛 of L⊥x .
3: Compute a basis (c1, . . . , c𝑛) of L̄x = (L⊥x)⊥.
4: return (c1, . . . , c𝑛)

The orthogonal lattice attack described in Algorithm 1 is guaranteed to succeed with good probability for
sufficiently large 𝑞.

Theorem 1. ([3, Theorem 1]) Let 𝑚 > 𝑛. Assume that the lattice Lx has rank 𝑛. With probability at least 1/2 over
the choice of 𝜶, Algorithm 1 recovers a basis of L̄x in polynomial time, assuming that 𝑞 is a prime integer of bitsize
at least 2𝑚𝑛 log𝑚. For 𝑚 = 2𝑛, the density of the subset-sum problem is 𝑑 = 𝑛/log 𝑞 = O(1/(𝑛 log 𝑛)).

Heuristic analysis. One can use a slightly smaller value of the modulus 𝑞 via a heuristic analysis. As shown in
[3], for 𝑚 = 2𝑛 samples, we can use log 𝑞 = O(𝑛2), which gives a knapsack density 𝑑 = 𝑛/log 𝑞 = O(1/𝑛) as in
the classical subset-sum problem. More concretely, one can take log 𝑞 ≃ 2𝜄 · 𝑛2 + 𝑛 log 𝑛 with 𝜄 = 0.035.

73

Coron, J.S. & Gini, A.

Orthogonal lattice attack for large 𝑚. The multivariate attack described in [3] requires a much larger number
of samples, namely 𝑚 ≃ 𝑛2 instead of 𝑚 = 2𝑛 in Nguyen-Stern. In our statistical attack (Section 4), we also require
a similarly large number of samples. For such large value of 𝑚, it would not be efficient to apply Algorithm 1
directly, as the lattice dimension of the lattice L0 would be too large, namely 𝑚 ≃ 𝑛2. Instead, a better approach
is to apply LLL only to the first 2𝑛 coordinates, which already gives 𝑛 orthogonal vectors, and then compute the
other 𝑚 − 2 · 𝑛 orthogonal vectors using size reduction. We refer to [3] for the details.

3.2 SECOND STEP: THE BKZ APPROACH
The first step of the Nguyen-Stern algorithm produces an LLL-reduced basis (c1, . . . , c𝑛) of the completed

lattice L̄x ⊂ Z𝑚. Due to the LLL approximation factor, the recovered basis vectors (c1, . . . , c𝑛) can be much larger
than the original vectors x𝑖 , which are among the shortest vectors inLx. Therefore, in the second step BKZ is applied
to recover the original vectors x𝑖 . Indeed, BKZ provides a better approximation factor than LLL. More precisely,
the analysis in [3] shows that the BKZ approximation factor 2 𝜄·𝑛 must satisfy 2 𝜄·𝑛 ≤

√
𝑛/2. Since achieving an

Hermite factor of 2 𝜄·𝑛 heuristically requires time 2Ω(1/ 𝜄) with block-size 𝛽 = 𝜔(1/𝜄), the resulting heuristic running
time of the Nguyen-Stern algorithm is 2Ω(𝑛/log 𝑛) , with BKZ block-size 𝛽 = 𝜔(𝑛/log 𝑛). Eventually, from the vector
h, the x𝑖’s and 𝑞, one can recover the hidden weights 𝛼𝑖 by solving a linear system.

4 OUR STATISTICAL ALGORITHM FOR HIDDEN SUBSET-SUMS
In this section we describe our algorithm for solving the hidden subset-sum problem based on a statistical

learning technique.
As recalled in Section 3, the Nguyen-Stern algorithm comprises two steps.
1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the x𝑖’s.
2. From L̄x, recover the hidden vectors x𝑖’s using BKZ. From h, the x𝑖’s and 𝑞, recover the weights 𝛼𝑖 .

Our algorithm uses the same first step as in Nguyen-Stern, but we replace BKZ in the second step by a statistical
approach. Let X ∈ Z𝑛×𝑚 be the binary matrix of row vectors x𝑖 ∈ Z𝑚, whose components are randomly distributed
in {0, 1}. From the first step, by Theorem 1, we obtain a basis of the lattice L̄x, namely a matrix of row vectors
C ∈ Z𝑛×𝑚 such that

C = V · X

for some unknown matrix V ∈ GL𝑛 (Q).
For the second step, ourmain observation is that the𝑚 columns ofC are samples from the discrete parallelepiped:

P{0,1} (V) =
{

𝑛∑︁
𝑖=1

𝑥𝑖v𝑖 : 𝑥𝑖 ∈ {0, 1}
}

where v1, . . . , v𝑛 ∈ Q𝑛 are the columns of V. Therefore, our approach consists in recovering the matrix V from
those samples, by using a statistical technique. Indeed, given V one can compute the x𝑖’s with X = V−1C. In the
following, we show that the statistical approach allows to solve the hidden subset-sum problem in polynomial time
in a provable way.

Continuous and discrete parallelepipeds. The problem of learning a continuous parallelepiped was solved by
Nguyen and Regev in [9] for the cryptanalysis of GGH and NTRU signatures. Given a matrix V ∈ GL𝑛 (R), the
continuous parallelepiped is defined as:

P[−1,1] (V) =
{

𝑛∑︁
𝑖=1

𝑥𝑖v𝑖 : 𝑥𝑖 ∈ [−1, 1]
}

Problem 1 (Hidden Parallelepiped Problem). Let V ∈ GL𝑛 (R) be a matrix of column vectors [v1, . . . , v𝑛] and let
P[−1,1] (V) = {

∑𝑛
𝑖=1 𝑥𝑖v𝑖 : 𝑥𝑖 ∈ [−1, 1]}. The input to the HPP is a sequence of poly(𝑛) independent samples

fromU(P[−1,1] (V)), the uniform distribution over P[−1,1] (V). The goal is to recover a good approximation of the
columns of ±V.

More precisely, the authors proved the following theorem.

Theorem 2 (Nguyen-Regev). There exists an algorithm A such that for any 𝑐0 > 0, there exists 𝑐1 > 0 such that
given 𝑛𝑐1 samples uniformly distributed over some parallelepiped P[−1,1] (V), for V ∈ GL𝑛 (R), the algorithm A
returns with constant probability a vector Ve, where e is within ℓ2 distance 𝑛−𝑐0 of some standard basis vector e𝑖 .

74

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

As stated above, the Nguyen-Regev algorithm recovers an approximation of a single column of ±V, but it
can be easily modified to provably recover an approximation of all columns of ±V. However, there are two main
differences with our case:

• Weobtain random samples from the finite parallelepiped setP{0,1} (V), whereas the Nguyen-Regev algorithm
uses samples from the continuous set P[−1,1] (V).

• The Nguyen-Regev algorithm only recovers an approximation of the columns of ±Vwith relative error 1/𝑛𝑐0 ,
whereas we must recover the exact value of the columns of ±V.

Note that in [9] for the cryptanalysis of NTRU and GGH signatures, the matrix V is an integer matrix whose
entries are polynomially bounded in absolute value; therefore, even with relative error 𝑛−𝑐0 , for large enough 𝑐0,
the absolute error becomes less than 1/2 in each coordinate, and the columns of ±V can be exactly recovered
simply by rounding to the nearest integer. Therefore, the authors of [9] obtain a rigorous proof that the secret key
in NTRU and GGH signatures can be recovered in polynomial time. However, in our case the entries of V are not
polynomially bounded in absolute value.
Nevertheless, in our discrete variant, even if the matrix V has large entries, we can use the above equation

C = V · X, and from an approximation of V obtain an approximation of X; since the matrix X is binary, we can
then recover X by rounding to the nearest integer, which enables us to eventually recover V. Formally, we consider
the following problem:

Problem 2 (Discrete Hidden Parallelepiped Problem). Let V ∈ GL𝑛 (Q), consider P{0,1} (V) B {Vx| x ∈ {0, 1}𝑛}
the discrete parallelepiped associated to V. Given poly(𝑛) independent samples from the uniform distribution over
P{0,1} (V), recover the columns of V.

Our approach for solving the discrete hidden parallelepiped problem (Problem 2) is to reduce to the continuous
hidden parallelepiped problem (Problem 1). Namely, we show that we can easily generate samples from the
continuous distribution from samples from the discrete distribution. Then we can use the Nguyen-Regev learning
algorithm as a black-box. Clearly, computing the exact value of V is not really necessary for the hidden subset sum
problem, as we are only interested in recovering the vectors x𝑖’s.

4.1 FROM DISCRETE TO CONTINUOUS
Our goal is to obtain a set of independent samples of the continuousP[−1,1] (V) from a set of independent samples

of the discrete P{0,1} (V). Consider the continuous distribution 𝑥 ← [0, 1]; we can approximate this distribution
up to 𝑘-bit precision by generating a random 𝑘-bit binary decomposition, i.e. we can let 𝑦 =

∑𝑘
𝑖=1 𝑏𝑖2

−𝑖 . To
approximate the continuous distribution 𝑥 ← [−1, 1], we can use one more bit 𝑏0, with 𝑦 = −𝑏0 +

∑𝑘
𝑖=1 𝑏𝑖2

−𝑖 .
Our main observation is that we can proceed similarly with the samples from P{0,1} (V) to generate samples from
P[−1,1] (V). Moreover, to obtain a continuous distribution, we add a small vector e with continuous components.
Formally, given parameters 𝑘 ∈ Z and 𝜀 > 0, we define the random vector

v = −u0 +
𝑘∑︁
𝑖=1

2−𝑖u𝑖 + e

where u𝑖 ← U(P{0,1} (V)) for 0 ≤ 𝑖 ≤ 𝑘 and e ← U([0, 𝜀)𝑛). We want to show that for large enough 𝑘 and
small enough 𝜀, the distribution of v is statistically close to uniform in P[−1,1] (V). Indeed, this implies that we can
produce samples from the continuous set P[−1,1] (V) by combining those from the discrete set P{0,1} (V).
We denote by D(V, 𝑘, 𝜀) the distribution of the vector v. By definition, the vector v is distributed as:

v = V ·
(
−b0 +

𝑘∑︁
𝑖=1

2−𝑖b𝑖

)
+ e

where for all 0 ≤ 𝑖 ≤ 𝑘 the components of b𝑖 ∈ Z𝑛 are randomly distributed in {0, 1}, and e← [0, 𝜀)𝑛. Therefore
the vector v is distributed as v = Vy + e, where e ← [0, 𝜀)𝑛 and the components of y are uniformly distributed in
the set:

J𝑘 =

{
−𝑏0 +

𝑘∑︁
𝑟=1

𝑏𝑟2−𝑟 : (𝑏0, . . . , 𝑏𝑘) ∈ {0, 1}𝑘+1
}
.

We define the statistical distance between two probability distributions 𝜇 and 𝜈 on 𝐸 as

𝛿(𝜇, 𝜈) = sup
𝐴⊂𝐸
|𝜇(𝐴) − 𝜈(𝐴) |

75

Coron, J.S. & Gini, A.

Lemma 2. The statistical distance betweenU(P[−1,1] (V)) andD(V, 𝑘, 𝜀) with 𝜀(𝑘) = 2−𝑘/2 is at most 𝑛 · 2−𝑘/2 ·
(∥V∥∞ + ∥V−1∥∞).

Proof. We first consider an intermediate distribution D ′(V, 𝜀) of a = Vx + e where x← [−1, 1]𝑛 and e ∈ [0, 𝜀)𝑛.
We have that a = V(x +V−1e). For a fixed u the statistical distance between x and x + u is at most 𝑛 · ∥u∥∞. Hence
for a fixed e the statistical distance between x and x + V−1e is at most 𝑛 · ∥V−1∥∞ · 𝜀. Therefore the statistical
distance betweenU(P[−1,1] (V)) and D ′(V, 𝜀) is also at most 𝑛 · ∥V−1∥∞ · 𝜀.
Moreover any 𝑥 ∈ [−1, 1] can be decomposed as 𝑥 = 𝑦 + 𝑑 where 𝑦 ∈ J𝑘 and 𝑑 ∈ [0, 2−𝑘). Letting a be a

random vector distributed as D ′(V, 𝜀), we can therefore write

a = Vx + e = Vy + Vd + e

with y ← J 𝑛
𝑘
, d ← [0, 2−𝑘)𝑛 and e ← [0, 𝜀)𝑛. As previously, the statistical distance between Vd + e and e is

at most 𝑛 · ∥V∥∞ · 𝜀−1 · 2−𝑘 . This implies that the statistical distance between a = Vy + (Vd + e) and Vy + e
satisfies the same bound. This implies that the statistical distance between D ′(V, 𝜀) and D(V, 𝑘, 𝜀) is at most
𝑛 · ∥V∥∞ · 𝜀−1 · 2−𝑘 . Finally, combining the two bounds and taking 𝜀(𝑘) = 2−𝑘/2, we obtain the required bound.

□

4.2 THE NGUYEN-REGEV LEARNING TECHNIQUE
As recalled in Theorem 2, the Nguyen-Regev algorithm recovers an approximation of a column of ±V, from

polynomially many samples from U(P[−1,1] (V)). Repeating the algorithm multiple times does not guarantee to
recover all the columns. However, this can be fixed by slightly changing the algorithm. Suppose V is an orthogonal
matrix, and that we have computed a set of columns 𝑉 = {v1, . . . , v𝑖}; we know that the further target vectors must
belong to 𝑆𝑝𝑎𝑛 (𝑉)⊥. Therefore, at each iterative step we can project on such space. Although projecting does
not work when V is not orthogonal, this idea can be integrated directly inside the Nguyen-Regev algorithm. More
precisely, the Nguyen-Regev strategy can be summarized in three steps [9]:
1. find a linear transformation of V into an orthogonal matrix A = LV;
2. recover a good approximation of a column ±A;
3. recover an approximation of a column of ±V by multiplying by L−1.
WhenA is an orthogonal matrix, one can prove that its columns a1, . . . , a𝑛 are global minima on the unit sphere

of R𝑛 of a certain function. Hence, to obtain an approximation of all the columns of V, we can simply modify
the second step to return a full approximation of A, by using projections. This gives the following corollary of
Theorem 2.

Corollary 1. There exists an algorithmA such that for any 𝑐0 > 0, there exists 𝑐1 > 0 such that given 𝑛𝑐1 samples
uniformly distributed over some parallelepiped P[−1,1] (V), for V ∈ GL𝑛 (R), the algorithmA returns with constant
probability a matrix Ṽ = VẼ, where each column of Ẽ is within ℓ2 distance 𝑛−𝑐0 of a different standard basis vector
±e𝑖 .

4.3 OUR ALGORITHM BASED ON STATISTICAL LEARNING
In this section we describe our main algorithm for solving the hidden subset-sum problem. Recall that the first

step of the original Nguyen-Stern algorithm returns a basis of the lattice L̄x. Given X ∈ Z𝑛×𝑚 the matrix of row
vectors x𝑖 ∈ Z𝑚, we obtain a matrix of row vectors C ∈ Z𝑛×𝑚 such that C = VX for V ∈ GL𝑛 (Q).
We observed in Section 4.1 that the columns of C can be interpreted as samples from a discrete parallelepiped

P{0,1} (V). Namely, given a set ℭ of independent samples of the uniform distribution P{0,1} (V), we can generate
a set of independent samples 𝔙 of P[−1,1] (V). Then, we can use 𝔙 as input for the Nguyen-Regev algorithm to
compute an approximation of V, and eventually the x𝑖’s can be recovered as V−1C.

Algorithm 2 Statistical attack
Input: h, 𝑞, 𝑛
Output: the vectors x𝑖 .
1: Compute a basis C of the lattice L̄x by using Algorithm 1.
2: Generate a set of independent samples𝔙 of P[−1,1] (V) by using the 𝑚 columns of C as shown in Section 4.1.
3: Use Nguyen-Regev algorithm to compute an approximation Ṽ of V.
4: Recover X from the rounding of X̃ = Ṽ−1C.
5: return (x1, . . . , x𝑛)

76

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

Theorem 3. There exist 𝑛0 ≥ 0 and ℓ > 0 such that for any 𝑛 ≥ 𝑛0, and for any prime integer 𝑞 of bitsize at least
2𝑚𝑛 log(𝑚), Algorithm 2 solves the hidden subset sum problem with constant probability in polynomial time, using
𝑚 = 𝑛ℓ samples.

Proof. We show in Appendix A that the lattice L̄x has rank 𝑛 with constant probability. Therefore, we can apply
Theorem 1 and obtain a basis C of L̄x with constant probability. More precisely, we recover a matrix C ∈ Z𝑛×𝑚
such that C = VX for V ∈ GL𝑛 (Q). Moreover, we haveWC = X whereW = V−1 andW ∈ Z𝑛×𝑛.
The columns of C can be interpreted as 𝑚 samples from the discrete parallelepiped P{0,1} (V). Lemma 2

implies that we can generate 𝑚′ = 𝑚/𝑘 samples from the continuous parallelepiped P[−1,1] (V). Hence, we can
apply Corollary 1 with 𝑐0 = 2 and 𝑚′ = 𝑛𝑐1 samples from P[−1,1] (V), and we can then recover a matrix Ṽ whose
columns are close to the columns of ±V, with constant probability. Without loss of generality, we can assume that
the columns of Ṽ are close to the columns of V (instead of ±V), by checking at Step 4 that the rows of X have
components in {0, 1} instead of {−1, 0}.
Namely, this implies that there exists a matrix Ẽ such that Ṽ = VẼ and each of its column is within ℓ2 distance

𝜀 = 𝑛−2 of some standard basis vector e𝑖 . Therefore, there exists a permutation matrix P such that ẼP is close to
the identity matrix, namely the respective columns have ℓ2 distance smaller than 𝜀. Without loss of generality, we
can assume P = I. Thus, it holds that ∥Ẽ − I∥max < 𝜀, where we define ∥A∥max B sup𝑖, 𝑗 |𝑎𝑖, 𝑗 |.
In order to recover the vectors x𝑖’s by rounding the rows x̃𝑖’s of X̃ = Ṽ−1C, we must have ∥x𝑖 − x̃𝑖 ∥∞ < 1/2.

For any column c of C there exists a corresponding column x ∈ {0, 1}𝑛 of X such that c = Vx. So, with W̃ = Ṽ−1,
we obtain:

W̃c − x = Ẽ−1V−1Vx − x = (Ẽ−1 − I)x

This implies that ∥W̃c − x∥∞ ≤ ∥Ẽ−1 − I∥∞. Therefore, a sufficient condition to recover the columns of X exactly
is ∥Ẽ−1 − I∥∞ < 1

2 .
Given a matrix Q such that ∥Q∥∞ < 1, we have (I −Q)−1 =

∑
𝑗≥0 Q 𝑗 . Moreover, if ∥Q∥∞ < 𝛼 < 1/2, we get:

∥(I −Q)−1 − I∥∞ =

∑︁
𝑗≥1

Q 𝑗

∞ ≤

∞∑︁
𝑗=1

𝛼 𝑗 =
𝛼

1 − 𝛼 ≤ 2𝛼

We can apply this inequality forQ = I−Ẽ. Indeed, using ∥Ẽ−I∥max < 𝜀, we obtain ∥Q∥∞ ≤ 𝑛 · ∥Q∥max < 𝑛𝜀 ≤ 𝑛−1.
This gives ∥Ẽ−1 − I∥∞ ≤ 2𝑛−1 ≤ 1

2 as required.
We have proved that 𝑚′ = poly(𝑛) samples ofU(P[−1,1] (V)) are sufficient for applying Nguyen-Regev attack

and computing the binary hidden vectors, and we have observed that, from Lemma 2, those can be produced by
𝑚 = 𝑘 ·𝑚′ samples from the hidden subset-sum problem. In addition, we notice that 𝑘 can be chosen as polynomial
in 𝑛, because both log ∥V∥∞ and log ∥V−1∥∞ are polynomial in 𝑛. Indeed, if C0 is a 𝑛 × 𝑛 invertible submatrix
of C ∈ Z𝑛×𝑚 and X0 the corresponding submatrix of X ∈ {0, 1}𝑛×𝑚, then we haveW = V−1 = X0C−1

0 where the
coefficients of both C0 and X0 have size polynomial in 𝑛; then log ∥W∥∞ is polynomial in 𝑛. The same holds for
the matrix V = W−1. Hence, a number of samples 𝑚 polynomial in 𝑛 is enough, i.e. there exist ℓ > 0 such that
provided 𝑚 = 𝑛ℓ hidden subset sum samples we can solve the problem, within some constant probability.
Moreover, this implies that the time complexity of Algorithm 2 is polynomial in 𝑛. Indeed, every step is

performed applying linear algebra operations on matrices of dimensions polynomial in 𝑛, and whose coefficients
have size polynomial in 𝑛, too. More specifically, if 𝑣 is the size of the coefficients of the elements in𝔙, Nguyen-
Regev algorithm’s complexity is poly(𝑛, 𝑚′, 𝑣); see [9]. Moreover, the values of 𝑣 and 𝑚′ polynomially depend on
𝑛, 𝑘 , 𝑚 and the size of the coefficients of C, which we already showed to be themselves polynomial in 𝑛. □

5 THE HIDDEN LINEAR COMBINATION PROBLEM
In this section we consider a natural generalization of the hidden subset sum problem where the coefficients

of the vectors x𝑖’s lie in a discrete interval [0, 𝐵] ∩ Z instead of {0, 1}; we call this the hidden linear combination
problem.

Definition 2 (Hidden Linear Combination Problem). Let 𝑞 be a positive integer, and let 𝛼1, . . . , 𝛼𝑛 be random
integers in Z𝑞 . Let x1, . . . , x𝑛 ∈ Z𝑚 be random vectors with components in [0, 𝐵] ∩ Z. Let h = (ℎ1, . . . , ℎ𝑚) ∈ Z𝑚
satisfying:

h = 𝛼1x1 + 𝛼2x2 + · · · + 𝛼𝑛x𝑛 (mod 𝑞) (4)

Given 𝑞 and h, recover the vector 𝜶 = (𝛼1, . . . , 𝛼𝑛) and the vectors x𝑖’s, up to a permutation of the 𝛼𝑖’s and x𝑖’s.

We first describe an extension of the Nguyen-Stern algorithm for solving the above problem, with heuristic
complexity exponential in 𝑛 and polynomial in log 𝐵. Namely, the orthogonal lattice attack in the first step recovers

77

Coron, J.S. & Gini, A.

as previously the completion of the lattice Lx generated by x1, . . . , x𝑛, and in the second step, one can still
apply BKZ to recover the original vectors x𝑖 . Note that the multivariate approach from [3] does not apply to the
generalized problem, as it it would lead to multivariate polynomials of degree 𝐵 + 1. The technique would then
remain polynomial-time only for constant 𝐵, and be essentially unpractical.
Secondly, we describe a statistical learning approach very close to Nguyen-Regev algorithm [9]. As opposed

to the previous section we do not claim to have a proven algorithm: for the generalized problem, we only obtain a
heuristic complexity poly(𝑛, 𝐵).

5.1 EXTENDING THE NGUYEN-STERN ALGORITHM
The Nguyen-Stern algorithm can be adapted to the hidden linear combination problem; its heuristic complexity

remains exponential in 𝑛 as in the binary case, and polynomial in log 𝐵. Recall that the algorithm has two steps:
1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the x𝑖’s.
2. From L̄x, recover the hidden vectors x𝑖’s using BKZ. From h, the x𝑖’s and 𝑞, recover the weights 𝛼𝑖 .

For the first step, the orthogonal lattice attack as recalled in Section 3.1 can be directly applied with h, 𝑞, 𝑛 as
input. The only difference is that the minimal size of the modulus 𝑞 now depends on 𝐵. We prove the following
generalization of Theorem 1 in Appendix B.

Theorem 4. Let 𝑚 > 𝑛. Assume that the lattice Lx has rank 𝑛. With probability at least 1/2 over the choice of
𝜶, Algorithm 1 recovers a basis of L̄x in polynomial time, assuming that 𝑞 is a prime integer of bitsize at least
2𝑚𝑛 log𝑚 + (𝑛 + 1)𝑛 log 𝐵. For 𝑚 = 2𝑛, the density is 𝑑 = 𝑛 log(𝐵 + 1)/log 𝑞 = O(1/(𝑛 log 𝑛)).

The second step of Nguyen-Stern for the hidden linear combination problem is also essentially the same as for
the hidden subset-sum problem. As previously, the first step of the Nguyen-Stern algorithm produces an LLL-
reduced basis (c1, . . . , c𝑛) of the completed lattice L̄x ⊂ Z𝑚; however, the recovered basis vectors (c1, . . . , c𝑛) can
be much larger than the original vectors x𝑖 . Since we expect the x𝑖’s to be among the shortest vectors in Lx, one
must apply BKZ to obtain a better approximation factor. We provide a detailed analysis in Appendix B.2, following
the analysis from [3]. We show that we obtain a similar condition on the BKZ approximation factor as in the binary
case, and eventually the heuristic running time is 2Ω(𝑛/log 𝑛) · logO(1) 𝐵. We provide in Section 6.1 the result of
practical experiments.

5.2 OUR STATISTICAL LEARNING APPROACH
In Section 4 we observed that a basis of the lattice L̄x of the hidden subset sum problem can be interpreted as a

set of samples of the uniform distribution over a discrete parallelepiped P{0,1} (V). Similarly, in the hidden linear
combination problem, the vector x𝑖’s have coordinates uniformly distributed over {0, . . . , 𝐵}. Given X ∈ Z𝑛×𝑚 the
matrix of row vectors x𝑖’s, C ∈ Z𝑛×𝑚 a basis of L̄x and V ∈ GL𝑛 (Q) such that C = V · X, then the 𝑚 columns of
C are samples from the discrete parallelepiped P{0,...,𝐵} (V) = {Vx : x ∈ {0, . . . , 𝐵}𝑛}.
Instead of producing a continuous distribution and applying Nguyen-Regev as in Section 4 to recover an

approximation of the matrix V, it is more efficient in practice to apply the FastICA algorithm [6]; notice this also
applies to the binary case with 𝐵 = 1. Indeed, the Nguyen-Regev algorithm can be seen as an instantiation of the
FastICA algorithm, i.e. an algorithm for solving the signal source separation problem, with kurtosis chosen as cost
function.
Recall that the Nguyen-Regev statistical attack is composed of three steps:
1. find a linear transformation of V into an orthogonal matrix A = LV;
2. recover a good approximation of a column ±A;
3. recover an approximation of a column of ±V by multiplying by L−1.

This is actually the same overall strategy of FastICA. In both algorithms, the first step is performed by exploiting
the sample covariance matrix leakage. For the second step, the Nguyen-Regev algorithm uses a gradient descent
for minimizing a certain function associated to U(P[−1,1] (A)). Actually, the choice of parameters in [9] makes
such gradient descent coincide with the fixed-point algorithm used in FastICA, when the distribution of the sources
isU([−1, 1]).
Therefore, our approach consists of applying directly FastICA to solve the hidden linear combination problem.

Our algorithm works as follows:
1. compute a basis C of the lattice L̄x using the orthogonal lattice attack;
2. use FastICA to compute an approximation Ṽ of V.
3. compute X from the rounding of X̃ = Ṽ−1C.

78

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

Here, we only provide a heuristic analysis of such algorithm. As in Nguyen-Regev, the FastICA algorithm produces
an approximation Ṽ of V, with relative distance 𝑛−𝑐0 , using 𝑚 = 𝑛𝑐1 samples. This gives an approximation X̃ of X
with relative distance 𝑛−𝑐′ . Recall that the components of X are integers in [0, 𝐵]. Therefore, if 𝑛−𝑐′ < 1/(2𝐵), we
can recover X by rounding to the nearest integer. This shows that heuristically poly(𝑛, 𝐵) samples are sufficient.
As the Nguyen-Regev algorithm, the complexity of FastICA is polynomial in the number of samples and the

size of such vector’s coefficients. Hence, the heuristic complexity of our statistical approach is poly(𝑛, 𝐵). Recall
that the Nguyen-Stern attack from Section 5.1 has complexity exponential in 𝑛 but polynomial in log 𝐵. We do not
know how to solve the problem with complexity polynomial in both 𝑛 and log 𝐵.
The statistical learning approach based on FastICA is quite efficient in practice. For the hidden subset sum

problem (𝐵 = 1), the approach requires 𝑚 ≃ 𝑛2 samples and has space complexity O(𝑛3) only, instead of O(𝑛4) in
the multivariate approach from [3]; it is also much faster. Moreover, notice that the statistical approach described in
this section does not require to transform the samples as in Step 2 of Algorithm 2. This is because applying FastICA
allows us to manage discrete distributions, directly. We provide in Section 6.2 the result of practical experiments.

6 PRACTICAL EXPERIMENTS
We performed experiments for both the Nguyen-Stern and our statistical attack for the hidden linear combination

problem when 𝐵 = 1, i.e. when it coincides with the hidden subset sum problem, and 𝐵 = 10. To facilitate the
comparison, the modulus choice and the first step implementation follow the specifications of [3].

6.1 THE NGUYEN-STERN ATTACK
We provide the result of practical experiments running the Nguyen-Stern algorithm in the binary case (𝐵 = 1)

in Table 2, and for 𝐵 = 10 in Table 3. For the binary case, we obtain similar timings as in [3]. In both cases we
face an exponential barrier in the second step for 𝑛 > 170.

𝑛 𝑚 log 𝑞 Step 1 Step 2 Total

LLL L0 LLL L⊥x Hermite Reduction

70 140 772 3 s 1 s 1.021𝑛 LLL 1 s 6 s
90 180 1151 10 s 5 s 1.017𝑛 BKZ-10 1 s 19 s
110 220 1592 30 s 12 s 1.015𝑛 BKZ-10 3 s 50 s
130 260 2095 78 s 24 s 1.013𝑛 BKZ-20 12 s 123 s
150 300 2659 3 min 49 s 1.012𝑛 BKZ-30 135 s 7 min
170 340 3282 6 min 106 s 1.011𝑛 BKZ-30 260 min 269 min

Table 2: Running time of the Nguyen-Stern attack for 𝐵 = 1 under a 3,2 GHz Intel Core i5 processor.

𝑛 𝑚 log 𝑞 Step 1 Step 2 Total
LLL L0 LLL L⊥x Hermite Reduction

70 140 1237 7 s 4 s 1.021𝑛 LLL 1 s 12 s
90 180 1749 22 s 12 s 1.017𝑛 BKZ-10 1 s 37 s
110 220 2323 61 s 27 s 1.015𝑛 BKZ-10 2 s 96 s
130 260 2959 139 s 54 s 1.013𝑛 BKZ-20 8 s 4 min
150 300 3655 5 min 107 s 1.012𝑛 BKZ-30 3 min 12 min
170 340 4412 22 min 4 min 1.011𝑛 BKZ-30 139 min 167 min

Table 3: Running time of the Nguyen-Stern attack for 𝐵 = 10 under a 3,2 GHz Intel Core i5 processor.

6.2 STATISTICAL ATTACK
We provide in Table 4 the results of practical experiments running our statistical attack for 𝐵 = 1, and in Table

5 for 𝐵 = 10. We have used the implementation of FastICA iterative algorithm provided in the scikit-learn
package [12]. We see that for 𝐵 = 1 the FastICA algorithm at Step 2 of the attack is very efficient, as we can reach
𝑛 = 250, whereas with Nguyen-Stern we cannot solve the hidden subset-sum problem for 𝑛 > 170. In particular,
for 𝑛 = 250, FastICA takes only 76 seconds, whereas in the multivariate attack from [3], the second step takes 45
minutes.

79

Coron, J.S. & Gini, A.

For 𝐵 = 10, in our experiments the statistical attack is less efficient than Nguyen-Stern, as one must generate a
large number 𝑚 of samples in the first step. However the attack scales polynomially with 𝑛; therefore, we expect
the statistical approach to eventually outperform Nguyen-Stern for larger values of 𝑛. We provide the source code
in:

https://pastebin.com/WzGXHmpW

𝑛 𝑚 log 𝑞 Step 1: LLL Step 2: FastICA Total

70 4900 986 13 s 2 s 17 s
90 8100 1443 40 s 2 s 45 s
110 12100 1965 96 s 4 s 106 s
130 16900 2552 3 min 7 s 5 min
150 22500 3201 8 min 11 s 9 min
170 28900 3912 15 min 15 s 17 min
190 36100 4684 32 min 25 s 33 min
220 48400 5955 128 min 39 s 130 min
250 62500 7362 230 min 76 s 233 min

Table 4: Running time of our statistical attack for 𝐵 = 1 under a 3,2 GHz Intel Core i5 processor.

𝑛 𝑚 log 𝑞 Step 1: LLL Step 2: FastICA Total

70 147000 1237 4 min 27 s 6 min
90 189000 1749 9 min 50 s 12 min
110 231000 2323 17 min 71 s 21 min
130 273000 2959 31 min 98 s 36 min
150 315000 3655 66 min 139 s 73 min

Table 5: Running time of our statistical attack for 𝐵 = 10 under a 3,2 GHz Intel Core i5 processor.

7 CONCLUSION
We have described a proven polynomial-time algorithm for solving the hidden subset-sum problem, based on the

Nguyen-Stern orthogonal lattice attack [11], and on the Nguyen-Regev statistical learning attack [9]. The original
Nguyen-Stern algorithm for the hidden subset-sum problem has exponential complexity, while the multivariate
attack in [3] is heuristic polynomial-time only. We have also considered a natural generalization of the hidden
subset sum, with integer coefficients uniformly distributed between 0 and 𝐵 instead of binary. In that case the
multivariate approach from [3] does not apply, but our statistical approach can still be extended, at least heuristically,
to get polynomial-time complexity in both 𝑛 and 𝐵.
Our proven polynomial-time algorithm for solving the hidden subset-sum problem is of theoretical interest only,

as it would require a huge number of samples. For our practical experiments, we have used the FastICA algorithm,
and for the hidden subset-sum problem, we obtained at least an order of magnitude improvement in running time
for the second step, compared to the multivariate attack from [3], using a similar number of samples.

REFERENCES
[1] Victor Boyko,Marcus Peinado, and RamarathnamVenkatesan. “Speeding up discrete log and factoring based

schemes via precomputations”. In:Advances in Cryptology — EUROCRYPT’98. Ed. byKaisaNyberg. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 221–235.

[2] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”. In: Advances in Cryp-
tology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings. 2011, pp. 1–20.

80

https://pastebin.com/WzGXHmpW

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

[3] Jean-Sébastien Coron and Agnese Gini. “A Polynomial-Time Algorithm for Solving the Hidden Subset Sum
Problem”. In: Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II. Full version available
at https://eprint.iacr.org/2020/461. 2020.

[4] Matthijs J. Coster et al. “Improved Low-Density Subset Sum Algorithms”. In: Computational Complexity 2
(1992), pp. 111–128.

[5] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. “Analyzing Blockwise Lattice Algorithms Using
Dynamical Systems”. In: CRYPTO 2011. 2011.

[6] Aapo Hyvärinen and Erkki Oja. “A Fast Fixed-Point Algorithm for Independent Component Analysis”. In:
Neural Computation 9.7 (1997), pp. 1483–1492.

[7] Jeffrey C. Lagarias and Andrew M. Odlyzko. “Solving Low-Density Subset Sum Problems”. In: J. ACM
32.1 (1985), pp. 229–246.

[8] Arjen K. Lenstra, HendrikW. Lenstra, and László Lovász. “Factoring polynomials with rational coefficients”.
In: MATH. ANN 261 (1982), pp. 515–534.

[9] Phong Q. Nguyen and Oded Regev. “Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signa-
tures”. In: J. Cryptology 22.2 (2009), pp. 139–160.

[10] PhongQ.Nguyen andDamien Stehlé. “An LLLAlgorithmwithQuadratic Complexity”. In: SIAM J. Comput.
39.3 (Aug. 2009), pp. 874–903. doi: 10.1137/070705702.

[11] PhongQ.Nguyen and Jacques Stern. “TheHardness of theHiddenSubset SumProblemand ItsCryptographic
Implications”. In:Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings. 1999, pp. 31–46.

[12] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[13] Claus-Peter Schnorr. “A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms”. In: Theor.
Comput. Sci. 53 (1987), pp. 201–224.

A RANK OF LX
The lattice Lx is defined as the lattice generated by x1, . . . , x𝑛 ∈ {0, 1}𝑚 for 𝑚 ≥ 𝑛. The probability that Lx

has full rank 𝑛 is lower bounded by the probability that a random 𝑛 × 𝑛 binary matrix is invertible in F2. Let 𝑝(𝑛)
be this probability. We have:

𝑝(𝑛) = 2−𝑛
2 ·

𝑛∏
𝑘=1

(
2𝑛 − 2𝑘−1

)
=

𝑛∏
𝑖=1

(
1 − 2−𝑖

)
Namely, the first row must be non-zero, so there are 2𝑛 − 1 possibilities, and for 2 ≤ 𝑘 ≤ 𝑛 the 𝑘-th row must be
linearly independent from the first 𝑘 − 1 rows, so there are 2𝑛 − 2𝑘−1 possibilities.
Moreover, using 1 − 𝑥 ≥ exp(−2𝑥) for 0 ≤ 𝑥 ≤ 1/2, we obtain:

𝑝(𝑛) ≥
𝑛∏

𝑘=1
exp(−2 · 2−𝑘) = exp

(
𝑛−1∑︁
𝑘=0

2−𝑖
)
≥ 𝑒−2

Therefore the lattice Lx has full rank 𝑛 with at least constant probability.

B THE NGUYEN-STERN ALGORITHM
Nguyen and Stern in [11] present a lattice based algorithm for solving the hidden subset sum algorithm. In this

section we describe a straightforward generalization of the Nguyen-Stern algorithm for solving the hidden linear
combination problem. We describe this attack following the analysis of the Nguyen-Stern algorithm of [3].
Recall that in the hidden combination problem, given a modulus 𝑞 and h = (ℎ1, . . . , ℎ𝑚) ∈ Z𝑚 satisfying

h = 𝛼1x1 + 𝛼2x2 + · · · + 𝛼𝑛x𝑛 (mod 𝑞) (5)

we must recover the vector 𝜶 = (𝛼1, . . . , 𝛼𝑛) ∈ Z𝑛𝑞 and the vectors x𝑖 ∈ ([0, 𝐵] ∩ Z)𝑚. The hidden subset-sum
problem corresponds to 𝐵 = 1. The Nguyen-Stern algorithm comprises two steps:
1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the x𝑖’s.
2. From L̄x, recover the hidden vectors x𝑖’s using BKZ. From h, the x𝑖’s and 𝑞, recover the weights 𝛼𝑖 .

81

https://eprint.iacr.org/2020/461
https://doi.org/10.1137/070705702

Coron, J.S. & Gini, A.

B.1 FIRST STEP: ORTHOGONAL LATTICE ATTACK
In the first step the goal is to recover L̄x from h and 𝑞. Let L0 be the lattice of vectors orthogonal to h modulo

𝑞:
L0 B Λ⊥𝑞 (h) = {u ∈ Z𝑚 | ⟨u, h⟩ ≡ 0 (mod 𝑞) }

For any u ∈ L0, the vector
pu = (⟨u, x1⟩, . . . , ⟨u, x𝑛⟩)

is orthogonal to the vector 𝜶 modulo 𝑞, since from (5) we obtain:

⟨u, h⟩ ≡ 𝛼1⟨u, x1⟩ + · · · + 𝛼𝑛⟨u, x𝑛⟩ ≡ 0 (mod 𝑞).

Then if pu is shorter than the shortest non-zero vector orthogonal to 𝜶 modulo 𝑞, we must have pu = 0, and
therefore u ∈ L⊥x .
Therefore, the orthogonal lattice attack first obtains an LLL-reduced basis of L0, from which it extracts a

generating set for L⊥x ; subsequently, it computes the orthogonal of L⊥x obtaining L̄x. In the following we extend
the analysis of [3] to 𝐵 > 1.

Algorithm 3 Orthogonal lattice attack
Input: h, 𝑞, 𝑛, 𝐵.
Output: A basis of L̄x.
1: Compute an LLL-reduced basis u1, . . . , u𝑚 of L0.
2: Extract a generating set of u1, . . . , u𝑚−𝑛 of L⊥x .
3: Compute a basis (c1, . . . , c𝑛) of L̄x = (L⊥x)⊥.
4: return (c1, . . . , c𝑛)

The orthogonal lattice attack described in Algorithm 3 is guaranteed to succeed with good probability for
sufficiently large 𝑞. The following theorem is a generalization of [3, Theorem 1].

Theorem 5 (Theorem 4). Let 𝑚 > 𝑛. Assume that the lattice Lx has rank 𝑛. With probability at least 1/2 over the
choice of 𝜶, Algorithm 3 recovers a basis of L̄x in polynomial time, assuming that 𝑞 is a prime integer of bitsize at
least 2𝑚𝑛 log𝑚 + (𝑛 + 1)𝑛 log 𝐵. For 𝑚 = 2𝑛, the density is 𝑑 = 𝑛 log(𝐵 + 1)/log 𝑞 = O(1/(𝑛 log 𝑛)).
We denote by Λ⊥𝑞 (𝜶) the lattice of vectors orthogonal to 𝜶 = (𝛼1, . . . , 𝛼𝑛) modulo 𝑞. The proof of Theorem 5

is based on the following two lemmas:

Lemma 3. Assume that the lattice Lx has rank 𝑛. Algorithm 3 computes a basis of the lattice L̄x in polynomial
time under the condition 𝑚 > 𝑛 and

√
𝑚𝑛 · 𝐵 · 2𝑚

2 · 𝜆𝑚−𝑛
(
L⊥x

)
< 𝜆1

(
Λ⊥𝑞 (𝜶)

)
. (6)

Proof. As observed previously, for any u ∈ L0, the vector

pu = (⟨u, x1⟩, . . . , ⟨u, x𝑛⟩)

is orthogonal to the vector 𝜶 modulo 𝑞, i.e. pu ∈ Λ⊥𝑞 (𝜶). Therefore, if pu is shorter than the shortest non-zero
vector orthogonal to 𝜶 modulo 𝑞, we must have pu = 0, and consequently u ∈ L⊥x . Thus, a sufficient condition for
u ∈ L⊥x is ∥pu∥ < 𝜆1

(
Λ⊥𝑞 (𝜶)

)
.

Since ∥pu∥ ≤
√
𝑚𝑛𝐵∥u∥, this implies that given any u ∈ L0 we must have u ∈ L⊥x if

√
𝑚𝑛𝐵∥u∥ < 𝜆1

(
Λ⊥𝑞 (𝜶)

)
. (7)

Now, the lattice L0 is full rank of dimension 𝑚 since it contains 𝑞Z𝑚. Therefore, we can consider u1, . . . , u𝑚

an LLL-reduced basis of L0. From Lemma 1, for each 𝑗 ≤ 𝑚 − 𝑛 we have

∥u 𝑗 ∥ ≤ 2
𝑚
2 · 𝜆𝑚−𝑛 (L0) ≤ 2

𝑚
2 · 𝜆𝑚−𝑛

(
L⊥x

)
(8)

since L⊥x is a sublattice of L0 of dimension 𝑚 − 𝑛. Combining (8) with (7), when
√
𝑚𝑛 · 𝐵 · 2𝑚

2 · 𝜆𝑚−𝑛
(
L⊥x

)
< 𝜆1

(
Λ⊥𝑞 (𝜶)

)
the vectors u1, . . . , u𝑚−𝑛 must belong to L⊥x . This means that ⟨u1, . . . , u𝑚−𝑛⟩ is a full rank sublattice of L⊥x , and
therefore ⟨u1, . . . , u𝑚−𝑛⟩⊥ = L̄x. Finally, Algorithm 3 is polynomial-time, because both the LLL reduction step of
L0 and the LLL-based orthogonal computation of L⊥x are polynomial-time. □

82

Provably Solving the Hidden Subset Sum Problem via Statistical Learning

We recall [3, Lemma 3]:

Lemma 4. Let 𝑞 be a prime. Then with probability at least 1/2 over the choice of 𝜶, we have 𝜆1 (Λ⊥𝑞 (𝜶)) ≥ 𝑞1/𝑛/4.

Proof of Theorem 5. In order to apply Lemma 3, we first derive an upper-bound on 𝜆𝑚−𝑛
(
L⊥x

)
. The lattice L⊥x has

dimension 𝑚 − 𝑛, therefore by Minkowski’s second theorem we have

𝜆𝑚−𝑛
(
L⊥x

)
≤ √𝛾𝑚−𝑛𝑚−𝑛 det

(
L⊥x

)
≤ 𝑚𝑚/2 det

(
L⊥x

)
. (9)

From detL⊥x = det L̄x ≤ detLx and Hadamard’s inequality with ∥x𝑖 ∥ ≤ 𝐵
√
𝑚, we obtain:

detL⊥x ≤ detLx ≤
𝑛∏
𝑖=1
∥x𝑖 ∥ ≤ 𝑚𝑛/2𝐵𝑛 (10)

which gives the following upper-bound on 𝜆𝑚−𝑛
(
L⊥x

)
:

𝜆𝑚−𝑛
(
L⊥x

)
≤ 𝑚𝑚/2𝑚𝑛/2𝐵𝑛 ≤ 𝑚𝑚𝐵𝑛.

Thus, by Lemma 3, we can recover a basis of L̄x when

√
𝑚𝑛 · 2𝑚

2 · 𝑚𝑚 · 𝐵𝑛+1 < 𝜆1

(
Λ⊥𝑞 (𝜶)

)
.

By Lemma 4, this implies that, with probability at least 1/2 over the choice of 𝜶, we can recover the hidden lattice
L̄x if: √

𝑚𝑛 · 2𝑚
2 · 𝑚𝑚 · 𝐵𝑛+1 < 𝑞1/𝑛/4.

For 𝑚 > 𝑛 ≥ 4, therefore it suffices to have log 𝑞 ≥ 2𝑚𝑛 log𝑚 + (𝑛 + 1)𝑛 log 𝐵. □

Heuristic analysis. In practice we can use a smaller value for the modulus 𝑞 than predicted by Theorem 5. As
in [3], we derive a heuristic size for the modulus 𝑞, using an approximation of the terms in condition (6). We
start with the term 𝜆𝑚−𝑛

(
L⊥x

)
. For a "random lattice" we expect the lattice minima to be balanced, and therefore

𝜆𝑚−𝑛
(
L⊥x

)
to be roughly equal to 𝜆1

(
L⊥x

)
. Therefore we use the heuristic approximation:

𝜆𝑚−𝑛
(
L⊥x

)
≃ √𝛾𝑚−𝑛 det(L⊥x)

1
𝑚−𝑛 .

From (10) we obtain:
𝜆𝑚−𝑛

(
L⊥x

)
⪅
√
𝛾𝑚−𝑛𝐵

𝑛
𝑚−𝑛𝑚

𝑛
2(𝑚−𝑛) . (11)

For the term 𝜆1

(
Λ⊥𝑞 (𝜶)

)
, using the Gaussian heuristic, we expect:

𝜆1

(
Λ⊥𝑞 (𝜶)

)
≃ √𝛾𝑛𝑞

1
𝑛 .

Finally the 2𝑚/2 factor in (6) corresponds to the LLL Hermite factor with 𝛿 = 3/4; in practice we will use 𝛿 = 0.99,
and we denote by 2 𝜄𝑚 the corresponding LLL Hermite factor. Hence from (6) we obtain the heuristic condition:

√
𝑚𝑛 · 𝐵 · 2 𝜄·𝑚 · √𝛾𝑚−𝑛 · 𝐵

𝑛
𝑚−𝑛 · 𝑚

𝑛
2(𝑚−𝑛) <

√
𝛾𝑛𝑞

1/𝑛.

This gives the condition:
2 𝜄·𝑚√𝛾𝑚−𝑛 · 𝑛 · 𝐵

𝑚
𝑚−𝑛 · 𝑚

𝑚
2(𝑚−𝑛) <

√
𝛾𝑛𝑞

1/𝑛

which gives:
log 𝑞 > 𝜄 · 𝑚 · 𝑛 + 𝑛

2
log(𝑛 · 𝛾𝑚−𝑛/𝛾𝑛) +

𝑚𝑛

2(𝑚 − 𝑛) log𝑚 + 𝑛 · 𝑚
𝑚 − 𝑛 log 𝐵 (12)

For 𝑚 = 2𝑛 we obtain the condition:

log 𝑞 > 2𝜄 · 𝑛2 + 3𝑛
2

log 𝑛 + 𝑛 + 2𝑛 log 𝐵 (13)

In practice for our experiments we can use 𝑚 = 2𝑛 and log 𝑞 ≃ 2𝜄𝑛2 + 𝑛 log 𝑛 + 2𝑛 log 𝐵 with 𝜄 = 0.035.

83

Coron, J.S. & Gini, A.

B.2 EXTENDED NGUYEN-STERN ATTACK: SECOND STEP
The vectors x𝑖 ∈ Z𝑚 have coordinates distributed uniformly over the set {0, . . . , 𝐵}. Then the expected value

of ∥x𝑖 ∥2 is 𝑚 · E[𝑥2] = 𝑚 · 𝜇′2,𝐵 = 𝑚 · 𝐵(2𝐵 + 1)/6 for 𝑥 any coordinate. This implies, by Jensen inequality, that
we expect the norm of the x𝑖’s to be smaller than

√︁
𝑚𝐵(2𝐵 + 1)/6. In addition, the expected value of the norm of

the difference between some x𝑖 and x 𝑗 is

E[∥x𝑖 − x 𝑗 ∥] ≤
√︁
𝑚 · 2 Var(𝑥) =

√︃
𝑚 · 2𝜎2

𝐵
=

√︂
𝑚
𝐵(𝐵 + 2)

6
.

Notice that these bounds on the x𝑖 and x𝑖 − x 𝑗 for 𝑖 ≠ 𝑗 coincide when 𝐵 = 1. In general, we have that both these
classes of vectors are short vectors of Lx.
Hence, after BKZ reduction of the first step’s output basis C with a large enough block-size 𝛽, we expect that

each vector of the basis vectors c1, . . . , c𝑛 is either equal to ±x𝑖 , or equal to a combination of the form x𝑖 − x 𝑗 for
𝑖 ≠ 𝑗 .
Therefore, first we can collect in a set 𝐿 the ±c𝑖’s whose coefficients are between 0 and 𝐵, i.e. the set of

candidate target vectors. Notice that 𝐿 ≠ ∅ since at least one the c𝑖 must be equal to one of the ±x 𝑗 ’s; this is
because, otherwise, the vector of all ones would belong to the kernel of the transitionmatrixM between (x1, . . . , x𝑛)
and (c1, . . . , c𝑛), i.e. the latter would not be a basis. Without loss of generality, we can suppose 𝐿 = {c1, . . . , c𝑘}
and

M =

(
I𝑘 0

A𝑘 M𝑛−𝑘

)
If 𝑘 < 𝑛, for 𝑗 = 𝑘 + 1, . . . , 𝑛 and for any v in 𝐿 we compute c = ±c 𝑗 − v, and check if either c or −c are suitable
to be added to the set 𝐿. Again, we must find at least a new vector, otherwise the matrixM𝑛−𝑘 would be singular.
Hence, iterating this reasoning and updating 𝐿 at each step, we recover all the rows of X.
The number of controls for round is O(𝑛 − #𝐿). Therefore, while staying in the lattice Lx we can recover each

of the original vectors x𝑖 from the basis vectors C, by O(𝑛3) tests.

BKZ block-size and running time. We can construct a "generic" short vector in Lx as a binary combination of
vectors of the form x𝑖 − x 𝑗 . Namely, consider z =

∑𝑛
𝑘=1 𝑏𝑘z𝑘 with 𝑏 𝑗 ∈ {0, 1} and z𝑘 a x𝑖 − x 𝑗 . The variance of

any component of z is
Var(𝑧𝑖) =

∑︁
𝑘

Var(𝑏 𝑗) Var(𝑧𝑘𝑖) =
𝑛

2
𝜎2
𝐵,

where 𝜎2
𝐵
is the variance of the uniform distribution over {0, . . . , 𝐵}. Thus, the norm of the resulting vector will

be about
√︃
𝑚𝑛𝜎2

𝐵
/2.

Then heuristically the gap between these generic vectors and the shortest vectors is:√︁
𝑚𝑛𝐵(𝐵 + 2)/24√︁
𝑚𝐵(2𝐵 + 1)/6

=
1
2

√︂
𝑛
𝐵 + 2

2𝐵 + 1
.

Therefore, in order to recover the shortest vectors, the BKZ approximation factor 2 𝜄·𝑛 should be less than such gap,
namely:

2 𝜄·𝑛 ≤ 1
2

√︂
𝑛
𝐵 + 2

2𝐵 + 1
≃ 1

2

√︂
𝑛

2
(14)

which gives 𝜄 ≤ (log(𝑛/8))/(2𝑛). Achieving an Hermite factor of 2 𝜄𝑛 heuristically requires at least 2Ω(1/ 𝜄) time,
by using BKZ reduction with block-size 𝛽 = 𝜔(1/𝜄) [5]. This implies that to satisfy (14), we should consider
𝛽 = 𝜔(𝑛/log 𝑛). Namely, the running time of the generalized Nguyen-Stern algorithm results poly(𝑛, log 𝐵) ·
2Ω(𝑛/log 𝑛) = 2Ω(𝑛/log 𝑛) · logO(1) 𝐵.

84

	Introduction
	Background on lattices
	The Nguyen-Stern algorithm
	First step: orthogonal lattice attack
	Second step: the BKZ approach

	Our statistical algorithm for hidden subset-sums
	From discrete to continuous
	The Nguyen-Regev learning technique
	Our algorithm based on statistical learning

	The hidden linear combination problem
	Extending the Nguyen-Stern algorithm
	Our statistical learning approach

	Practical experiments
	The Nguyen-Stern attack
	Statistical attack

	Conclusion
	Rank of Lx
	The Nguyen-Stern algorithm
	First step: orthogonal lattice attack
	Extended Nguyen-Stern attack: second step

