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Abstract Coppersmith’s method for finding small solutions of multivariable congruences uses lattice techniques to
find sufficiently many algebraically independent polynomials that must vanish on such solutions. We apply adelic
capacity theory in the case of two variable linear congruences to determine when there is a second such auxiliary
polynomial given one such polynomial. We show that in a positive proportion of cases, no such second polynomial
exists, while in a different positive proportion one does exist. This has applications to learning with errors and to
bounding the number of small solutions.
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1 INTRODUCTION
Coppersmith’s method [13] uses lattice basis reduction to find small solutions of polynomial congruences.

This method and its variants have been used to solve a number of problems across cryptography, including attacks
against low public exponent RSA [13], demonstrating the insecurity of small private exponent RSA [5], factoring
with partial knowledge [13], and the approximate integer common divisor problem [17, 27, 12].

This paper is the second in a series relating Coppersmith’s method to adelic capacity theory. In the most
common approach to Coppersmith’s method, which is the perspective we adopt in this paper, one constructs an
auxiliary polynomial that is guaranteed by construction to have the desired solutions as roots. Using adelic capacity
theory, we showed in our first paper that in the univariate case, Coppersmith’s constructive bounds are tight: Above
the bound, no auxiliary polynomial of the form constructed in the algorithm can exist.

Coppersmith’s method can also be applied to find solutions to multivariate polynomials or systems of polyno-
mials. Unlike the univariate case, which is a fully rigorous method, the method used in the existing cryptanalytic
literature to address the multivariate case is heuristic. In order to solve an m-variable system, one searches for m
(or more) suitable auxiliary polynomials in an explicitly constructed lattice, and then solves the system of auxiliary
polynomials to find the possible roots. In order for this method to work, one needs to find m suitable algebraically
independent polynomials constructed through the lattice. The existing constructions are unable to guarantee the
algebraic independence of multiple auxiliary polynomials, and thus the applications of this method all rely on a
heuristic assumption of algebraic independence.

In this paper, we apply adelic capacity theory to two-variable linear polynomial congruences. This is the
simplest case involving multivariate polynomials, and it includes the hidden number problem and ring learning
with errors as special cases. The analysis turns out to already be quite involved, and we cannot apply existing
results from adelic capacity theory in a black-box way.

It is always possible to find at least one auxiliary function that is linear from the construction in Coppersmith’s
method. We show that this function can be used to determine rigorously whether Coppersmith’s method can
succeed. That is, we show that one can use capacity theory to determine from the first auxiliary function whether
there will be a second function that is algebraically independent of the first. This is because the zero locus of the
first function is an affine line, to which one can apply the work on capacity theory by Cantor [7] and Rumely [25].
As a consequence of this approach, we will show that the heuristic assumption of algebraic independence does not
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hold in general for all problem instances. In particular, we give an infinite family of examples for which there can
be no pair of algebraically independent functions of any degree in Coppersmith’s method. However, we have a
method for determining rigorously whether such a pair exists in a given case. We also give an infinite family of
examples for which such a pair does exist.

If one is looking for small integral solutions of linear polynomial congruences in a particular number field, one
can apply lattice techniques directly, without constructing auxiliary functions. Coppersmith’s method pertains to
finding all such solutions in all number fields, i.e. in the ring of all algebraic integers. In the case of homogenous
congruences, one solution produces infinitely many by multiplying all the variables by an arbitrary root of unity.
Thus in this case, there are either infinitely many solutions in the ring of all algebraic integers, or no solutions at all.
For this reason, if one can use capacity theoretic arguments to show that there are only finitely many solutions, one
knows that in fact there are no solutions at all. This leads in §1.2 and §6 to strong bounds on the number of solutions
of inhomogeneous congruences as well. In particular, we show in §6 how this approach leads to a computable
sufficient criterion for there to exist at most one solution in any number field to a hidden number problem involving
two linear congruences.

Our methods amount to giving effective upper and lower bounds to various finite morphism capacities in
multivariable capacity theory (see [11]). This is the first time to our knowledge that multivariable capacity theory
has been applied to cryptography. For a discussion of how one variable capacity theory pertains to Coppersmith’s
method, see [10].
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1.1 THE HIDDEN NUMBER PROBLEM AND RING LEARNING WITH ERRORS
In cryptographic applications, the hidden number problem is defined over the integers as follows. In the usual

formulation, there is a public integer modulus n. One is given many samples {(ci, di)}i=0 in which ci, di ∈ Z/n.
One is told that there is a secret residue class s mod n such that each residue class cis − di is represented by an
unknown but “small" integer xi ∈ Z. The problem is to find s mod n from {(ci, di)}i=0. One can reformulate the
problem over an arbitrary commutative ring R by replacing nZ by an ideal I of R provided one has an appropriate
notion of the size of elements of R.

Returning to R = Z and I = nZ, note that each sample satisfies the linear relation

xi − cis + di ≡ 0 mod n

For each relation, the xi are unknown and small, and the value s is unknown. Suppose c0 is relatively prime to n,
so that c0c′0 ≡ 1 mod n for a readily computable integer c′0. The above congruence for i = 0 then gives

s ≡ c′0(x0 + d0) mod n (1.1)

Substituting this into the congruences for i = 1, . . . ,m then gives a new system of congruences

xi + ti x0 + ai ≡ 0 mod n for 1 ≤ i ≤ m (1.2)

in small unknowns xi and x0, where ti = −cic′0 and ai = di −cic′0d0 are computable from the given data. Because of
(1.1), we can reformulate the problem of finding s mod n as finding a solution {xi}mi=0 to the system of congruences
(1.2) with appropriate size bounds on all of the xi .

The “usual” method used to solve this problem comes from Boneh and Venkatesan [6], and consists of solving
a closest vector problem where the solution vector corresponds to the desired solution to the problem. In this
paper we consider a dual construction, corresponding to Howgrave-Graham’s reformulation of Coppersmith’s
method [16, 14]: Using lattice methods, we try to construct polynomials in the variables {xi}mi=0 which must vanish
on all solutions, and whose common zero locus is finite.

Boneh and Venkatesan give bounds for which with high probability there is a unique solution when the ti
are generated uniformly at random modulo n. In practical applications of this method, one is dealing with fixed
parameters. In these cases one can empirically measure the probability of success [1], but a rigorous analysis of
the number of possible solutions has not been done in the literature.

In the ring learning with errors problem [20], one has a public commutative ring R, typically an order in the
ring of integers OF of a number field F, and a secret s ∈ R. The input to the problem is a set of samples {(ci, di)}mi=0
of pairs of elements of R/I. One is told that there is a secret residue class s in R/I for which di is congruent to
ci · s+ ei modulo a given ideal I ⊂ R, where the ei ∈ R are unknown errors that are small in some sense. Typically
the ei must be “short" relative to the complex embeddings of R. One would like to recover s mod I from the data
{ci, di}mi=0. This is equivalent to the hidden number problem over R on setting xi = −ei .
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1.2 SOLUTION COUNTING AND CAPACITY THEORY
The problem that we consider in this paper unifies both of the above problems, but we limit ourselves to the

case of two samples. As noted above, one can eliminate the unknown secret s and obtain a single two-variable
linear polynomial where the desired solution for both variables is “small”. For a given solution, one can then use
the original polynomials to solve for a unique s determined by that solution.

One basic question is: How unique is s? When m + 1 = 2, we will show in §6 that there is at most one s when
the capacity associated to an adelic set arising from the lattice construction is less than 1.

A peculiarity of this approach is that in the ring-LWE case, we can actually bound the number of solutions in
all number fields, and not just in a particular F.

We will now describe the three related problems we will study. To describe these we need only the following
notions from algebraic number theory: The ring of integers OF of a number field F, ideals of OF , the discriminant
DF/Q of F over Q, the numbers r1(F) and r2(F) of real embeddings and pairs of complex embeddings of F, and
the integral closure Z of OF in an algebraic closure Q of Q. For background on these concepts, see [26, Chap. III,
IV.2] and [18, Chapters I and III].

Let J be a non-zero ideal of the ring of integers OF of a number field F. We will suppose a and t are elements
of OF such that J + tOF = OF , so that t projects to a unit of OF/J if J , OF .

Problem 1.1. Let F, J , a and t be fixed and satisfy the above hypotheses. Let X and Y be positive real numbers.
Give a finite time algorithm for listing all x, y ∈ Z such that

1. x + ty + a ≡ 0 mod JZ and
2. For every ring embedding λ : Z→ C, the images x ′ and y′ of x and y satisfy |x ′ | ≤ X and |y′ | ≤ Y .

Problem 1.2. Given F, J , a, t, X and Y as in Problem 1.1, are there only finitely many algebraic integers x, y ∈ Z
having the properties in Problem 1.1?

Problem 1.3. Construct non-zero polynomials g(x,y) ∈ F[x,y] with the following properties:
1. For all x ′, y′ ∈ Z such that x ′ + ty′ + a ≡ 0 mod JZ the value g(x ′, y′) lies in Z.
2. Suppose x ′, y′ ∈ C and that |x ′ | ≤ X and |y′ | ≤ Y . Then |λ(g)(x ′, y′)| < 1 for all embeddings λ : F → C,

where λ(g)(x,y) ∈ C[x,y] is the image of g(x,y) under the homomorphism F[x,y] → C[x,y] induced by λ.

Note that Problem 1.1 is a constrained hidden numbers problem of the kind in equation (1.2) over R = Z when
nZ is replaced by I = JZ and we set m = 1, t = t1, a = a1, x0 = y and x1 = x. Thus a hidden number problem
over this R with m + 1 = 2 samples leads to Problem 1.1. If in the hidden number problem we required the residue
class s mod I to also be represented by a “small" element s of R, then we could need only 1 sample. This is because
c0 · s + e0 = d0 mod I has the form of Problem 1.1 on setting y = s and e0 = x.

Coppersmith’s method relates these problems in the following way.
Suppose {gi(x,y)}i is a family of polynomials which each have the properties in Problem 1.3. Let x, y ∈ Z have

the properties in Problem 1.2. Then gi(x, y) will be an algebraic integer. Every embedding of gi(x, y) into C lies
in R and has the form λ(gi)(x ′, y′) for some conjugates x ′ = λ(x) of x and y′ = λ(y) of y and some embedding
λ : Z → C. Since |λ(gi)(x ′, y′)| < 1 for all such (x ′, y′), the product formula (see [18, p. 99]) or an easy norm
argument shows gi(x, y) = 0.

Suppose now that the common zero locus of the family {gi(x,y)}i is finite. It follows that there are finitely
x, y ∈ Z as in Problems 1.1 and 1.2. If one has an algorithm for producing a family of {gi(x,y)}i with all of these
properties, as well as for finding their finite set of common zeros, one has an algorithm for solving Problem 1.1.

Suppose, to the contrary, that there are infinitely many x, y ∈ Z as in Problem 1.2. Then the common zero locus
of any family {gi(x,y)}i of the above kind cannot be finite, and Coppersmith’s method cannot lead to a finite time
algorithm for finding all the x, y ∈ Z having the properties in Problem 1.1.

We can now state our main result in qualitative terms; a more quantitative version is given in Theorem 5.4. Let
r1(F) and r2(F) be the number of real and complex places of F, and let DF/Q be the disciminant of F.

Theorem 1.4. Suppose X > 0 and Y > 1/3 satisfy the inequality

(π/2)3r2(F) · 3−3[F :Q] · |DF/Q |
−3/2 · NormF/Q(J) > (XY )[F :Q] (1.3)

There exists a non-zero linear function g1(x,y) = τx + γy + δ ∈ F[x,y] with the properties in Problem 1.3. Given
any such g1(x,y), there is a procedure for determining which of the following alternatives hold:

1. Suppose we decrease both X and Y by arbitrarily small non-zero amounts. Then there is a polynomial
g(x,y) ∈ F[x,y] for which the conditions in Problem 1.3 hold for which the common zero locus of g(x,y) and
g1(x,y) is finite. Such a g(x,y) leads to a finite time algorithm for finding all x, y ∈ Z as in Problem 1.1 for
the new values of X and Y .
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2. Suppose we increase both X and Y by arbitrarily small non-zero amounts. Then for these new values of X
and Y , all polynomials g(x,y) ∈ F[x,y] of any degree having the properties in Problem 1.3 are divisible
by g1(x,y). There are infinitely many x, y ∈ Z as in Problem 1.2 for the new values of X and Y , and thus
Coppersmith’s method in the above form cannot be used to solve Problem 1.1.

One of these alternatives must hold, and they are not mutually exclusive.

We show in Theorem 5.4 that the case in which both alternatives (1) and (2) occur is when a certain adelic
capacity is exactly equal to 1. We construct in Theorem 5.10 infinitely many examples in which option (1) occurs
but (2) does not, and infinitely many other examples in which option (2) occurs but (1) does not. For these examples,
F = Q, J = pZ for a prime p of increasing size and X = Y = c

√
p for a fixed positive constant c. We show that

each of options (1) and (2) occur for a positive proportion (as p → ∞) of pairs of t and a in Z/p for which t is
prime to p.

The methods in this paper lead to explicit results for various families of two variable congruences via an explicit
computation of capacities. Here is one example.

Theorem 1.5. Let F be an imaginary quadratic field and let | | be the Euclidean absolute value on F associated to
a complex embedding of F. Suppose a, t ∈ OF are nonzero and aOF + tOF = OF . Let q be a rational prime such
that 3|a| < q, and suppose X = |a| and Y = |a|/|t |. We can take

g1(x,y) =
x + ty + a

q
∈ F[x,y].

Alternative (1) of Theorem 1.4 holds if

Y <
8

3
√

3
= 1.5396...

while alternative (2) of Theorem 1.4 holds if

Y >
8

3
√

3
.

This example shows that when one chooses X andY appropriately, one has an obvious choice of a first auxiliary
function. Given such choice, there is a procedure for computing a capacity that determines which alternative of
Theorem 1.4 holds in terms of a and t. In the example, small ratios |a|/|t | lead to an effective finiteness result,
while large values |a|/|t | lead to there being an infinite number of solutions (x, y) ∈ Z2 of Problem 1.1 so that
Coppersmith’s method cannot be applied. The values X = |a| andY = |a|/|t | and the bound 3|a| < q arise naturally
from the fact that then the three terms of x ′ + ty′ + a each have absolute values bounded by |a| and the sum has
absolute value less than q whenever x ′ and y′ are complex numbers with |x ′ | ≤ X and |y′ | ≤ Y .

In §6, we consider bounds on the number of pairs (x, y) as in Problem 1.3 when case (1) of Theorem 1.4 occurs.
When a capacity associated to X and Y is sufficiently small, we show in Theorem 6.1 that there is at most one pair
(x, y) with the properties in Problem 1.1. This relies on the fact that in the special case when a = 0, multiplying
both x and y by a root of unity leads to another solution. Therefore when a = 0, either one has no solutions or an
infinite number. Because of this, if one can show there are only finitely many solutions via capacity theory when
a = 0, there in fact can be no solutions at all. This fact leads to another phenomenon, namely that when a = 0,
a small solution to a linear homogeneous congruence prevents the existence of solutions which have uniformly
smaller archimedean absolute values. We state one example here: a more general result is shown in Theorem 6.3.

Theorem 1.6. Suppose n is is a positive integer, J = nOF , a = 0 and XY ≤ n/2. Suppose (x0, y0) is a pair
of algebraic integers with the properties stated for x and y in Problem 1.1. Assume in addition that x0, y0 and n
are coprime in the sense that no pair of these numbers is contained in a proper ideal of OF . Then there is no
non-zero pair (x1, y1) of algebraic integers having the properties in Problem 1.1 for which the following is true:
|λ(x1)| ≤ |λ(x0)| and |λ(y1)| ≤ |λ(y0)| for all embeddings λ : Z→ C with strict inequality holding for at least one
of x or y for at least one λ.

2 RELATED RESULTS ON COPPERSMITH’S METHOD
In this section we discuss some literature pertaining to Coppersmith’s method that pertains to this paper. In

[13] and its references, Coppersmith considered monic polynomials f (x) ∈ Z[x] of degree δ and a modulus N .
He gave an algorithm that is polynomial time in log N and 2δ for finding all integers x such that f (x) ≡ 0 mod
N and |x | < N1/δ . The strategy is to use the LLL algorithm to produce a polynomial h(x) ∈ Q[x] such that
h(x) = 0 for all integers x with these properties. Coppersmith also considered irreducible two variable polynomials
p(x,y) =

∑
i, j pi jxiyj ∈ Z[x,y]. Suppose X,Y > 0 are given and that W = maxi j |pi j |X iY j . Coppersmith gave an
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algorithm for finding an integer solution (x, y) of p(x, y) = 0 such that |x | ≤ X and |y | ≤ Y , if one exists, provided
that XY < W3/(2δ). The strategy was to produce a polynomial h(x,y) ∈ Q[x,y] not divisible by p(x,y) such that
h(x, y) = 0 for all integers x and y as above. Since p(x,y) was assumed to be irreducible, the common zero locus of
h(x,y) and p(x,y) is finite. Coppersmith also pointed out in [13] that the method of producing auxiliary functions
which must vanish at suitably small solutions of diophantine equalities or congruences can be applied to more
general systems of polynomial equations in many variables. There is by now a substantial literature on this problem;
see, for example, [21], [24] and their references. Without attempting to review this literature, we will mention here
a few specific results.

The paper [23] by May and Ritzenhofen concerns the problem of finding all small integer solutions of systems
of one variable polynomial congruences modulo a set of mutually co-prime moduli. The strategy is to show this is
equivalent to finding all small solutions of a different congruence involving only one polynomial in one variable.
Following an observation by Coppersmith in [14], the authors note that one cannot in general improve the upper
bound |x | < N1/δ to |x | < N1/δ+ε for ε > 0 in Coppermith’s original theorem due to the fact that that the number
of solutions may then become exponential in N . This will certainly be the case when f (x) = xδ and N = pδ for
some prime p, for example.

A central question has been to determine when the following heuristic holds. Once the geometry of numbers
applied to suitable convex symmetric sets of polynomials produces one auxiliary polynomial that must vanish on
the desired solution, will there be sufficiently many auxiliary polynomials in a slightly larger convex set of this kind
which are algebraically independent? The common zero locus of this larger collection of polynomials will then be
finite.

The paper [2] begins with a discussion of experiments by various authors to test the above heuristic. It then
develops a sufficient condition for Coppersmith’s method to succeed in finding three algebraically independent
auxiliary polynomials when one applies it to find small integral zeroes of a polynomial in three variables. This
built on work of Bauer in [3] that constructed three variable examples in which the heuristic definitely fails. Some
further examples in which the heuristic fails for bivariate polynomials over the integers are discussed in [4] and
[22]. Experimental evidence both for and against the heuristic is discussed in [22]. Note in particular the discussion
after Figure 3 of [22] of situations in which the heuristic did not hold experimentally.

In [10] we showed that for one variable polynomial congruences of the kind Coppersmith originally considered,
there are no auxiliary polynomials of the kind his method requires if one replaces the bound |x | < N1/δ by
|x | < N1/δ+ε for some ε > 0. This is because the capacity theory on curves discussed in the next section shows that
there are infinitely many solutions of the same congruence in the ring of all algebraic integers whose conjugates all
lie in the disk of radius N1/δ+ε . All such algebraic integers would have to be a zero of an auxiliary polynomial of
the kind used in Coppersmith’s method. Theorem 1.4 of this paper shows how capacity theory can give a necessary
and sufficient condition for the above heuristic to hold in the case of two variable linear polynomial congruences. In
this case, the heuristic holds for a positive proportion of the possible initial data, and it fails for a different positive
proportion of this data.

3 BACKGROUND ON CAPACITY THEORY
In [10, Section 3] there is a review of the completions of a number field and of capacity theory for the projective

line. This material is essential for the proofs in this paper, and we won’t repeat it here. Instead we will give a brief
overview of the capacity theory on curves developed in [7] and [25]. In fact, we will only need the case of the
projective line, but an overview of the theory may still be helpful. We also discuss some explicit techniques for
computing capacities that we need in this paper.

For background on curves over fields, see [15, Chap. 1]. The points of a curve C defined over F that lie in an
extension field L of F are simply the set C(L) of solutions in L of the equations defining C. The function field F(C)
of C over F is the set of functions f that are well defined off a finite set of points of C and that are the restriction
to C of ratios of homogeneous polynomials of the same degree with coefficients in F when we embed C into a
sufficiently large projective space containing C. The set of points of C where f is not defined is the set of poles of
f , and when C is a so-called regular curve, one can assign a well defined order to each of these poles.

Suppose now that F is a number field. The first application we will make of capacity theory on curves C over
F is to show the existence of non-zero functions f ∈ F(C) with two properties. First, the poles of f should lie
in a specified finite subset of points of C over an algebraic closure F of F. Second, f should have boundedness
properties on specified subsets of C(L) as L varies over various extensions of F. The L we consider will either be
the complex numbers C or a completion Cp of the algebraic closures of p-adic fields. For background on p-adic
fields, see [10, Section 3.1] and [12, Chap. II]. When L = C, the boundedness we seek is that for each embedding
of F into C, one has | f (z)| < 1 when z lies in a specified subset of the points C(C). Here the specified subset can
depend on the embedding, and f (z) is the complex number that results from embedding F into C and evaluating

15



Chinburg, T. & Hemenway Falk, B.& Heninger, N. & Scherr, Z.

the resulting function at z. When L is Cp one proceeds in the same way using the embeddings of F into Cp and a
canonical real valued absolute value | |p on Cp . The collection of subsets for L varying as above is called an adelic
subset, and this must satisfy various constraints relative to the set of poles that are allowed for f . When an f of
the above kind exists, one can use the product formula (see [18, p. 99]) to show that all points of C(L) that have all
of their conjugates in the adelic set in question must be zeros of f . In particular, there are only finitely many such
points.

The second application we make of capacity theory is to show that there are in fact infinitely many points of
C(F) that have all of their Galois conjugates over F lying in a specified adelic set. In this case, there can be no
function f as above. It was a remarkable discovery going back to the original work of Fekete and Szegö that there
is a single real number associated to an adelic set and a collection of allowed poles, called the capacity of this pair,
that essentially distinguishes the two cases, apart from boundary cases in which the capacity equals exactly 1. The
work of Fekete and Szegö was generalized from subsets of C to adelic subsets of the projective line by Cantor [7].
Rumely then generalized Cantors work to arbitrary smooth projective curves over a global field (including the case
of number fields) in [25].

There are (at least) two distinct ways of trying to produce functions f of the above kind. The first approach,
due to Cantor and then generalized by Rumely, is to consider where the zeros of f should lie, and what the orders
of the poles of f should be, in order to achieve the desired boundedness properties. This leads to questions in
potential theory and game theory. Potential theory enters into this because the logarithm of the absolute value of f
at points in specified subsets of C(C) or C(Cp) involves terms that are well approximated by the potential energy
of charge distributions associated to the zeros of f . Game theory becomes useful in deciding the orders of the
poles of f at each of the elements of the finite set at which poles are allowed. The approach via potential theory
and game theory is very amenable to computation. The optimal distribution of zeros of f arises as an equilibrium
distribution minimizing potential energy, while the optimal distribution of poles can be studied using classical
two-person multi-option games. We will use this method in §5 to compute various relevant capacities.

An entirely different approach to constructing f arises from the geometry of numbers. One shows that the
capacity of an adelic set relative to an allowed set of poles measures the asymptotic rate of growth of a convex
symmetric set of adelically defined functions. If this growth rate is sufficiently large, then a Minkowski argument
shows that there must in fact be a nonzero element of F(C) that lies in this adelic set, and this f has the required
boundedness properties. Depending on the adelic set, one can often translate the problem of finding such an f
explicitly to that of finding a small non-zero point of a lattice, so that the LLL algorithm and its generalizations
can be applied. This was in fact the approach of Coppersmith [13, 14] before the connection with capacity theory
was noticed in [10]. By contrast, to construct f explicitly using potential theory and game theory requires delicate
arguments showing that there is in fact a rational function in F(C) whose zero locus is sufficiently close to various
equilibrium distributions and whose poles track the results of a game theoretic computation.

The Minkowski approach has the virtue that it may be applied to higher dimensional varieties as well (see
[9], [19], [11] and [8]). However, this produces only one useful auxiliary function. As discussed in the previous
section, various papers (see [21]) have proposed the heuristic that in natural cases, once there is one useful auxiliary
function, there will be enough others that are algebraically independent to be able to show finiteness of the set of
global points of a variety satisfying various constraints. We develop here a systematic approach in dimension two
for determining when the heuristic does or does not apply by using the first auxiliary function to reduce to a case
that can be studied definitively using capacity theory on curves.

4 CONSTRUCTING ONE AUXILIARY FUNCTION
It is well known that the existence of one function of the kind in Problem 1.3 for sufficiently small positive

values of X and Y is a consequence of Minkowski’s theorem:

Theorem 4.1. Suppose X > 0 and Y > 1/3 satisfy the inequality (1.3). There exists a a polynomial g1(x,y) =
b1x + b2y + b3 ∈ J

−1 · OF [x,y] with the following properties:
i. For all embeddings λ : F → C one has

|λ(b1)| < 1/(3X), |λ(b2)| < 1/(3Y ), and |λ(b3)| < 1/3.

ii. g1(x, y) = 0 for all pairs of algebraic integers (x, y) as in Problem 1.2.
iii. b1 , 0 and g1(x,y) ≡ b1(x + ty + a) mod OF [x,y]

All such g1(x,y) have the properties in Problem 1.3.

Proof. Let RF = R ⊗Q F = ⊕v∈M∞Fv where M∞ is the set of archimedean places of F . Give RF the Euclidean
norm resulting from the usual Euclidean norms | |v on the Fv . (Note that the normalized absolute value on Fv is
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| |
[Fv :R]
v .) Let V = RFx + RFy + RF be the real vector space of all polynomials of degree at most 1 over RF . We

give V the Euclidean inner product resulting from viewing it as a free RF -module on {x,y,1}. Let L ⊂ V be the
OF -sublattice

L = J−1 · (x + ty + a) +OF · y +OF . (4.4)

Then
covolume(V/L) = 2−3r2(F) |DF/Q |

3/2NormF/Q(J)
−1

by [18, Lemma 2, Chap. V.2].
For d > 0 define B(0, d) to be the set of all ξ = (ξv)v∈M∞ ∈ RF = ⊕v∈M∞Fv such that |xv | < d for all v ∈ M∞.

Consider the convex symmetric subset

S(d1, d2, d3) = {r1x + r2y + r3 : r1 ∈ B(0, d1),r2 ∈ B(0, d2),r3 ∈ B(0, d3)}.

Then
vol(S(d1, d2, d3)) = (2r1(F)πr2(F))3(d1d2d3)

[F :Q].

Suppose
vol(S) > 23[F :Q]colvolume(V/L) (4.5)

Minkowski’s theorem then guarantees that there is a non-zero g1(x,y) = b1x + b2y + b3 ∈ L ∩ S.
Suppose (x, y) ∈ Z2 has the properties in Problem 1.2, so that x + ty + a ∈ JZ, |λ(x)| < X and |λ(y)| < Y for

all embeddings λ : Z → C. From the definition of L and that fact that g1 is a polynomial in L ∩ X , we find that
g1(x, y) ∈ Z and

|λ(g1(x, y))| < d1X + d2Y + d3

for all λ. Thus if we choose d1, d2, d3 such that

d1X + d2Y + d3 = 1 (4.6)

we can conclude that g1(x, y) = 0 since the norm of g1(x, y) to Z is an integer of absolute value less than 1. The
choice of d1, d2, d3 > 0 for which (4.6) holds and vol(S) is maximized is

(d1, d2, d3) = (1/(3X),1/(3Y ),1/3)

leading to
vol(S) = (2r1(F)πr2(F))3(d1d2d3)

[F :Q] = (2r1(F)πr2(F))3 · (3−3/(XY ))[F :Q].

Combining this with the Minkowski inequality (4.5) leads to the conclusion that if XY satisfies the inequality in
(1.3), then (i) and (ii) of Theorem 4.1 hold.

Finally, suppose b1 = 0. The definition of L in (4.4) then shows that g1(x,y) = b2y + b3 with b2, b3 ∈ OF .
However, property (i) of Theorem 4.1 together with our assumption that Y > 1/3 forces b2 and b3 to have all
conjugates of absolute value less than 1. This forces b2 = b3 = 0 as well, contradicting the fact that g1(x,y) is a
non-zero polynomial. �

Remark 4.2. There may be many g1(x,y) with the properties in Theorem 4.1. Each one will lead to a different
adelic capacity in the next section that can be used to study the problems described in §1.2. The numerical values
of these capacities will depend on g1(x,y), but the conclusions to be drawn concerning the problems in §1.2 will not
depend on g1(x,y). A more canonical approach would be to compute one associated adelic capacity on a surface,
as in [11], rather than using slices of the appropriate surface to reduce to the case of curves. At present, however,
capacity theory on surfaces is not as computable as capacity theory on curves.

5 ADELIC SUBSETS OF THE ZERO LOCUS OF THE FIRST AUXILIARY FUNC-
TION.

The strategy now for studying Problem 1.2 is to use the fact that all solutions must be on the zero locus of
the auxillary function described in Theorem 4.1. This zero locus is an affine line. We will determine the adelic
constraints that the Galois conjugates of a point on this line must satisfy which are equivalent to providing a solution
to Problem 1.2. We then apply adelic capacity theory on the line to determine whether or not there are infinitely
many such solutions, and whether there is a second auxillary polynomial with the right adelic properties which is
not divisible by the first one produced by Theorem 4.1.

Throughout this section, we fix the following notations.
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Definition 5.1. Let g1(x,y) = b1x + b2y + b3 be a polynomial wth the properties in Theorem 4.1. Let MF =

MF ,fin ∪MF ,inf be the set of all absolute values v of F, where MF ,fin (resp. MF ,inf) is the set of finite (resp. infinite)
places. Let Fv be an algebraic closure of Fv . If v ∈ MF ,fin, let | |v be an extension to Fv of the usual normalized
absolute value on Fv , Let |J |v in this case be the value of | |v on any element of J ⊂ OF which generates the
completion of J at v. If v ∈ MF ,inf , identify Fv with C and let | |v be the usual Euclidean absolute value. Define a
subset of Ev of Fv in the following way:

i. If v is non-archimedean, let Ev be the set of y ∈ Fv such that |y |v ≤ 1, |b2y + b3 |v ≤ |b1 |v and | − (b2y +
b3)/b1 + ty + a|v ≤ |J |v .

ii. If v is archimedean, let Ev be the set of y ∈ Fv such that |y |v ≤ Y and |b2y + b3 |v ≤ |b1 |v · X .

Lemma 5.2. If v ∈ MF ,fin then Ev is either empty or a disk of the form

D(cv,rv) = {y ∈ Fv : |y − cv |v ≤ rv}

for some cv ∈ Fv and 0 ≤ rv ∈ R. For all but finitely many v ∈ MF ,fin one can take cv = 0 and rv = 1, in which
case Ev = D(0,1). If v is archimedean, then Ev is either empty or the non-empty intersection of two disks in Fv = C
which have centers at 0 and at a point in Fv . The adelic set E =

∏
v Ev has capacity relative the point ∞ on P1

F
equal to

γ(E) =
∏

v∈MF

γv(Ev) (5.7)

where γv(Ev) is the local capacity of Ev as a subset of P1(Fv) − {∞} = A
1(Fv) = Fv . One has γv(Ev) = r

[Fv :Qp(v)]

v

if v is finite of residue characteristic p(v). If v is infinite, γv(Ev) is computed in Theorem 5.5 below.

Proof. The description of Ev is clear from Definition 5.1 together with the fact that the intersection of any two
non-archimedean disks in Fv for v ∈ MF ,fin is either empty or equal to a disk. The fact that Ev = D(0,1) for all but
finitely many v ∈ MF ,fin follows from the the fact each of the three inequalities defining Ev describes either D(0,1)
or all of Fv for all but finitely many v. Hence E has a well defined capacity with respect to ∞, and the formula
(5.7) is shown in [25, p. 366]. The fact that γv(Ev) = r

[Fv :Qp(v)]

v for v ∈ MF ,fin is shown in [25, p. 352] on taking
account our normalization of | |v . �

Remark 5.3. The constants cv and rv for v ∈ MF ,fin are readily computed from the coefficients of g1(x,y) =
b1x+ b2y+ b3. The same is true for the centers and radii of the two disks whose intersection is Ev when v ∈ MF ,inf .
Thus (5.7) is readily computable from g1(x,y) using Theorem 5.5.

Theorem 5.4. Let γ(E) be as in (5.7).
1. If γ(E) > 1 then there are infinitely many solutions (x, y) to Problem 1.2. In this case, any polynomial

gi(x,y) ∈ F[x,y] with the properties in Problem 1.3 must be divisible by g1(x,y) in F[x,y]. In particular, the
intersection of the zero loci of all polynomials gi(x,y) with the properties in Problem 1.3 is the zero locus of
g1(x,y), which is infinite.

2. If γ(E) < 1 then there are only finitely many solutions (x, y) to Problem 1.2. The common zero locus of the
polynomials in Problem 1.3 is finite.

3. Suppose γ(E) , 0. As a function of X > 0 and Y > 1/3, the value of γ(E) strictly increases when both X
and Y are increased. In particular, suppose γ(E) = 1 for particular values of X and Y . Any increase of both
X and Y leads to the conclusions of part (1), while any decrease of both X and Y leads to the conclusions of
part (2). This establishes parts (1) and (2) of Theorem 1.4.

Proof. Recall that a solution (x, y) to Problem 1.2 is a pair of x, y ∈ Z such that x + ty + a ≡ 0 mod JZ and all
archimedean conjugates x ′ and y′ of x and y′ satisfy |x ′ | ≤ X and |y′ | ≤ Y . We know that

g1(x, y) = b1x + b2y + b3 = 0

for all such (x, y), where b1 , 0. So we have

x =
−b2y − b3

b1
(5.8)

Because of (5.8), these conditions on x and y translate into the condition that all conjugates over F of the element
y ∈ F lie in the set Ev ⊂ Fv described in Definition 5.1 for each v ∈ MF . Parts (1) and (2) of the Theorem are now
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consequences of 4’s results concerning Fekete-Szegö theorems for the projective line (see [7, Theorems 5.1.1 and
5.1.2] and [25, Theorems 6.3.1 and 6.3.2]).

For part (3), note that if γ(E) , 0 then γv(Ev) , 0 for all v. In particular, Ev cannot be empty or a single
point. Supose now that v ∈ MF ,inf . Then Ev is intersection of two closed disks, and Ev has non-empty interior.
Increasing X and Y to some X ′ > X and Y ′ > Y then expands both disks. This puts the set Ev for X and Y into
λ · E ′v for some positive real λ < 1 when E ′v is the corresponding intersection of disks for X ′ and Y ′. We thus have
γ∞(Ev) ≤ γ∞(λE ′v) = λ · γ∞(E

′
v) < γ∞(E ′v). This proves that γ∞(Ev) strictly increases when we increase both X

and Y , which implies part (3) of the Theorem. �

We now give the formula for the capacity γv(Ev) for archimedean v which was referred to at the end of the
statement of Lemma 5.2. Let D(a, t) be the closed disk in C with center a ∈ C and radius r ≥ 0.

Theorem 5.5. Suppose Ev is the intersection in Fv = C of two closed disks, one of which is centered at the origin.
Then there is a non-zero complex number ξ such that Ev = ξ ·V where V = D(0,r) ∩D(1, s) for some r, s ≥ 0. One
has γv(Ev) = (|ξ | · γ∞(V))[Kv :R] where γ∞(V) is the classical transfinite diameter of V , which may be computed in
the following way. If V = ∅ or r + s = 1 then γ∞(V) = 0. If r ≥ 1 + s then V = D(1, s) and γ∞(V) = s. If s ≥ 1 + r
then V = D(0,r) and γ∞(V) = r . Otherwise, the boundaries of D(0,r) and D(1, s) intersect at two points u and u
with u in the upper half plane. Let α ∈ (0, π) be the angle between the boundary of D(0,r) and the boundary of
D(1, s) at the intersection point u. There is a unique point ζ in the upper half plane such that

ζ =

(
u − r
u − r

)π/(2π−α)
(5.9)

when we compute the complex exponential using the branch of log with imaginary part lying in [0,2π]. One has

γ∞(V) =
1

2Im(ζ)
·

π

2π − α
· |u − u| (5.10)

To prove this result we will need the following fact from [25, p. 339].

Lemma 5.6. (Rumely) Suppose E is a connected subset of C. Let Ec be the complement of E in P1(C) = C∪ {∞}.
Suppose f (z) is a conformal map which takes Ec to the complement of the closed disc D(0,R) of radius R > 0.
Suppose further that limz→∞ f (z)/z = 1. Then γ∞(E) = R. The Green’s function G(z,∞ : E) equals log| f (z)/R)|
for z ∈ Ec and G(z,∞; E) = 0 for z ∈ E .

Proof of Theorem 5.5

The first statement is clear on rotating and dilating Ev appropriately, and the formula γ∞(E∞) = (|ξ |γ∞(V))[Kv :R]

is shown in [25, p. 352]. Since the transfinite diameter of a disk or radius R is R, it will suffice to construct an f (z)
for the E = V of Theorem 5.5 on the assumption that the boundaries of D(0,r) and D(1, s) intersect at the distinct
points u and u. The cross ratio

w(z) =
(u − z)(u − r)
(u − r)(u − z)

has w(u) = 0, w(r) = 1 and w(u) = ∞. Since fractional linear transformations send circles to either lines or
circles, we find that z → w(z) sends the arc formed by the boundary of D(0,r) between u and u to the union of the
non-negative real axis with ∞. Since fractional linear transformations also preserve angles, z → w(z) sends the
arc formed by the boundary of D(1, s) between u and u to the union of {∞} with the ray L outward from w(u) = 0
which makes an angle of α from the positive real axis and lies in the lower half plane. Thus the image of V under
z → w(z) is the union of {∞} with an angular sector in C bounded by the non-negative real axis and L. The
complement Vc is sent to set w(Vc) of non-zero complex numbers τ = |τ |e2πiθ for which 0 < θ < 2π − α. This is
illustrated in Figure 1.

On choosing the branch of the complex logarithm with imaginary part in [0,2π), we have a conformal map ν
taking w(Vc) to the upper half plane H defined by ν(w) = wπ/(2π−α). This map sends w(∞) = u−r

u−r ∈ w(V
c) to the

point ζ in (5.9). We can now use the conformal automorphism h of P1(C) defined by ν → h(ν) = 1
ν−ζ to send ζ to

h(ζ) = ∞ and H = (ν ◦ w)(Vc) to the complement in P1(C) of a closed disk D which has a diameter going from
0 = h(∞) to i

Im(ζ ) = h(Re(ζ)). This is illustrated in Figure 2.
Consider now the composition f (z) = c · (h ◦ ν ◦ w), where c is a non-zero constant we will choose so

that limz→∞ f (z)/z = 1. This f gives a conformal map from Vc to the complement of the image cD of D by
multiplication by c. Therefore Lemma 5.6 gives

γ∞(V) = γ∞(D) =
|c |

2Im(ζ)
(5.11)
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Figure 1: Constructing the first conformal map.

0 1r 1 + s

α

V

u

ū

z 7→ w(z) = (u−z)(u−r)
(u−r)(u−z)

0 = w(u) 1 = w(r)

w(Vc)

w(V)
α

Figure 2: Constructing the third conformal map.

ζ

Re(ζ)

v 7→ h(v) = 1
v−ζ

0 = h(∞)

i
Im(ζ ) = h(Re(ζ))

It just remains to find c. Here

1/h(ν(w(z))) = ν(w(z)) − ν(w(∞)) =
(
(u − z)(u − r)
(u − r)(u − z)

)π/(2π−α)
−

(
(u − r)
(u − r)

)π/(2π−α)
.

Thus

z/h(ν(w(z))) = ζ · z ·

((
(1 − z−1u)
(1 − z−1u)

)π/(2π−α)
− 1

)
since ζ =

(
(u−r)
(u−r)

)π/(2π−α)
. Using that

(1 − z−1u)/(1 − z−1u) = 1 + (u − u)z−1 + higher order terms

we find that on setting
c = lim

z→∞
z/h(ν(w(z))) = ζ ·

π

2π − α
· (u − u)

we will have limz→∞ f (z)/z = limz→∞ c · h(ν(w(z)))/z = 1, as required. Now (5.11) gives

γ∞(V) =
1

2Im(ζ)
·

π

2π − α
· |u − u|

as claimed in Theorem 5.5 since |ζ | = 1.
Remark 5.7. As a check on Theorem 5.5, consider the case in which s tends toward 1 + r from below. Then V
becomes closer and closer to being all of D(0,r), and some straightforward estimates show that the formula γ∞(V)
in Theorem 5.5 tends toward γ∞(D(0,r)) = r as s→ (1 + r) from below.

Example 5.8. Suppose s = r = 1. Let τ = e2πi/3. Then u = −τ2, u = −τ and α = 2π/3. One has

ζ =

(
u − r
u − r

)π/(2π−α)
=

(
1 + τ2

1 + τ

)3/4

=
√
−1.

Thus

γ∞(V) =
1
2
·

3
4
|τ2 − τ | =

3
√

3
8
= 0.6495...

For all Y > 0 one thus has

γ(Y · V) =
3
√

3Y
8

.
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Example 5.9. We now illustrate the use of the above results when F is an imaginary quadratic field, which we
will regard as a subset of C via a choice of complex embedding. Suppose aOF + tOF = OF and that a and t are
non-zero. Let q be a rational prime such that 3|a| < q, where |a| is the complex absolute value of a. Suppose
X ≤ |a| and Y = X/|t |. We first check that

g1(x,y) =
x + ty + a

q
∈ F[x,y]

vanishes on every pair of x, y ∈ Z such that g(x, y) = x + ty + a ≡ 0 mod qZ and |x ′ | ≤ X and |y′ | ≤ Y for all
conjugates x ′ of x and y′ of y. This follows from the fact that g1(x, y) ∈ Z and

|g1(x ′, y′)| =
|x ′ + ty′ + a|

q
≤
|x ′ | + |ty′ | + |a|

q
≤

X + |t |Y + |a|
q

≤
3|a|

q
< 1

for all x ′ and y′ as above. Thus we can use g1(x,y) in Definition 5.1, so b1 = 1/q, b2 = t/q and b3 = a/q.
For finite places v of F, Definition 5.1 says Ev is the set of y ∈ Fv such that |y |v ≤ 1, |b2y + b3 |v ≤ |b1 |v and
| − (b2y + b3)/b1 + ty + a|v ≤ |J |v . Here −(b2y + b3)/b1 + ty + a = 0 and |b2y + b3 |v ≤ |b1 |v is equivalent
to |ty + a|v ≤ 1, which holds whenever |y |v ≤ 1 since a, t ∈ OF . Thus Ev = {y ∈ Fv : |y |v ≤ 1} is the
v-adic unit disc with local capacity γv(Ev) = 1 for all finite v. When v∞ is the unique infinite place of F, | |v∞
is the usual Euclidean absolute on Fv = C. In this case, Definition 5.1 says Ev∞ is the set of y ∈ Fv such that
|y |v ≤ Y and |b2y + b3 | ≤ |b1 | · X . The second inequality is equivalent to |ty + a| ≤ X which is equivalent to
|y − (a/t)| ≤ X/|t | = Y . Thus Ev∞ is the intersection of the closed disc D(0,Y ) of radius Y about the origin with
the closed disc D(a/t,Y ) of radius Y around a/t. Here |a/t | = X/|t | = Y by our choices of X and Y , so Ev∞ is a
rotation about the origin of the set Y · V dscussed at the end of Example 5.8. Thus that example and Lemma 5.2
shows that the capacity of E =

∏
v Ev is

γ(E) =
∏
v

γv(Ev) = γv∞ (Ev∞ ) =
3
√

3Y
8

.

This computation and Theorem 5.4 show Theorem 1.5.

We end this section by showing the claim made in the last sentence of the introduction that there are infinitely
many examples of each of cases 1 and 2 of Theorem 1.4. We prove a more quantitative result under some additional
hypotheses.

Theorem 5.10. Suppose F = Q, so that OF = Z. Suppose J = pZ for some prime p, and that X = Y = c
√

p > 1/3
for some fixed constant c for which 2/3 > c > 0.

i. For sufficiently large primes p there is a positive proportion of pairs (t,a) ∈ (Z/p)∗ × (Z/p) for which the
following is true. There is a unique polynomial g1(x,y) = b1x + b2y + b3 = (d1x + d2y + d3)/p with the
properties in Theorem 4.1 for which di ∈ Z for i = 1,2,3 and gcd(d1, d2) = 1 and d1 > 0. Alternative (1) of
Theorem 5.4 holds for this g1(x,y).

ii. For sufficiently large primes p there is a positive proportion of pairs (t,a) ∈ (Z/p)∗×(Z/p), all the statements
in (i) up to the last one are true, but now alternative (2) of Theorem 5.4 holds.

In this result, the condition that X = Y = c
√

p with 2/3 > c > 0 is natural in view of the fact that Coppersmith’s
method should heuristically apply once XY < p. Part (i) of Theorem 5.10 shows this heuristic fails for a positive
proportion of cases, while part (ii) shows it holds for a positive proportion.

We now describe the strategy of the proof. Rather than begin by choosing (t,a), we instead choose polynomials
b1x + b2y + b3 = (d1x + d2y + d3)/p that will have the properties in Lemma 5.11 for some pair of residue classes t
and a mod pZ. In Lemma 5.11 we specify conditions on the di which ensure the uniqueness of the associated pair
(t,a) mod pZ. In Lemma 5.12 we show that for the t and a which arise from the construction in Lemma 5.11, any
polynomial with the properties in Theorem 4.1 for t and a must arise from an integer multiple of the polynomial in
Lemma 5.11 that gives rise to t and a. These steps are needed because in the end we will count the polynomials
produced in Lemma 5.11 which lead to the capacity γ(E) associated to the triple {b1x+ b2y+ b3, t,a} in Definition
5.1 and Lemma 5.2 being greater than 1 (respectively less than 1). We compute these capacities in Lemma 5.13. To
complete the proof of Theorem 5.10 we then produce ranges for d1, d2 and d3 which lead to γ(E) > 1 (respectively
γ(E) < 1). We show that these ranges lead to positive proportion of the possible residue classes of (t,a) mod p
satisfying conditions (i) (resp. (ii)) of Theorem 5.10.
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Lemma 5.11. Recall that 2/3 > c > 0, so 0 < 3c/2 < 1. Let w, z be real numbers such that 0 < w ≤ 2 and
0 ≤ z < 1. Consider the set S(w, z) of all triples (d1, d2, d3) of integers such that

w · 3c
√

p/4 ≤ d1 ≤ 3c
√

p/2 <
√

p; 1 ≤ d2 ≤ 3c
√

p/2 <
√

p; 0 ≤ d3 < zp and gcd(d1, d2) = 1. (5.12)

There is an injective map λ : S(w, z) → Z/p × Z/p which sends (d1, d2, d3) to the class in Z/p × Z/p of (t,a) when
t and a are the smallest non-negative integers for which d1 · (1, t,a) ≡ (d1, d2, d3) mod p. One has t . 0 mod p and
d1 . 0 mod p.

Proof. Suppose (d1, d2, d3) ∈ S(w, z). Since 0 < w · 3c/2 < w we have d1 . 0 mod p and d2 . 0 mod p. Hence
t and a are uniquely determined by (d1, d2, d3) and t . 0 mod p. Suppose λ(d1, d2, d3) = λ(d ′1, d

′
2, d
′
3) for some

(d ′1, d
′
2, d
′
3) ∈ S(w, z). Then d2 ≡ td1 mod p and d ′2 ≡ td ′1 mod p, so d2d ′1 − d ′2d1 ≡ td1d ′1 − td ′1d1 ≡ 0 mod

p. But d1, d2, d ′1, d
′
2 all lie in the interval (0,3c

√
p/2) ⊂ (0,√p), we have 0 < d2d ′1 < p and 0 < d ′2d1 < p. So

d2d ′1 ≡ d ′2d1 mod p forces d2d ′1 = d ′2d1. Now since the di are positive and gcd(d1, d2) = gcd(d ′1, d
′
2), we conclude

(d1, d2) = (d ′1, d
′
2). Now d3 ≡ d1a ≡ d ′1a ≡ d ′3 mod p, so z < 1 forces d3 = d ′3. Hence λ is injective. �

Lemma 5.12. With the notations and assumptions of Lemma 5.11, suppose λ(d1, d2, d3) = (t,a) and z ≤ 3wc2.
Suppose g1(x,y) = b1x+ b2y+ b3 ∈ Q[x,y] has the properties in Theorem 4.1 for t and a. Then e1 = pb1, e2 = pb2
and e3 = pb3 are in Z. Let q = gcd(e1, e2, e3). Then b1 , 0 and

g1(x,y) = sign(b1) · q · (d1x + d2y + d3)/p.

Furthermore, (d1x + d2y + d3)/p also has all the properties in Theorem 4.1 for t and a.

Proof. By Theorem 4.1, 0 , pg1(x,y) = e1x + e2y + e3 ∈ Z[x,y] has e1x + e2y + e3 ≡ e1(x + ty + a) mod pZ[x,y],
so (e1, e2, e3) ≡ e1(1, t,a) mod p. Furthermore,

0 < |e1 | < p/(3X) =
√

p/(3c); |e2 | < p/(3Y ) =
√

p/(3c); and |e3 | < p/3. (5.13)

These properties are preserved if we divide g1(x,y) by the g.c.d. of e1, e2 and e3 or if we multiply g1(x,y) by −1.
We will assume in what follows that this has been done, so that gcd(e1, e2, e3) = 1 and e1 > 0.

Since λ(d1, d2, d3) = (t,a), we have d1(1, t,a) ≡ (d1, d2, d3) mod p. Since (e1, e2, e3) ≡ e1(1, t,a) mod p we
conclude e1d2 − d1e2 ≡ 0 mod p. However,

|e1d2 − d1e2 | < p

since |ei | <
√

p/(3c) and |di | ≤ 3c
√

p/2 for i = 1,2. Hence e1d2 − d1e2 = 0. Since gcd(d1, d2) = 1, this forces
(e1, e2) = e(d1, d2) for some e ∈ Z. Now w3c/2√p ≤ d1 so |e|w3c

√
p/2 ≤ |ed1 | = |e1 | <

√
p/(3c) because of

(5.13). So
|e| <

2
(3c)2w

. (5.14)

Since d1 . 0 mod p, d1d ′1 ≡ 1 mod p for some integer d ′1. Therefore

(ed1, ed2, e3) = (e1, e2, e3) ≡ e1(1, t,a) ≡ e1d ′1(d1, d2, d3) mod p.

So e ≡ e1d ′1 mod p and e3 ≡ e1d ′1d3 ≡ ed3 mod p. Thus (e1, e2, e3) − e(d1, d2, d3) ≡ (0,0,0) mod p, where e1 = ed1
and e2 = ed2. We conclude that

pg1(x,y) = e1x + e2y + e3 = e(d1x + d2y + d3) + h

when h = e3 − ed3 ≡ 0 mod p. Here

|ed3 | = |e| · |d3 | <
2zp
(3c)2w

≤ 2p/3

because of (5.14), |d3 | < zp and the assumption that z ≤ w3c2. Since |e3 | < p/3 we get |h| = |e3 − ed3 | <
p/3 + 2p/3 < p, which forces h = 0 since h ≡ 0 mod p. Thus pg1(x,y) = e1x + e2y + e3 = e(d1x + d2y + d3).
Since gcd(e1, e2, e3) = 1 and e1 and d1 are positive, we must have e = 1 and g1(x,y) = (d1x + d2y + d3)/p. �

Lemma 5.13. Let E =
∏

v Ev be the adelic set associated by Definition 5.1 to g1(x,y) = 1
p (d1x + d2y + d3) for

some (d1, d2, d3) ∈ S(w, z) under the assumption that z ≤ 3wc2 in Lemma 5.12. Define

δ1 = max(−c,
−d1c

d2
−

d3
√

pd2
) and δ2 = min(c,

d1c
d2
−

d3
√

pd2
) (5.15)
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Suppose d1 and d2 are relatively prime. The capacity γ(E) of E is 0 if δ1 > δ2. Otherwise,

γ(E) =
∏
v

γv(Ev) = d−1
1 γ∞(E∞) ≥

√
p(δ2 − δ1)

4d1
(5.16)

where E∞ is the component of E at the archimedean place of Q.

Proof. From Definition 5.1, the intersection of the real line with E∞ is trivial if δ1 > δ2, in which case E∞ is empty
and γ∞(E∞) = 0 = γ(E). If δ1 ≤ δ2 then E∞ intersects the real line in the interval [√pδ1,

√
pδ2]. In this case, we

have
γ∞(E∞) ≥ γ∞([

√
pδ1,
√

pδ2]) =

√
p

4
(δ2 − δ1). (5.17)

Suppose now that v is a finite place ofQ. FromDefinition 5.1 and the equality b1x+b2y+b3 = p−1(d1x+d2y+d3),
we see that Ev is the set of y ∈ Qv satisfying these conditions:

i. |y |v ≤ 1
ii. |(d2y + d3)/d1 |v ≤ 1 and
iii. | − (d2y + d3)/d1 + ty + a|v ≤ |J |v

where |J |v = 1 if v , p and |J |p = p−1. Let us first show (i) and (ii) imply (iii). If v , p, this is clear from
t,a ∈ Z. Suppose now that v = p. We know d1 is prime to p, and that (d1, d2, d3) ≡ d1(1, t,a) mod p. So d2 ≡ d1t
mod p and d3 ≡ d1a mod p. Thus

|(−d2/d1 + t)y |v = |d1 |
−1
v · | − d2 + td1 |v · |y |v ≤ p−1 if |y |v ≤ 1

and
| − d3/d1 + a|v = |d1 |

−1 · | − d3 + ad1 |v ≤ p−1 if |y |v ≤ 1

so (iii) is implied by (i) when v = p. Thus Ev is the set of y ∈ Qv satisfying (i) and (ii).
Recall now that d1, d2, d3 are non-zero integers and that by assumption gcd(d1, d2) = 1. Thus if |d1 |v < 1

then |d2 |v = 1, and otherwise |d1 |v = 1. If |d1 |v = 1, then (i) implies |(d2y + d3)/d1 |v = |d2y + d3 |v ≤ 1, so
(ii) holds. If |d1 |v < 1, then |d2 |v = 1 so (ii) is equivalent to |y − (−d3/d2)|v ≤ |d1/d2 |v = |d1 |v < 1. Since
| − d3/d2 |v = | − d3 |v ≤ 1, condition (ii) implies (i) if |d1 |v < 1. We thus find that for all finite v, Ev is a v-adic disc
of radius rv = |d1 |v around point of Q.

We can now calculate the capacity of E =
∏

v Ev . The product of the local capacities at finite places is∏
v finite

γv(Ev) =
∏

v finite
rv =

∏
v finite

|d1 |v = d−1
1

by the product formula since d1 is a positive integer. We thus find as in Lemma 5.2 and (5.17) that

γ(E) =
∏
v

γv(Ev) = d−1
1 γ∞(E∞) ≥

√
p(δ2 − δ1)

4d1
.

�

Proof of Theorem 5.10
Let d1 = 3cχ1

√
p/2, d2 = 3cχ2

√
p/2 and d3 = χ3p be as in Lemma 5.12, so that w ≤ χ1 ≤ 1, 0 < χ2 ≤ 1 and

0 ≤ χ3 ≤ z. We have supposed 0 < w, 0 < 3c/2 < 1, 0 ≤ z < 1 and z ≤ 3wc2. For i = 1,2 let

zi(χ1, χ2, χ3) =
1

6cχ1
· (
(−1)i χ1c

χ2
−

2χ3
3cχ2

) =
(−1)ic
6cχ2

−
χ3

9c2 χ1 χ2
.

Then √
p

4d1
δ2 =

δ2
6cχ1

= min(
c

6cχ1
, z2(χ1, χ2, χ3)) = min(

1
6χ1

,
1

6χ2
−

χ3

9c2 χ1 χ2
) (5.18)

√
p

4d1
δ1 =

δ1
6cχ1

= max(−
c

6cχ1
, z1(χ1, χ2, χ3)) = max(

−1
6χ1

,
−1
6χ2
−

χ3

9c2 χ1 χ2
) (5.19)

Suppose we let w = 1/24 and z = 9c2/(24)2 < 9(2/3)2/(24)2 < 1. Then z ≤ 3wc2 = c2/8, so all conditions
on c,w and z are satisfied. Suppose χ1, χ2 are in the interval [1/24,1/12] and χ3 is in the interval [0, z]. Then

√
p

4d1
δ2 = min(

1
6χ1

,
1

6χ2
−

χ3

9c2 χ1 χ2
) ≥ min(2,2 − 1) ≥ 1.
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Since
√
p

4d1
δ1 < 0, we will then have

γ((E)) ≥
√

p(δ2 − δ1)

4d1
> 1.

Suppose I1 and I2 are intervals on the non-negative real axis of lengths q1,q2 > 0. By a sieving argument, as
r → +∞, the number of coprime integers (d1, d2) in a product r I1×r I2 is asymptotically r2q1q2

∏
` prime(1−`−2) =

r2q1q26/π2. Applying this to I1 = [w3c
√

p/2,3c
√

p/2] and I2 = [0,3c
√

p/2] for w = 1/12 as above, we see that as
p→∞, the number of triples (d1, d2, d3) ∈ S(w, z) that have d1 and d2 coprime and γ(E) > 1 is bounded below by
a positive constant times √p2

· p = p2. Since the number of elements of S(w, z) grows as a positive constant times
p2, Lemmas 5.11 and 5.12 show that a positive fraction of all pairs (t,a) ∈ (Z/p)∗ × (Z/p)∗ lead to γ(E) > 1.

To prove that there are a positive proportion of pairs (t,a) such that γ(E) = 0, note that (5.18) and (5.19) give

χ1 χ2δ2
6c

≤
χ1
6
−

χ3

9c2 and
χ1 χ2δ1

6c
≥ −

χ2
6

so
χ1 χ2
6c
(δ2 − δ1) <

χ1
6
−

χ3

9c2 +
χ2
6
.

The constraints on χ1, χ2 and χ3 are that w ≤ χ1 ≤ 1, 0 < χ2 ≤ 1 and 0 ≤ χ3 ≤ z, where 0 < w < 1,
0 < 3c/2 < 1, 0 ≤ z < 1 and z ≤ 3wc2. We now assume 0 < w < 1/2. Let χ2 → 0+, χ1 → w+, χ3 → z− and
z = 3wc2 < 3c2/2 < c < 2/3. Then χ1

6 −
χ3

9c2 +
χ2
6 has limit

w

6
−

z
9c2 + 0 = w · (

1
6
−

3c2

9c2 ) = −
w

6
< 0.

Thus taking χ1, χ2 and χ3 near these limits leads (via the same seiving argument used before) to a positive
proportion of (t,a) ∈ (Z/p)∗ × (Z/p)∗ for which δ2 < δ1. Lemma 5.13 shows γ(E) = 0 for such (t,a).

Theorem 5.4, together with the above constructions of a positive proportion of (t,a) with γ(E) > 1 and of a
positive proportion of (t,a) for which γ(E) = 0 now proves Theorem 5.10.

6 BOUNDS ON THE NUMBER OF SOLUTIONS OF PROBLEM 1.1.
We will be concerned with finding upper bounds on the number N(t,a,J ,X,Y ) of pairs (x, y) of algebraic

integers having the properties in Problem 1.1, where N(t,a,J ,X,Y ) may be infinite. This is relevant to the
following case of the hidden number problem.

Suppose we are given two pairs (a1, b1) and (a2, b2) of elements of OF such that for an unknown secret s ∈ OF ,
one has bi = sai + ei mod J for a small error ei ∈ OF . Then e2 = b2 − sa2 = b2 − (b1 − e1)a−1

1 a2 mod J . Thus if
we let x = e2, y = e1, t = a−1

1 a2 mod J and a = −b2 + b1a−1
1 a2 mod J , we wil have x + ty + a ≡ 0 mod J with

x and y small. Therefore N(t,a,J ,X,Y ) gives a bound on the number of secrets s which can solve this case of the
hidden number problem.

To bound N(t,a,J ,X,Y ), it is simplest to deal with the case a = 0. This gives an upper bound for arbitrary a
at the cost of halving the allowed sizes of archimedean conjugates.

Theorem 6.1. The following is true for all t, J , X and Y .
1. When a = 0, there are either no (x, y) with the properties in Problem 1.1 or there are infinitely many such
(x, y).

2. Suppose a = 0 and γ(E) < 1 in Theorem 5.4. Then there are no (x, y) satisfying the conditions in Problem
1.1, i.e. N(t,0,J ,X,Y ) = 0.

3. For all a one has N(t,a,J ,X/2,Y/2) ≤ 1+N(t,0,J ,X,Y ). Thus either N(t,0,J ,X,Y ) = ∞ or N(t,0,J ,X,Y ) =
0 and N(t,a,J ,X/2,Y/2) ≤ 1.

Proof. For part (1), observe that if (x, y) ∈ Z × Z has the properties in Problem 1.1 when a = 0, then so does
(ζ x, ζ y) for any root of unity ζ . To prove (2), note that Theorem 5.4 shows N(t,0,J ,X,Y ) is finite if γ(E) < 1.
Then part (1) forces N(t,0,J ,X,Y ) = 0. Part (3) follows from the fact that the difference of two solutions (x, y)
and (x ′, y′) to Problem 1.1 for given t, a, J , X/2 and Y/2 is a solution (x ′′, y′′) = (x ′ − x, y′ − y) to Problem 1.1
for t, 0, J , X and Y . �

Remark 6.2. The proof of parts (1) and (2) illustrates the advantages of working over the ring Z of all algebraic
integers, rather than in the integers of a particular number field. This makes it possible to promote a finiteness
result coming from capacity theory to a proof that a homogenous linear congruence has no small solutions at
all. Note that in part (3), we do not obtain any information about N(t,a,J ,X/2,Y/2) for a , 0 in the event that
N(t,0,J ,X,Y ) = ∞.
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We illustrate this result with a concrete application to the hidden number problem. Suppose as in §1.1 that we
are given an ideal J of the integers OF of a number field F and a real number X . For a secret integer s ∈ OF we
are given samples (ci, di) ∈ OF ×OF for i = 0,1 for which c0 is prime to J and the following is true. There is an
(unknown) element xi ∈ OF such that

cis − di ≡ xi mod J (6.20)

and |λ(xi)| ≤ X/2 for all embeddings λ : F → C. We would like to determine s mod J from this information.
Theorem 6.1 leads in the following way to a computable criterion for there to exist at most one solution s mod J .

As in §1.1, we find c′0 ∈ OF such that c0c′0 ≡ 1 mod J . Then (6.20) for i = 0 gives

s ≡ c′0(x0 + d0) mod J .

Substituting this into (6.20) when i = 1 gives

x1 + ti x0 + a1 ≡ 0 mod J (6.21)

where t1 = −c1c′0 and a1 = d1−d+c1c′0d0. Thus the problem of finding all s mod J satsifying the above conditions
is converted to finding all solutions (x0, x1) ∈ OF ×OF of the congruence (6.21) such that |λ(xi)| < X/2 for i = 0,1
and all embeddings λ : F → C.

We bound the number of solutions s mod J in the following way. Using lattice basis reduction, find a
polynomial b1x + b2y + b3 ∈ J

−1OF [x,y] with the properties in Theorem 4.1 for Y = X , t = −c1c′0 and a = 0.
Calculate the capacity γ(E) of the adelic set E associated to this adelic set in Definition 5.1, using Lemma 5.2 and
Theorem 5.5. If γ(E) < 1, then parts (2) and (3) of Theorem 6.1 show N(t,a,J ,X/2,X/2) ≤ 1. Thus there is at
most one pair (x0, x1) as above, and at most one integer s mod J which solves the above case of the hidden number
problem.

We conclude this paper with another example illustrating Theorem 6.1. Suppose a = 0, t ∈ OF and that
J = OFα is a non-zero principal ideal of OF . Suppose (x0, y0) ∈ OF satisfy the congruence

x0 + ty0 ≡ 0 mod J (6.22)

and that
|x0 · y0 |v ≤ |α |v/2 for all v ∈ MF ,inf . (6.23)

Suppose as before that t is prime to J = OFα, and that x0, y0 and α are pairwise relatively prime, in the sense that
the ideal generated by any two of them is OF .

Theorem 6.3. With the above hypotheses, there are no non-zero pairs (x, y) ∈ Z×Z with the following properties:

1. x + ty ≡ 0 mod J · Z, and
2. For all embeddings λ : Z→ C, one has

|λ(x)| ≤ |λ(x0)| and |λ(y)| ≤ |λ(y0)|

with at least one of these inequalities being strict for at least one λ.

Thus in a small non-zero solution of the homogenous congruence resulting from setting a = 0 prevents
the existence of non-trivial solutions with smaller archimedean absolute values. Concerning the relation of the
inequality (6.23) to Problem 1.1, note that if 0 < α ∈ Z, then (6.23) follows from requiring |x0 |v ≤ X and |y0 | ≤ Y
for some real X,Y such that |XY | ≤ α/2.

Proof of Theorem 6.3

Define a polynomial in the variables x and y by

b1x + b2y = (y0x − x0y)/α. (6.24)

Hypothesis (6.22) shows x0 + ty0 = αz0 for some z0 ∈ OF . Therefore

b1x + b2y = y0(x + ty)/α − z0y ∈ J−1 · (x + ty) +OF · y. (6.25)

We now substitute for the variables x and y a pair of elements of Z satisfying conditions (1) and (2) of Theorem
6.3. The inequalities in condition (2) of Theorem 6.3 show that for each embedding λ : Z→ C we have

|λ(b1x + b2y)| = |λ(
y0x − x0y

α
)| ≤ |

λ(y0)λ(x)
α

| + |
λ(x0)λ(y)

α
|. (6.26)
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Now (6.23) gives

|
λ(y0)

α
| ≤

1
2|λ(x0)|

and
|λ(x0)|

α
≤

1
2|λ(y0)|

.

Substituting this into (6.26) gives

|λ(b1x + b2y)| ≤
|λ(x)|

2|λ(x0)|
+
|λ(y)|

2|λ(y0)|
.

Hypothesis (2) of Theorem 6.3 now implies |λ(b1x + b2y)| ≤ 1 with strict inequality for at least one λ. Since
b1x + b2y is an algebraic integer, we conclude that

b1x + b2y = 0 when b1 = y0/α and b2 = −x0/α. (6.27)

We enlarge F so that it includes x and y. There is then an archimedean place v∞ of F at which either |x |v∞ < |x0 |v∞
or |y |v∞ < |y0 |v∞ . For simplicity we will suppose that rv∞ = |y |v∞ |/|y0 |v∞ < 1, the other case being similar. Define
rv = 1 if v∞ , v ∈ MF ,inf .

We now define an adelic set E =
∏

v∈MF
Ev associated to b1x + b2y in the following way. Set b3 = 0 in

Definition 5.1. If v ∈ MF ,fin is finite, let Ev be as in part (i) of Definition (5.1). If v ∈ MF ,inf is an infinite place,
define

Ev = {y ∈ Fv : |y |v ≤ rv |y0 |v and |x |v = |b2y/b1 |v = | − x0y/y0 |v ≤ |x0 |v} = {y ∈ Fv : |y |v ≤ rv |y0 |v}
(6.28)

where we have used rv ≤ 1.
As in the proof of part (2) of Theorem 5.4, if γ(E) < 1, then there will be only finitely many pairs (x, y) ∈ Z×Z

satisfying the conditions in Theorem 6.3 and for which |y |v ≤ rv |y0 |v . Then Theorem 6.1 shows that in fact there
are no such pairs, contradicting the hypothesis above that such a pair exists. We conclude that to prove Theorem
6.3 if will suffice to show γ(E) < 1.

We first need to describe explicitly the set Ev when v ∈ MF ,fin. From Definition 5.1 and (6.24) we see that Ev

is the set of y ∈ Fv satisfying
i. |y |v ≤ 1

ii. | − x0y/y0 |v ≤ 1 and

iii. |x0y/y0 + ty |v ≤ |J |v = |α |v .
Let us first show (i) and (ii) imply (iii). If |α |v = 1, this is clear from t ∈ OF . Suppose now that |α |v < 1. We know
y0 is prime to α, so |y0 |v = 1. We have (y0,−x0) ≡ y0(1, t) mod J by multiplying the first equality in (6.25) by α,
so |x0 + ty0 |v ≤ |J |v . Thus

|(x0/y0 + t)y |v = |y0 |
−1
v · |x0 + ty0 |v · |y |v ≤ |J |v if |y |v ≤ 1.

Therefore (iii) is implied by (i) when |α |v . Thus Ev is the set of y ∈ Fv satisfying (i) and (ii).
Recall now that y0 and −x0 are coprime elements of OF by assumption. Thus if |y0 |v < 1 then | − x0 |v = 1,

and otherwise |y0 |v = 1. If |y0 |v = 1, then (i) implies | − x0y/y0 |v = | − x0y |v ≤ 1, so (ii) holds. If |y0 |v < 1, then
| − x0 |v = 1 so (ii) is equivalent to |y |v ≤ |y0/(−x0)|v = |y0 |v < 1. Hence condition (ii) implies (i) if |y0 |v < 1.
We thus find that for all finite v, Ev is a v-adic disc of radius rv = |y0 |v around 0 ∈ Fv . The local capacity of Ev is
therefore

γv(Ev) = |y0 |
[Fv :Qp(v)]

v = | |y0 | |v for v ∈ MF ,fin (6.29)

where p(v) is the residue characteristic of v and | | | |v is the normalized valuation at v.
We now consider archimedean v ∈ MF ,inf . From (6.28) we see that Ev is the closed disc around 0 in Fv = C

of radius rv |y0 |v . Thus the local capacity is

γv(Ev) = (rv |y0 |v)
[Fv :R] = r [Fv :R]

v | |y0 | |v for v ∈ MF ,inf . (6.30)

Now (6.29) and (6.30) together with the product formula give the global capacity of E as

γ(E) =
∏
v

γv(Ev) =
∏

v∈MF ,inf

r [Fv :R]
v ·

∏
v∈MF

| |y0 | |v =
∏

v∈MF ,inf

r [Fv :R]
v < 1

which completes the proof of Theorem 6.3.
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