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Abstract There are two main aims to this paper. Firstly, we survey the relevant existing attack strategies known
to apply to the most commonly used lattice-based cryptographic problems as well as to a number of their variants.
In particular, we consider attacks against problems in the style of LWE, SIS and NTRU defined over rings of the
form Z[X]/( f (X),g(X)), where classically g(X) = q is an integer modulus. We also include attacks on variants
which use only large integer arithmetic, corresponding to the degree one case g(X) = X − c. Secondly, for each of
these approaches we investigate whether they can be generalised to the case of a polynomial modulus g(X) having
degree larger than one, thus addressing the security of the generalised cryptographic problems from linear algebra
introduced by Bootland et al. We find that some attacks readily generalise to a wide range of parameters while
others require very specific conditions to be met in order to work.
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1 INTRODUCTION
The area of lattice-based cryptography has rapidly grown to be one of the leading candidates offering post-

quantum security for a wide variety of cryptographic primitives. In this work we will consider the three most widely
used cryptographic problems within lattice-based cryptography and their generalisations; namely, the LWE, SIS
and NTRU problems. Concretely, we will explain how the most relevant attack strategies can be applied to attempt
to solve these hard problems using a classical computer. We do not consider any possible quantum attacks against
our problems besides generic speed-ups to classical attacks due to Grover’s algorithm. As we will see, many of
the same ideas are used in attacking each of these different problems and indeed a number of approaches involve
reducing one of the three problems to one of the others.

The first of our three problems to appear was the short integer solutions (SIS) problem of Ajtai [3]. Informally,
the problem is, given a set of vectors, to find a linear dependence between them in which the scalars used are all
small. Originally, the vectors were uniformly random elements of Znq for suitable integers q and n and the scalars
being integers. This was first generalised to the ring version [60, 61] in which the vectors have only one component
that is from some polynomial quotient ring Rq = Zq[X]/( f (X)) for a suitable monic polynomial f ∈ Z[X] of
degree n and with the scalars from the ‘parent’ ring R = Z[X]/( f (X)), and later to the module version [53] in which
the vectors can have more than one components but still have entries from the ring Rq; scalars remain elements of
R.

The second problem is called the learning with errors (LWE) problem and was introduced by Regev in [65].
The problem can be described as that of solving a system of noisy linear equations, that is the constant terms of
a system of linear equations have been modified by adding some small error terms and the task is to solve the
system and hence also determine these errors. Again, originally the system of noisy linear equations was defined
over the ring Zq but this was later modified and generalised to rings of the form Rq as defined above [71, 25]
with the new problems eventually being known as the polynomial (module) learning with errors problem. A more
mathematically involved modification to the problem was proposed by Lyubashevsky, Peikert and Regev in [57]
where they argue this gives the ‘right’ definition of the modified problem using the ring of integers of a number
field and its dual ideal; this problem is known as the ring learning with errors problem and also has a generalisation
to modules [53].
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Lastly, the third problem we discuss is the NTRU problem. Here, one must write a given ring element as a
quotient of two small elements in a finite ring. Unlike the previous two problems, this problem was already initially
instantiated using a ring of the form Rq as described above.

Recently, the NTRU problemwas generalised in a new direction by Aggarwal et al. in an early version of [1] and
the same generalisation was quickly applied to the (polynomial) learning with errors problem in the final version of
their paper [2]. The connection between these new problems and the NTRU and LWE problems was made explicit
in [24] but can be most simply explained by replacing the integer modulus q used to define the ring Rq by the linear
modulus X − 2 which leads to a completely different structure, namely the new ring RX−2 which in this case is
equivalent to large integer arithmetic in ZM for some large Mersenne number M .

In [24] the authors further propose to generalise all three problems to use the ring Rg = Z[X]/( f (X),g(X))
for a general polynomial g on the assumption that this ring is finite and elements enjoy having a ‘nice’ canonical
representative. We will present the exact formulation of the problems we are considering in Section 2.4.

As well as presenting attacks against the problems with integer moduli we also describe the newer attacks
against instances with linear moduli. To the best of our knowledge this is the first time both cases have appeared
together which allows us to highlight their similarities and differences. Furthermore, we assess how to generalise
these attacks to deal with moduli of degree larger than one, an area which has not been studied in any great detail
before.

We find that some attacks such as the straightforward lattice attack against the SIS problem can be applied more
or less unchanged to the more general case. Other attacks such as the Blum–Kalai–Wasserman algorithm [21] and
the dual attack on LWE [62] can be employed on a wide range of parameters though some restrictions are still
required. Finally, attacks such as the subfield attack on the NTRU problem [5, 29] and the Arora-Ge attack [13] on
LWE, which are only applicable in rather special circumstances, can be modified to apply to more general instances.
However, they remain confined to working only in a restricted set of circumstances.

OUTLINE
In Section 2 we introduce some notation and the definition of the problems considered in this work, with

examples, this summarises [24, Section 2 and 3] to which we direct the reader if necessary. Furthermore, we give
a number of preliminary results which help to illustrate how the generalised problems behave like the standard
problems in some ways but not in others. In Section 3 we look at attacks against the SIS family of problems,
followed by attacks on the NTRU family of problems in Section 4, while in Section 5 we describe attacks which
work against the LWE family of problems. In each case, we examine how the attack can be generalised to work for
a larger range of parameters within the framework of the problems given in [24].

2 THE PROBLEMS AND BASIC RESULTS
2.1 NOTATION

As previously mentioned, we will be working with a general quotient polynomial ring, which we call the parent
ring, R := Z[X]/( f (X)), for which f is monic of degree n, as well as a quotient of this ring Rg = Z[X]/( f (X),g(X))
for some polynomial g coprime to f . We will refer to g as the ciphertext modulus even though we do not actually
consider any concrete encryption schemes in this work. Further, in this paper, as in [24], we will only consider
the ring Rg for g such that Rg = Z[X]/(a,r(X)) for an integer a and monic polynomial r(X). We note that if one
chooses f and g randomly and they satisfy our conditions then it is likely that r will be a linear polynomial and
hence Rg is just the ring of integers modulo a, of course, one will not choose f and g at random but it is still
true that r will have degree smaller than n unless g is an integer in which case r = f . An explanation of how to
determine if g satisfies this constraint and how to compute such an a and r(X) can be found in [24]. We merely
mention here that this condition is not so restrictive and covers all currently known choices for g in the literature.
The notation a and r will be used consistently throughout this paper.

We will also denote by Rep(Rg) the following set of representatives for Rg in Z[X]:

Rep(Rg) :=
{
α0 + α1X + · · · + αdeg(r)−1Xdeg(r)−1

��� αi ∈ {0, . . . ,a − 1}
}
.

We have the natural bijection repg : Rg → Rep(Rg) given by sending an element x ∈ Rg to the unique element
repg(x) ∈ Rep(Rg) such that x = repg(x) + ( f (X),g(X)). We abuse notation slightly by allowing arguments from
R, so for x ∈ R we define repg(x) = repg(x mod gR). Further, we allow arguments to be vectors or matrices with
entries in either Rg or R by applying the map in a coordinate-wise manner

We also define the map ι : R → Zn which takes an element, whose coset representative is of lowest degree,
c0 + c1X + · · · + cn−1Xn−1 + ( f (X)), to the (row) vector of its coefficients, (c0, c1, . . . , cn−1). We naturally extend
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this to ι : Rm → Zmn, for a natural number m, by concatenating the vectors given by applying ι component-wise,
as well as to matrices ι : R`×m → Z`mn by concatenating the vectors given by applying ι to each row vector in Rm.

By an abuse of notation we define a ‘norm’ on the ring R by ‖ · ‖ : R → R≥0. This ‘norm’ will in general
not satisfy ‖u · v‖ ≤ ‖u‖ · ‖v‖ so will not be a ring norm. However, we will require that the product of elements
of ‘small’ norm will also be somewhat ‘small’. It is intuitive to think of the norm as being derived from one on
Rn by noting that R � Zn as abelian groups (for example ι is one such isomorphism) and embedding Zn into Rn.
Throughout, we will use the isomorphism ι between R and Zn along with the standard embedding of Zn into Rn,
however any embedding into Rn can be used instead depending on the ‘norm’ used. In particular, if R is a ring of
integers of a number field then one can use the canonical embedding (see Section 2.3 below) to define ι and the
corresponding norm instead.

Elements of free modules are taken to be row vectors, for example R` is the free module of `-tuples having
entries in R which we write as a row vector. We extend ‖ · ‖ to vectors and matrices by taking the maximum of the
norm applied to all the entries; other choices are possible.

2.2 DISTRIBUTIONS OF SMALL ELEMENTS
As well as a notion of smallness we will also need to use distributions of small elements over R when defining

the problems. One can do this by considering an elliptical Gaussian distribution on Rn and pulling it back via the
inverse of the map ι. This will however give an element of R ⊗Q R so we typically discretise the distribution, either
before or after pulling it back.

Formally, the normalised Gaussian function with parameter α, ϕα : Rn → R+ is defined as ϕα(x) =
exp(−π ‖x‖2 /α2)/αn. One may replace ‖x‖2 by xDxT for a diagonal matrix D to consider an elliptical Gaussian.
We denote the n-dimensional (spherical) discrete Gaussian distribution with width parameter α asDZn ,α and define
it to take the value x ∈ Zn with probability ϕα(x)/ϕα(Zn) where ϕα(Zn) =

∑
x∈Zn ϕα(x).

2.3 THE CANONICAL EMBEDDING AND CANONICAL NORM

When the polynomial f defining the parent ring R is irreducible then the quotient field of R is a number field,
namely it is of the form K = Q[X]/( f (X)). Such a field can be mapped into the field C in a one-to-one manner
and in fact there are n such mappings, each defined by sending X to one of the complex roots of f , and these are
all distinct. Let us denote these field embeddings by σi for i = 1, . . . ,n, ordered so that the first s1 are defined by
any real roots of f and the latter 2s2 come in pairs defined by a complex root of f and its conjugate. The canonical
embedding is defined to be the map σ = (σ1, . . . ,σn) : K → Rs1 ×C2s2 . We can define a corresponding norm with
respect to the canonical embedding called the canonical norm as

‖x‖can =

√√
n∑
i=1
|σi(x)|2.

2.4 THE PROBLEMS AND MAIN EXAMPLES
Here we introduce the three general problems as given in [24] and then explain which parameter choices give

the main examples of the specific problems considered previously. The first problem is that based on the short
integer solution problem.

Problem (Ideal short integer solution problem (Ideal-SIS f ,g,m,`,ρ)). For integers ` > m > 0 and a positive real
ρ, sample ` elements from Rm

g uniformly at random and denote them by a1, . . . ,a` . The ideal short integer solution
problem, Ideal-SIS f ,g,m,`,ρ, is to find a non-zero vector z = (z1, . . . , z`) ∈ R` such that ‖z‖ ≤ ρ and

∑`
i=1 ai · zi = 0.

Writing A ∈ Rm×`
g for the matrix having the vectors aT1 , . . . ,a

T
` as its columns, we can rewrite the final condition

as AzT = 0T . One can consider an inhomogeneous version of this problem in which we replace this condition by
AzT = tT for some given target vector t ∈ Rm

g . Secondly, for the learning with errors type problems there are two
distinct variants, a search and a decision version.

Problem (Ideal learning with errors search problem (Ideal-LWE f ,g,m,k ,`,χ)). Let χ be a distribution of small
elements over R and let k, ` and m be positive integers. Sample a uniformly random secret matrix s ∈ Rm×k

g .
The ideal learning with errors search problem, Ideal-LWE f ,g,m,k ,`,χ, is to find s given the tuple of matrices
(a,b) ∈ R`×mg × R`×kg where a ∈ R`×mg is sampled uniformly at random and b = as + e ∈ R`×kg with e sampled from
χ`×k .
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Problem (Ideal learning with errors decision problem (Ideal-DLWE f ,g,m,k ,`,χ)). Let χ, k, `, m and s be as in
the previous problem. Given (a,b) ∈ R`×mg × R`×kg where a is uniformly random and b is either uniformly random
or of the form b = as + e for some e sampled from χ`×k , the Ideal-DLWE f ,g,m,k ,`,χ problem is to determine which
is the case.

While we have described the Ideal-LWE problem using a fixed ` it is common to allow the attacker to choose
the value of ` so long as it remains polynomially bounded in n. In this case one usually considers the distribution
As,χ which returns a single sample, i.e. ` = 1, for a fixed secret s and allow the attacker access to an oracle which
returns in constant time elements from As,χ. Further, a short or sparse secret variant of the problem is sometimes
considered in which the secret s has entries sampled from another distribution of small elements such as those
polynomials having at most a fixed number of non-zero coefficients.

Lastly, we have the generalisation of the NTRU problem.

Problem (Ideal NTRU problem (Ideal-NTRU f ,g,m,χ,ρ)). Let χ be a distribution of small elements over R, ρ be
a positive real which bounds χ and m be a positive integer. Sample two matrices u,v ← χm×m such that u is
invertible when considered modulo g. Compute, as an element of Rm×m

g the quotient h = vu−1. The Ideal NTRU
problem Ideal-NTRU f ,g,m,χ,ρ is, given h and ρ, to find two matrices u′,v′ ∈ Rm×m with u′ invertible modulo g,
h = v′u′−1 mod g, ‖u′‖ < ρ and ‖v′‖ < ρ.

One may wish to sample the entries of u and v from slightly different distributions, for example to ensure that
u is invertible with a reasonable probability, however for simplicity we will not distinguish the two distributions.

MAIN EXAMPLES
If we fix g to be an integer q then Ideal-SISX ,q,m,`,ρ is the original SIS problem [3] (any monic linear f can be

used to remove the polynomial structure), Ideal-SIS f ,q,1,`,ρ is the Ring-SIS problem [60, 61] and Ideal-SIS f ,q,m,`,ρ

is Module-SIS which bridges the two [53]. Furthermore, Ideal-LWEX ,q,m,1,`,χ is the original LWE problem when
χ is a (discrete) Gaussian distribution [65], Ideal-LWE f ,q,1,1,`,χ is the polynomial LWE problem [71]1, and its
extension to modules is Ideal-LWE f ,q,m,1,`,χ [25]. Finally, Ideal-NTRU f ,q,1,χ,ρ gives the typical NTRU problems
depending on the choice of f and χ [46, 31, 19].

On the other hand, examples of g not being a constant polynomial are Ideal-NTRUXn−1,X−2,1,χ,ρ, with χ
returning binary polynomials of Hamming weight h, which gives the Mersenne low Hamming ratio search prob-
lem, MLHRn,h , and short secret Ideal-LWEXn−1,X−2,1,1,1,χ with the same χ gives the Mersenne low Hamming
combination search problem, MLHCn,h [1]. Also, for an integer q and χ a discrete Gaussian distribution,
Ideal-LWEXn+1,X−q,1,1,`,χ, is the integer ring learning with errors problem of Gu [41]. Lastly, Hamburg [43]
considered a module version of the decision problem, namely the Ideal-DLWEXn−Xn/2−1,X−q,m,1,`,χ problem for
certain choices of n and q and with χ returning ternary polynomials.

2.5 RECOGNIZING SMALL ELEMENTS IN Rg

In this section we focus on the case that small elements in R have small coefficients; however the same discussion
is relevant when ι is some other embedding though it may play out differently in that case.

When the ciphertext modulus is an integer it is easy to recognize small elements in Rg as we can simply
reduce every coefficient into the range (−g/2,g/2] and smallness (which will be relative to g) is readily apparent.
Alternatively, when g = X − b then Rg � Z/ f (b)Z so we can take an element of Rg, lift it modulo f (b) and
then expand it using a (balanced) b-ary expansion before looking at the coefficients of this expansion to determine
whether the element is a reduction of a small element in R or not.

For a ciphertext modulus of degree two or larger things get more complicated in general. One obvious approach
which works for any f and g is to consider the lattice

{x ∈ Zn | x = ι(y) for some y ∈ R such that y ≡ 0 mod gR}

and note that (any lift of) a small element of Rg is close to this lattice. Given an element z ∈ Rg, one can attempt
to solve the closest vector problem in this lattice with target vector any lift of z using, for example, the embedding
technique. In doing so, one recovers an element w ∈ R such that w ≡ z mod gR and which has small coefficients
if and only if z is the reduction of a small element in R, namely of w itself.

In some cases, this will be overkill though. For example, if f and g can be written as polynomials in some
power of X , say Xp with f (X) = F(Xp) and g(X) = G(Xp), then we can split the problem into p cases since for a
small element w ∈ R each coefficient of repg(w) depends only on n/p coefficients of w and each such coefficient
only affects one coefficient of repg(w). In this case one reduces the problem to determining smallness in the ring

1Stehlé et al. originally called their problem Ideal-LWE however this is not the same as our problem which is much more general.
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Z[Y ]/(F(Y ),G(Y )). For more general ι than the coefficient embedding, one may also have a similar decomposition
and in this case the splitting needs to respect the notion of smallness as well.

In summary, some choices of f and g have efficient methods to determine whether an element of Rg is the
reduction of a small element in R while for others this is not true. It is unclear whether instances of Rg not having
such an efficient test for smallness can be effectively used in cryptographic applications.

2.6 WHAT HAPPENS WHEN a IS NOT PRIME?
In many cases, such as when g itself is an integer modulus and we consider the Ideal-LWE problem, there are

no fine-grained restraints put on the possible values for a which can be used securely. On the other hand, in the
MLHR and MLHC problems [2], the authors restrict to the case when a is a prime. Also, the divisibility of a
should be considered in the Ideal-NTRU setting from a practical point of view as, if it is highly composite with
many small primes as factors, it will be difficult to find invertible matrices u to use in the problem. All of this begs
the question of what happens when a is not a prime.

The obvious fact in this case is that the ring Rg can be written as a product of smaller rings using the Chinese
remainder theorem. If a is written as a product of coprime integers (e.g. powers of distinct primes) as a = q1 · · · qt
then we have

Rg �
Zq1 [X]
(r(X))

× · · · ×
Zqt [X]
(r(X))

,

together with the t natural homomorphisms θi : Rg → Zqi [X]/(r(X)). This leaves the potential for the problem to
be split into t smaller problems which can be solved independently and whose solutions can be combined to solve
the original problem.

For lattice attacks, the reduction in the size of the integer modulus has little effect on the algorithms as the
important parameter is the dimension of the lattice. However, for combinatorial attacks it is possible that reducing
a can have a positive effect in reducing the complexity of the algorithms. We discuss this further when explaining
these attacks.

The problemwith the homomorphisms θi is that they do not reduce the dimension n of the ring R as a Z-module.
There are however circumstances where lowering the dimension is possible; to see this we again use the MLHR
problem. Here, the main reason a is taken to be prime is actually not because a itself is prime but rather that such
an a forces the dimension n to be prime. If n were composite, say n0 | n, then Xn0 − 1 divides Xn − 1 and we have
(Xn − 1,X − 2) ⊆ (Xn0 − 1,X − 2) which is the same as the statement that (2n0 − 1) | (2n − 1). In this way the
problem can be considered in a smaller dimension which in the case of the MLHR problem and for suitable n0 is
likely to still be an instance of the same problem. The issue arises here because f is not irreducible rather than a
not being prime.

2.7 WHAT HAPPENS WHEN f IS NOT IRREDUCIBLE?
If there exists f ′ | f then there is a map R→ R′ = Z[X]/( f ′(X)) which maps the distribution χ to a distribution

χ′ and if χ′ can effectively be seen as a distribution of small elements it may be possible to mount an attack on this
smaller dimensional problem to recover partial information about the solution of the original problem. Actually,
one need only have f ′ dividing f modulo a as exemplified by the ‘evaluation at one’ attack in [36]. The main
restriction however is that the distribution of small elements is very likely to become indistinguishable from random
in most cases hence f being reducible doesn’t immediately imply the existence of an attack.

2.8 A GENERIC TRANSFORMATION TO NORMAL FORM FOR IDEAL-LWE
In [12, Section 3.1], Applebaum et al. give a generic transformation from the LWE problem with modulus a

prime power to one in which the secret vector is sampled from the error distribution at the cost of reducing the
number of samples. In our setting we can apply the same technique.

Suppose we are given an instance (a,b) ∈ R`×mg ×R`×kg for some ` > m. Suppose further that there is a submatrix
A of a, consisting of m rows of a, such that A is invertible over Rg. Write B for the corresponding submatrix of b,
that is taking the same rows we did to give A. Write (ā, b̄) for the remaining rows not in (A,B). Define a′ := −āA−1

and b′ = b̄ + a′B.
If (a,b) consists of samples from the Ideal-LWE distribution, then (a′,b′) ∈ R(`−m)×mg × R(`−m)×kg are samples

from the Ideal-LWE distribution whose secret is sampled from the error distribution. First, to see that a′ is uniformly
random we note that the map Rm

g → Rm
g , α 7→ −αA−1 which we are applying to the uniformly random rows of ā

(i.e. the first component of the remaining samples) is an isomorphism. To see that b′ is of the required form write
E = B − As for the error in the samples used to construct (A,B), here s is the secret associated with the original
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samples. Then we have that the secret for the samples (a′,b′) is E as we have

b′ − a′E = b̄ + a′B − a′(B − As) = b̄ − ās = ē.

We also see that the error in the remaining samples does not change. Alternatively, if b were uniformly random
then so too is b̄ and hence also b′.

We therefore see that the transformation works only when such an invertible matrix A can be found and the
probability of this depends on ` but also on the value of a. If a is divisible by many small primes then the proportion
of invertible elements in Rg decreases and the less likely one will be able to invoke the transformation.

2.9 MODULUS SWITCHING FOR THE SHORT SECRET IDEAL-LWE PROBLEM
In the case of an integer ciphertext modulus, one can use the technique of modulus switching. This is a

technique which allows one to transform elements in the ring Rq1 , with integer ciphertext modulus q1 to elements
in a new ring Rq2 , with q2 another integer while preserving the relative size of the elements. One can apply this
transformation to the learning with errors family of problems as was done in the BGV levelled fully homomorphic
encryption scheme [25] to reduce noise growth.

When replacing the integer modulus with a general polynomial ciphertext modulus one can do the same.
Suppose we have an element y ∈ Rg1 and we want to convert it to an element y′ ∈ Rg2 , we can do so using
Algorithm 1.

Algorithm 1: ModulusSwitch
Input : An element y ∈ Rg1 with R = Z[X]/( f (X)) and n = deg f
Output
:

An element y′ ∈ Rg2

1 1, β(X), γ(X) ← XGCDQ[X](g1(X), f (X));
2 y(X) ← repg1 (y);
3 p(X) ← y(X)β(X)g2(X) mod f (X);
4 Write p(X) = pn−1Xn−1 + pn−2Xn−2 + · · · + p1X + p0;
5 y′(X) ← bpn−1eXn−1 + bpn−2eXn−2 + · · · + bp1eX + bp0e;
6 y′← y′(X) mod g2(X);

One might wonder if the output depends on the choice of lift in line 2 however since g1(X)β(X)g2(X) ≡
g2(X) mod f (X) this is not the case.

In the short secret variant of the Ideal-LWE problem we can use modulus switching to transform an instance
of the problem over Rg1 to one over Rg2 as follows. Suppose we are given samples (a,b) ∈ R`×mg1 × R`×kg1 where
b ≡ as+e mod g1R for some small secret s ∈ Rm×k and error e ∈ R`×k . We can apply Algorithm 1 component-wise
to both a and b to give a′ ∈ R`×mg2 and b′ ∈ R`×kg2 respectively. Then we have b′ ≡ a′s + e∗ mod g2R for some
element e∗ ∈ R`×k , the size of which depends on f , g1, g2, s, in particular on ‖s‖2, and the original size of e. If
we write e′ for the result of applying ModulusSwitch to e mod g1R and lifting it to an element of R`×k then we can
write e∗ = e′ + es + e+ where

es[i, j] :=
m∑
t=1

(
bai,tst , j βg2 mod f e − bai,t βg2 mod f est , j

)
e+[i, j] := bbi, j βg2 mod f e −

m∑
t=1
bai,tst , j βg2 mod f e − bei, j βg2 mod f e

and ai, j, bi, j are lifts of ai, j and bi, j to R. We note that ‖ι(e+)‖∞ ≤ m+2
2 while the size of es depends on the size of

s.
As a concrete example, for f = Xn+1, g1 = Xn1 −q1 or g1 = q1 for some integer q1 and similarly g2 = Xn2 −q2

or g2 = q2 for some integer q2 (any combination is possible), we found experimentally that if σ2
1 is the variance

of the original error distribution, the variance of the new error distribution is σ2
2 ≈ σ

2
1 (q2/q1)

2 + 0.085‖s‖22 . This
implies we can only apply modulus switching if the secret has very small 2-norm such as having a sparse binary
vector of coefficients. In particular, this is typically not true when applying the generic transformation from the
previous section as the new secret is sampled from the error distribution which usually cannot be too small due to
Arora-Ge style attacks (see Section 5.7). In general, the relationship between all the parameters which determine
how large e∗ is appears difficult to write down.
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In particular, this gives us some confidence in the hardness of the Ideal-LWE problem with general polynomial
modulus g. Suppose we could solve this problem for a given modulus g2, this would give us an algorithm to solve
the short secret problem for a suitable integer modulus g1 and narrow enough error distribution. Namely, we could
use modulus switching to transform such samples modulo g1 to samples modulo g2 at the cost of increasing the
size of the errors. After this, one could apply the attack which works modulo g2, allowing one to find the solution
to the problem modulo g1. Of course, if the error distribution is too narrow, we already have attacks on the integer
modulus Ideal-LWE problem such as the Arora-Ge attack and in that case the reduction may be meaningless.

3 ATTACKS ON THE SIS FAMILY OF PROBLEMS
3.1 SIMPLE LATTICE ATTACK

One can view the original SIS problem, Ideal-SISX ,q,m,`,ρ, as an approximate shortest vector problem on the
`-dimensional q-ary lattice

Λ
⊥
q (A) :=

{
z ∈ Z`

�� AzT ≡ 0T mod q
}
.

where A ∈ Zm×`q is the uniformly random matrix defining the problem. We note that with high probability the
matrix A is full rank and further that the lattice Λ⊥q (A) always has rank m and with high probability has a basis of
the form (

I`−m C
0 qIm

)
,

for some (` − m) × m integer matrix C, and thus volume qm. Since we are looking for a non-zero vector of length
at most ρ the problem is equivalent to the Hermite shortest vector problem HSVPγ with approximation factor
γ = ρq−m/` .

If we perform lattice reduction on the lattice Λ⊥q (A) in an attempt to find a short enough non-zero vector then
we need to use an algorithm that can achieve a root Hermite factor of at most δ0 = ρ

1/`q−m/`
2 .

Typically, the dimension ` of the lattice will be large so that running such a lattice reduction algorithm will be
very costly. One can try to get around this by removing columns from the matrix A which lowers the dimension of
the lattice however this may reduce the number of possible solutions to zero.

When considering the ring and module variant Ideal-SIS f ,q,m,`,ρ of the problem the approach remains the same
after rewriting the product AzT as the product between a matrix Ã ∈ Zmn×`n

q , depending on A and f , and ι(z) ∈ Z`n.
Now one can construct the lattice Λ⊥q (Ã) and again apply a lattice reduction algorithm to it. More detail on exactly
how to construct Ã is given below when we generalise to using a polynomial g in place of q.

GENERALISATION
For the more general problem Ideal-SIS f ,g,m,`,ρ, the SIS lattice becomes

Λ(a1, . . . ,a`) =

{
(ι(z1), . . . , ι(z`)) ∈ Z`n

����� zi ∈ R,
∑̀
i=1

aizi ≡ 0 mod gR

}
.

To compute a basis of this lattice we can use standard methods for computing the left kernel of the (mn+ ` deg r) ×
` deg r matrix ©­­­­­­­­­­­­­«

Ma1,1 Ma2,1 · · · Ma` ,1
Ma1,2 Ma2,2 · · · Ma` ,2
...

...
. . .

...
Ma1,m Ma2,m · · · Ma` ,m
aIdeg r

aIdeg r
. . .

aIdeg r

ª®®®®®®®®®®®®®¬
,

where Mai , j ∈ Z
n×deg r is the matrix of multiplication by ai, j (the jth component of ai) taking an element from

R, represented by its coefficient (row) vector, to an element of Rep(Rg) represented by its coefficient vector up to
multiples of a. Finding a basis for this kernel can be done by, for example, using the LLL algorithm. It is then
a matter of running a strong enough lattice reduction algorithm on Λ(a1, . . . ,a`) in order to find a small enough
non-zero vector in this lattice.
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When g is a polynomial with small coefficients we may have many vectors in this lattice which are small but
give rise to the trivial solution modulo gR. However, these are valid solutions to the Ideal-SIS problem and in this
case the problem becomes trivial if the norm of the vector of coefficients of g is smaller than ρ.

If we allow only solutions which are non-zero modulo gR, as will be needed in Section 5.5 when solving
Ideal-LWE via Ideal-SIS, then the existence of these trivial short vectors does not prevent us from finding small
non-trivial vectors. We found that running the BKZ algorithm still enables one to recover non-trivial vectors of
length roughly δ`n0 Vol(Λ(a1, . . . ,a`))1/`n in the lattice and hence solve Ideal-SIS for values of ρ larger than this.

Requirements. There are essentially no requirements for performing this type of attack besides the existence of a so-
lution to the problem and the use of a strong enough lattice reduction algorithm. In particular, if the lattice reduction
algorithm achieves a root-Hermite factor δ0, then the attack is likely to succeed if δ`n0 Vol(Λ(a1, . . . ,a`))1/`n < ρ.

3.2 A MEET-IN-THE-MIDDLE ATTACK
The most naïve attack one can consider on the Ideal-SISX ,q,m,`,ρ problem is to perform a brute force attack by

enumerating over all possible non-zero vectors z ∈ Z` such that ‖z‖ ≤ ρ and testing if AzT ≡ 0T mod q. Clearly,
the running time of such an approach is exponential in `.

One can improve the running time at the expense of using a larger amount of memory by using a meet-in-the-
middle approach. Namely, as aTi is the ith column of the matrix A, we can rewrite the congruence as

k∑
i=1

aTi · zi ≡ −
∑̀
i=k+1

aTi · zi mod q,

for some 1 ≤ k ≤ `; typically k = `/2. After computing and storing the result of the left-hand side of the
congruence for all possible choices of z1, . . . , zk that could lead to a solution, one can then enumerate over the
possible remaining choices for zk+1, . . . , z` , compute the right-hand side of the congruence, and search for a collision
with the stored values. If a collision is found for which the corresponding z satisfies the norm bound then one has
found a solution. It is straightforward to generalise this to the inhomogeneous version of the problem.

The straightforward implementation of the meet-in-the-middle attack described above gives a time-memory
trade-off which follows the curve TS = Õ

(
#{z ∈ Z` | ‖z‖ ≤ ρ}

)
, where T is the time and S is the space used.

Schroeppel and Shamir [68] improve on this basic approach in the context of the (modular) subset-sum/knapsack
problem (m = 1 and z a binary vector), significantly reducing the memory requirements so that the left-hand side
becomes TS2 instead of TS. A simpler description of the Schroeppel–Shamir algorithm was given by Howgrave-
Graham and Joux [48]. The idea is that one does not need to compute the two lists in full to find a collision but
instead one can compute them on the fly using priority queues. This approach uses four lists rather than two.

GENERALISATION
It is self-evident that this attack can be generalised to work against the Ideal-SIS f ,g,m,`,ρ due to elements in Rg

having a canonical representative, hence allowing us to efficiently find collisions.

3.3 COMBINATORIAL ATTACKS
Another strategy is a divide and conquer approach in which one solves smaller problems and combines the

solutions to give a solution to the original problem. The smaller problems will, in general, be variants of the
inhomogeneous problem, but the approach to solving them is much the same as with the homogeneous case. As
explained in [17], these smaller problems will have a smaller solution space and a higher density, that is a higher
expected number of solutions. Formally, the density of the inhomogeneous SIS problem is defined as

δ =
#{z ∈ Z` | ‖z‖ ≤ ρ}

#Zmq
≈

(
2πe
`

)`/2
ρ`

√
`πqm

,

where the approximation is for large ` using Stirling’s formula. For combinatorial attacks, it is more natural to
consider the problem in which, rather that requiring ‖z‖ ≤ ρ, we instead require the coordinates zi to lie in some
subsetZ ⊂ Zwhich we denote by (I)SISm,`,q,Z . In this case, the density of the problem is defined to be (#Z)`q−m.
Typically,Z = {0,1} is considered for combinatorial attacks, though this is not strictly necessary.

If the density of the problem is much less than 1 then the problem is said to have low density while if it is much
larger than 1 it is a high density problem. If the density is close to one the problem is said to have “density 1”.
Differing attacks apply to problems with different densities.
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THE ATTACK OF CAMION, PATARIN AND WAGNER
When the problem has very high density, one can use the attack first described by Camion and Patarin [26]

for the subset-sum problem and generalised by Wagner [72]. Here, we present the analysis given in [62] to solve
the SISm,`,q,Z problem. First, one splits the ` coordinates of z into 2k groups of roughly equal size. For each
group, compute the list of all possible values AzT mod q for z having entries from Z in the coordinates in the
group and zero otherwise. Each list contains roughly d := (#Z)`/2k elements in Zmq . Next, one combines the lists
in pairs by finding all pairs, x in the first list and y in the second list, for which the first logq d coordinates of x + y
are zero modulo q. The expected length of this new list is again approximately d. Now, one will have 2k−1 lists
containing vectors that are zero in the first logq d coordinates. Repeat the previous process on each consecutive set
of logq d coordinates until one has a single list of size roughly d and whose elements are zero in the first k logq d
coordinates. Search this final list for a solution in which all coordinates are zero. The parameter k is chosen such
that m ≈ (k + 1) logq d, which is equivalent to

2k

k + 1
≈
` log(#Z)

m log q
.

We note that, as opposed to lattice reduction techniques, in this case having a larger ` is beneficial as a larger k can
be chosen which means the lists are shorter and the attack is more efficient.

We remark that Minder and Sinclair give some refinements on the above attack which speed it up slightly [63].

THE ATTACK OF HOWGRAVE-GRAHAM AND JOUX AND THE IMPROVEMENTOF BECKER,
CORON AND JOUX

In the case of a relatively sparse solution z (typically with Z = {0,1}) one can attempt to split the solution by
the weight (number of non-zero coordinates) of z. In the context of the subset-sum problem, Howgrave-Graham
and Joux [48] proposed this method of splitting up z with the idea to reduce the problem to two smaller problems,
solving each recursively, and combining the solutions to give a solution to the original problem.

Suppose one is looking for a solution z of known weight ω to the SISm,`,q,Z problem defined by A. Concretely,
the idea is to choose a subgroup H ≤ Zmq and a random r ∈ Zmq /H and split the problem into the two problems
AzT1 ≡ rT mod H and AzT2 ≡ −rT mod H where z1 and z2 have weight ω/2 (and entries in Z). The hope is
that there is a pair of solutions such that z1 + z2 is a solution to the original problem. The subgroup H is chosen
to trade-off the probability that the random choice of r leads to a valid splitting of z. In the setting considered
by Howgrave-Graham and Joux the subgroup H is equivalent to reducing modulo some modulus, that is H is
isomorphic to Zmq′ for some q′ | q but in our case there is no guarantee a q′ of a suitable size exists. In this case one
can instead consider H which correspond to the congruence being satisfied in a certain set of coordinates only, that
is H is isomorphic to Zm′q for some m′ < m.

As mentioned, one problem with this approach is one should know the weight of a solution; if this is not the
case one can guess the weight is in some range [ω − 2ε,ω + 2ε] and then the solutions of the smaller problems
should have weight in [ω/2 − ε,ω/2 + ε].

The original attack of Howgrave-Graham and Joux was improved upon by Becker, Coron and Joux [18] by
allowing a larger coefficient set for the smaller problems allowing for some cancellation to occur in the sum z1 + z2;
thus the smaller problems now have a larger density and better parameter choices can be used.

REDUCING TO LWE: THE ATTACK OF BAI ET AL.
As well as analysing the combinatorial attacks above with an eye towards the inhomogeneous SIS problem, Bai

et al. [17] also introduced another combinatorial attack on this problem by reducing it to the Ideal-LWEX ,q,`−m,1,m,χ
problem in which the secret is short and where χ is some unknown distribution over the set Z. The idea is to
write the matrix A defining the problem in Hermite normal form. Assuming A has rank m so that there exists an
invertible m×m submatrix of A (which we may assume by reordering the columns consists of the first m columns),
there exists a matrix U such that U A =

(
Im A′

)
. Then, in the inhomogeneous case, AzT ≡ tT mod q if and only

if UtT ≡ A′zT2 + zT1 mod q where z =
(
z1 z2

)
.

Since there are only m such LWE samples, many of the attacks discussed in Section 5 below cannot be applied
to this case. Instead, the authors propose to apply the same combinatorial algorithms described above to the
inhomogeneous SIS problem defined by A′ but adapted to look for approximate collisions due to the presence of
the additional zT1 term.

In more detail, for the Camion, Patarin and Wagner approach, one computes the initial lists as before but
when combining two lists one only requires the logq d coordinates under consideration to be in Z and hence
only approximately zero modulo q. Suppose one is considering x from one list and y from the other with
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xT ≡ A′zT1 mod q and yT ≡ A′zT2 mod q where the first j logq d coordinates of both x and y lie in Z for some
j ≥ 0. One wants to check whether the coordinates from j logq d + 1 to ( j + 1) logq d of x + y lie inZ; however a
problem occurs in that in the preceding coordinates one is no longer summing zeros but small elements which may
grow to no longer be inZ. To get around this, Bai et al. propose that one is only allowed to add x+ y to the new list
if the non-zero elements in the first j logq d coordinates of x and y occur in differing coordinates so that no growth
occurs.

When adapting the Howgrave-Graham and Joux approach of splitting the solution by weight, Bai et al. split
both z1 and z2 by weight and when combining solutions the non-zero coordinates in both parts should not overlap.
As before, this can be extended to allow for a slightly larger allowed set of solutions for the subproblems to increase
the density and allow some cancellation to occur when combining solutions but now separately in both z1 and z2.

GENERALISATION
Bai et al. [17] offer a high-level framework encompassing the attacks described in this subsection. The approach

is to consider what they call the (G,m,B)-ISIS problem, where G is an Abelian group, m is a natural number and
B ⊂ Z is a small subset of the integers containing zero. The problem is defined by a pair (A, s) ∈ Gm × G and one
must find an x ∈ Bm such that Ax = s. In the words of the authors, all these combinatorial algorithms are obtained
by combining two basic operations (possibly recursively):

1. Compute lists of small solutions to some constrained problem obtained by “splitting” the solution space (i.e.,
having a smaller set of possible x) in a quotient group G/H. Splitting the solution space lowers the density
(expected number of solutions), but working in the quotient group G/H compensates by raising the density
again.

2. Merge two lists of solutions to give a new list of solutions in a larger quotient group G/H ′.

Our Ideal-SIS problem almost fits within the framework of Bai et al., the obvious approach is to write it as the
(Rm

g , `, {z ∈ R | ‖z‖ ≤ ρ})-ISIS problem (with s = 0), but our B is not a subset of the integers. When g is an integer
this problem can be rectified by forgetting the ring structure and considering it as the (Zmn

g , ln,B ′)-ISIS problem
for some suitable B ′ ⊂ Z depending on the bound on the infinity norm of a valid solution. The case of polynomial
g may look trickier but actually there isn’t an issue here when one notes that the approach of these algorithms is to
first solve the problem in quotient groups G/H. We can simply choose G = Zmn

a and as the final quotient group
use H = Hm

0 where H0 ⊆ Z
n
a is the group generated by {ι(gX i) : 0 ≤ i < n} when taken modulo a. Although

such subgroups H were not explicitly used in [17], this choice of H is the natural generalisation of the subgroup
H = pZnq for p | q for integers p and q.

With this style of attack it is potentially advantageous that a has many divisors as this provides many options for
the choice of subgroup H. However it is more practical to consider subgroups which also decrease the dimension
of the lattice associated with the quotient G/H.

For problems which have a more elaborate ring structure than Z, Bai et al. propose to use the “symmetries” of
the ring to speed up the attacks. These symmetries only appear in very special rings and those suggested do not
apply when g is a non-constant polynomial as they are not fixed by the symmetry.

Requirements. Such combinatorial attacks rely on the existence of suitable subgroups H of Rm
g . When m is large

such subgroups always exist however for small m they may not, for example the MHLC problem has Rm
g = ZM for

a Mersenne prime M which has no non-trivial subgroups. Furthermore, such an attack is aided when the solution
space can be nicely partitioned using disjoint linear subspaces.

4 ATTACKS ON THE NTRU FAMILY OF PROBLEMS
4.1 THE STANDARD NTRU LATTICE ATTACK

Right from its very inception, attacks utilizing lattice reduction were considered against the NTRU problem. In
the first draft of the NTRU scheme, circulated at the CRYPTO ‘96 rump session, a simple lattice attack was already
briefly mentioned [45]; however, the lattice attack was analysed in detail by Coppersmith and Shamir [31]. We
remark that these attacks are against a slightly different problem than the one we defined due to [45] including an
extra factor p for an integer p coprime to q.

To begin, one notes that in the Ideal-NTRU f ,q,1,χ,ρ problem we are searching for a u′ ∈ R = Z[X]/( f (X))
such that the scalar-vector product u′(1,h) mod q consists of two elements with small coefficients. By making the
relationship between the coefficients explicit we can formulate this problem in terms of a lattice problem.

Let us define hi to be the coset representative of hX i of degree at most n − 1, where as usual n = deg f , and

61



Bootland, C. & Castryck W. & Szepieniec A. & Vercauteren F.

write hi =
∑n−1

j=0 hi, jX j . Similarly, write u′ =
∑n−1

j=0 u′jX
j then one requires

(
u′0 u′1 · · · u′

n−1
) ©­­­­«

1 0 · · · 0 h0,0 h0,1 · · · h0,n−1
0 1 · · · 0 h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 hn−1,0 hn−1,1 · · · hn−1,n−1

ª®®®®¬
,

when reduced modulo q into the symmetric interval about zero, to have small components and thus be a short
vector. Equivalently, we must find a short vector in the lattice generated by the rows of the matrix

©­­­­­­­­­­­­­«

1 0 · · · 0 h0,0 h0,1 · · · h0,n−1
0 1 · · · 0 h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 hn−1,0 hn−1,1 · · · hn−1,n−1
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q

ª®®®®®®®®®®®®®¬
.

We call this lattice the standard NTRU lattice and denote it by ΛNTRU(h).
Clearly, with the obvious notation for the coefficients of u and v, the lattice contains the vector(

u0 u1 · · · un−1 v0 v1 · · · vn−1
)

which is short.
It is potentially profitable to multiply the first n columns of this matrix by a real scalar λ to balance the size of

the coefficients of λu with those of v. In addition, if the coefficients of u are distributed with a non-zero mean µu,
such as in the binary coefficient case, and similarly for µv, then one can instead consider the closest vector problem
in this lattice with target vector

(
µu · · · µu µv · · · µv

)
.

When considering the shortest vector problem, the lattice has volume (λq)n and the Gaussian heuristic states

we expect the shortest non-zero vector to have length roughly at most
√
λqn/πe. If

√
λ2 ‖u‖2 + ‖v‖2 is sufficiently

smaller than this value then performing lattice reduction on this lattice with a strong enough algorithm can recover
a suitable u′.

As an example, the parameters f (X) = (X509 − 1)/(X − 1) and q = 2048 are specified in the specification
document of the NTRUEncrypt submission to NIST’s post-quantum cryptographic standardization process as
suitable parameters for a category 1 public-key encryption scheme. Further, u is a uniformly random ternary
polynomial and v is a ternary polynomial having q/16− 1 coefficients equal to 1 and the same number equal to −1.
Thus ‖v‖2 = 254 and for simplicity let us assume ‖u‖2 = 339, then we take λ =

√
254/339. If the standard NTRU

lattice were to behave like a random 2n-dimensional lattice with volume (λq)n then we would expect a shortest
non-zero vector of length roughly 324.7. One the other hand, we actually know that the lattice contains a vector of
length roughly

√
2 · 254 ≈ 22.5 which is much smaller than predicted by the Gaussian heuristic.

While the lattice contains a very short lattice vector, it turns out that in practice, for large enough parameters,
lattice reduction algorithms which are strong enough to recover such a short vector are still prohibitively expensive
in practice so such attacks cannot be applied directly to cryptosystems utilising theNTRUproblemwhen instantiated
properly.

GENERALISATION
Suppose we have an element h = vu−1 ∈ Rm×m

g sampled from the Ideal-NTRU distribution. We can apply the
standard lattice attack on this problem by considering the 2mn-dimensional lattice

Λ(h) = {(ι(x), ι(y)) ∈ Z2mn | x,y ∈ Rm and hxT ≡ yT mod gRm},

which clearly contains the vectors (ι(ui), ι(vi)) where uT
i is the ith column of the secret matrix u and similarly for

the vTi . This lattice therefore contains at least m linearly independent short vectors.
We can easily construct a spanning set for Λ(h) by letting x run over a Z-basis of Rm (e.g. a copy of the

power-basis of R in each of the m components) and taking yT = hxT . Further, we must add the vectors (0,gz) as z
runs over a basis for Rm. The lattice Λ(h) has volume |Rm

g | = am deg r with high probability.2 Thus, the Gaussian

2If the GCD of all the entries of v (lifted to R) together with g is not 1 then the volume is larger.
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heuristic implies that the expected length of the shortest vector in Λ(h) is about
√

mn/πeadeg(r)/2n while if the error
distribution samples elements with independent coefficients from a centred distribution having standard deviation
σ then we expect to find at least m linearly independent vectors having norm roughly

√
2mnσ. If we are required

to find u′ and v′ with norms less than ρ as in the definition of the Ideal-NTRU problem, then we only need to find
lattice vectors of length approximately

√
2mρ and we see that if ρ �

√
n/2πeadeg(r)/2n then we must find unusually

short vectors in the lattice. By assumption, these vectors exist and if there aren’t shorter non-zero vectors in the
lattice it is simply the task of running a good enough lattice reduction algorithm in order to find them. In particular,
we will need m such lattice vectors for which the first half of the coordinates correspond to vectors in Rm which
are linearly independent modulo gRm so that we can recover an invertible u′.

As with the lattice attack against Ideal-SIS, our lattice contains trivial vectors when considered modulo gR and
these trivial vectors can be very short as in the MLHR problem for which g = X − 2 itself gives rise to vectors of
norm

√
5. Even if there are short trivial vectors we can still try to recover short non-trivial vectors from the reduced

basis for the lattice which could allow one to obtain a small enough solution. However, experimentally we found
the size of any solution we could recover using strong lattice reduction was too large when gR contains polynomials
with very short coefficient vectors such as the case of MLHR.

To summarise, the following are necessary conditions to be able to mount a successful attack; however, they
may not be sufficient on their own:

Requirements. For this attack to work on the Ideal-NTRU f ,g,m,χ,ρ problem we require:
√

2πe · σ < adeg(r)/2n

√
n · σ < ρ

√
2mn · σ < min{‖x‖ | x ∈ gR \ {0}}

where σ is the standard deviation of the distribution χ. The three conditions come respectively from the expected
length of any (ι(ui), ι(vi)) being smaller than the Gaussian heuristic, than the bound ρ required for a solution to
exist and finally that it is shorter than any non-zero spurious vector.

Remark 1. Even if g is an integer, in some cases, such as when f = Xn −1, the first m rows of the reduced basis for
the lattice will not be linearly independent as elements of Rm since multiplication by X gives another short vector
in the lattice. This means they will not give the invertible matrix required and so one must look further than just
the first m rows of the reduced basis to find suitable linearly independent vectors. While this does add some more
complexity to the attack it is not the bottleneck so we do not consider this issue further here.

4.2 ZERO-FORCING ATTACKS

It was noted by May [58] that the standard lattice attack does not take into consideration that it is typical for
the coefficient vectors of u and v not only to be short but actually be rather sparse; that is to say many of their
coefficients are zero. To aid lattice reduction, he suggested to multiply certain columns in the standard lattice by a
large scaling factor in order to reduce the space of short lattice vectors and all but necessitate that the vectors found
will be zero in these columns. Initially, in the context of having f (X) = Xn − 1, the first c columns corresponding
to coefficients of v were suggested to be chosen, akin to the assumption that there exists a so-called zero-run of c
zero coefficients in v since multiplying by X i (a so-called rotation) cyclically shifts the coefficients while leaving
their value unchanged.

It was quickly noted by a number of people that one need not choose consecutive coefficients but any set of c
columns works. In fact, May and Silverman argue that choosing columns uniformly at random is the best recourse
for an attacker using this approach [59].

While the above method strongly encouraged lattice reduction algorithms to produce vectors with zeros in
certain coordinates, it does not actually reduce the dimension of the lattice being reduced, only the dimension of
the space of small solutions. Silverman [69] demonstrates a much more efficient manner of achieving this property
that does reduce the dimension of the lattice to be reduced, which he calls a zero-forced lattice.

The approach is a straightforward application of simple linear algebra. One starts with the n linear equations in
2n unknowns

vj ≡

n−1∑
i=0

uihi, j mod q for j ∈ {0,1, . . . ,n − 1}

and chooses subsets I,J ⊆ {0,1, . . . ,n − 1} which are the indices of u and v, respectively, which are being forced
to be zero. Naturally, we assume |I | + |J | ≤ n. Setting ui = 0 for i ∈ I and vj = 0 for j ∈ J gives us |J | linear
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equations
n−1∑
i=0
i<I

uihi, j ≡ 0 mod q for j ∈ J

in n − |I| unknowns. Suppose we can rewrite this system of linear equations in a way to express the variables ui
for i ∈ I ′ ⊆ {0,1, . . . ,n − 1} \ I in terms of the remaining variables, where |I ′ | = |J |:

uι ≡
n−1∑
i=0

i<I∪I′

uiβi,ι mod q for ι ∈ I ′.

Substituting these expressions back into the remaining equations we started with gives a reduced system of n− |J |
equations

vj ≡

n−1∑
i=0

i<I∪I′

uiαi, j mod q for j ∈ {0,1, . . . ,n − 1} \ J

in 2(n − |J |) − |I| unknowns, for some constants αi, j . This system will have a small solution if the initial choices
of I and J were good ones. The lattice that is now of interest is generated by the rows of the matrix(

λIn−|I |−|J | A
0 qIn−|J |

)
,

where A = (αi, j) where i runs through {0,1, . . . ,n− 1} \ (I ∪I ′) and j runs through {0,1, . . . ,n− 1} \ J . Running
a strong enough lattice reduction algorithm on this lattice will reveal any pairs (u′,v′) which conform to the choice
of I and J .

It should be noted that for any vector found by reducing the zero-forced lattice above there is no absolute
guarantee that the ui are small for i ∈ I ′. One can consider so-called non-lossy zero-forced lattices which ensure
these other coefficients are small [67]. The non-lossy zero-forced lattice is spanned by the rows of the block matrix

©­«
λIn−|I |−|J | A λB

0 qIn−|J | 0
0 0 λqI |J |

ª®¬ ,
where B = (βi,ι) for i ∈ {0,1, . . . ,n − 1} \ (I ∪ I ′) and ι ∈ I ′. However, Rosenberg notes that in most of the cases
he considered the attack is more efficient if one does not include these extra columns.

Again, this type of attack works best when the defining polynomial modulus f is very sparse as then rotations
of (u,v) are still sparse so the probability of choosing good sets I and J is significantly improved.

THE ATTACK OF BEUNARDEAU ET AL.
Soon after the initial appearance of [1] inwhich the authors claimed adapting known lattice attacks against NTRU

would be ineffective against the MLHR problem, Beunardeau, Connolly, Géraud and Naccache [20] presented a
combinatorial attack, using lattice reduction as a subroutine, which they claimed could be used to successfully
solve the MLHR problem with parameters which were claimed to give a security of roughly 120 bits. While not
mentioned anywhere, one should see this attack as the natural generalisation of the zero-forcing attack on the NTRU
problem given above.

Recall that the MLHRn,h problem can be written in our language as the Ideal-NTRUXn−1,X−2,1,χ,ρ problem in
which χ is the uniform distribution over polynomials with binary coefficients having exactly h coefficients equal to
one. In this case, the ring Rg is equal to ZM for a Mersenne number M = 2n − 1 hence the problem involves only
large integer arithmetic. We will follow the original description of the attack given in [20].

The main starting point to the attack is to note that, as elements of ZM , v and u have Hamming weight h as
binary strings and hence have sparse binary expansions. This allows one to guess that certain bits in v or u are
zero. For this, Beunardeau et al. partition the set {0,1, . . . ,n− 1} into interval-like parts in two ways: one for v and
one for u. Such an interval-like partition P is given by indices 0 ≤ p1, . . . , pk < n and the parts are of the form
{pi, . . . , pi+1 − 1} for 1 ≤ i < k and {pk, . . . ,n − 1} if p1 = 0 and {pk, . . . ,n − 1,0, . . . , p1 − 1} otherwise.

Each part of an interval-like partition will be called a block and blocks will be classified as either type 0 or type
1 as follows. A type 0 block is one in which we guess that the binary expansion of the integer in question (either v
or u) has all bits equal to 0; a type 1 block makes no assumption on the bits. Furthermore, only balanced partitions
are considered which means that the total length of the type 0 blocks differs by at most one from the total length
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of the type 1 blocks in the partition. Blocks of type 0 will also be called zero blocks and those of type 1 called
non-zero blocks.

In essence then, when choosing a pair of partitions for v and u we are guessing approximately half of the bit
positions in each of v and u are zero. Now given that exactly h of the n bits are one in the case of interest, for a
given partition there is a probability of approximately 2−h that a given integer modulo M = 2n−1 having Hamming
weight h conforms to the guess. Thus the probability over all possible pairs v and u that one chooses a correct pair
of partitions is approximately 2−2h .

Suppose the partitions we have chosen for u and v have non-zero blocks starting at bits s1, . . . , sk/2 and
t1, . . . , tk/2 respectively. Further, denote by ui and vi the lengths of the non-zero blocks and set w := maxi(ui, vi).
For a parameter K , define the lattice ΛK (h) as the span of the rows of the matrix

©­­­­­­­­­­­­­­­«

2w−u1 0 · · · 0 0 0 · · · 0 KH2s1

0 2w−u2 · · · 0 0 0 · · · 0 KH2s2

...
...

. . .
...

...
...

. . .
...

...
0 0 · · · 2w−uk/2 0 0 · · · 0 KH2sk/2
0 0 · · · 0 2w−v1 0 · · · 0 −K2t1
0 0 · · · 0 0 2w−v2 · · · 0 −K2t2
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · 2w−vk/2 −K2tk/2
0 0 · · · 0 0 0 · · · 0 K M

ª®®®®®®®®®®®®®®®¬

.

We can write

u =
k/2∑
i=1

xi2si mod M, v =
k/2∑
i=1

yi2ti mod M

for non-negative integers xi, yi which for a correctly chosen pair of partitions can be taken to be small. Choosing an
appropriately large K further means that (x1, . . . , xk/2, y1, . . . , yk/2,0) is a short vector inΛK (h); however, there may
be shorter vectors in the lattice. In particular, there are vectors of length

√
2` + 1 for any ` = si+1 − si , ` = ti+1 − ti ,

` = n+ s1 − sk/2 or ` = n+ t1 − tk/2 so that for larger values of k there will be too many other shorter vectors in the
lattice to stand a chance of finding one of interest.

The attack consists of sampling pairs of balanced interval-like partitions uniformly at random, constructing the
lattice ΛK (h) corresponding to this pair of partitions and then running the LLL algorithm in the hope of recovering
the vector corresponding to a suitable solution v′, u′ with both having binary expansions of Hamming weight h
and with h = v′u′−1 mod M . We note that as f = Xn − 1, rotations of u and v are also valid solutions which aids
the attack.

This attack was analysed by de Boer, Ducas, Jeffery and de Wolf in [22]; they argue that under standard lattice
heuristics, for each possible pair of partitions the probability of solving the MLHRn,h problem using this approach

is
(

1
2 + c

(
k
h + o(1)

))2h
for a small constant c which they estimate to be 1/140. They therefore suggest one should

start by considering partitions with a small number of blocks k, taking advantage of the smaller dimension for
the constructed lattice and slightly larger success probability and gradually increase k until one finds a suitable
solution.

We remark that this analysis is done with respect to all possible choices of u and v. It is an open question as
to whether there exist choices of u and v for which this attack does not succeed with constant probability in time
2(2+δ)h+o(1).

GENERALISATION
Switching from an integer to a polynomial ciphertext modulus presents a slight problem for the zero-forcing

attack as now the coordinates of the lattice vectors are not independent with respect to reduction modulo the
ciphertext modulus, a fact which becomes important when choosing which coefficients to set to zero. As seen with
the MLHR problem where f = Xn − 1 and the ciphertext modulus is X − 2, or more generally when g is monic
and linear, one should instead partition the n coordinates into blocks which should be treated in a similar way to
individual coordinates.

More generally, when there is coordinate dependency due to g being a non-constant polynomial, finding a basis
for the sublattice of the standard Ideal-NTRU lattice which corresponds to setting a certain set of blocks to be zero
is unfeasible. Instead, one can consider the superlattice

Λ
′(h) = {(ι(x), ι(y),z) ∈ Zm(2n+deg r) | x,y ∈ Rm, z ≡ ι(repg(xhT − y)) mod a}
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which contains Λ(h) as the sublattice for which z = 0. Here we have abused notation slightly as ι takes elements
of R to elements of Zn, however elements of ι(Rep(Rg)) only have non-zero coordinates in the first deg r positions
so we can drop the remaining zero coordinates.

Using the trick of multiplying the final m deg r coordinates by a large scalar before applying lattice reduction
means we will find many vectors for which these coordinates are zero, just as May did. In particular, we will want
to perform lattice reduction on some sublattice of

Λ
′
K (h) = {(x,y,z) ∈ Z

m(2n+deg r) | (x,y,K−1z) ∈ Λ′(h))},

for a large integer K , corresponding to setting some of the coordinates to zero.
Due to the freedom now present in introducing z it is straightforward to compute a generating set of vectors

for the sublattice of Λ′K (h) for which a given set among the first 2mn coordinates are all zero. The most important
point here is to look at the form taken by the vectors of such a sublattice which are zero modulo the ciphertext
modulus g as these are not actually solutions.

Returning to the case of theMLHR problem and the attack of Beunardeau et al. we saw that there were vectors in
the standard lattice attack whose norm was

√
5. However, they always contained consecutive non-zero coordinates

up to cycles since they correspond to X`(X − 2) for some `. In the zero-forcing attack, let us assume for simplicity
that the coordinate corresponding to the constant coefficient (of some copy of R) has not been picked to be set to
zero. We know that X` − 2` ≡ 0 mod gR so we have vectors of norm

√
1 + 2`+1 for 1 ≤ ` < n whenever the `th

coordinate of the same copy of R can also be non-zero.
We therefore see that in general the length of these trivial vectors depends on the gap between consecutive

coordinates which have not been set to zero. In this sense, it makes more sense to consider which coordinates we
allow to be non-zero rather than the description in terms of blocks that was given in [20]. The connection between
the two views is that the coordinates we allow to be non-zero are the coordinates which begin a non-zero block.

Explicitly, suppose we chose the sublattice so that the non-zero coordinates for the ith copy of Rm corresponding
to x are at columns αi, j ∈ {0, . . . ,n − 1} and are at columns βi, j for the ith copy of Rm corresponding to y, where
we start counting the columns from zero rather than one. Then the sublattice is spanned by the rows of

©­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­«

K ι(repg(h1,1Xα1,1 )) · · · K ι(repg(hm,1Xα1,1 ))

K ι(repg(h1,1Xα1,2 )) · · · K ι(repg(hm,1Xα1,2 ))

...
...

Ikx K ι(repg(h1,2Xα2,1 )) · · · K ι(repg(hm,2Xα2,1 ))

...
...

K ι(repg(h1,mXαm,1 )) · · · K ι(repg(hm,mXαm,1 ))

...
...

−K ι(repg(Xβ1,1 )) 0 · · · 0
−K ι(repg(Xβ1,2 )) 0 · · · 0

...
...

...

Iky 0
. . . 0

...
. . .

...
0 · · · 0 −K ι(repg(Xβm,1 ))

...
...

...

aKIdeg r
. . .

aKIdeg r

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

,

where kx and ky are the total number of non-zero coordinates across the columns for x and y, respectively. Thus
this lattice has dimension kx + ky + deg(r)m.

In the general setting, and where deg g ≥ 2, the shape of f and g affects how one should proceed. For example,
it may no longer be true in general that any element of Rg can be written as cXp for some integer c and power p
making it much more unlikely to choose a good set of non-zero coordinates when one tries to proceed as before.

There are some further cases in which we can utilise the previous approach by first rewriting the problem in that
form. For example, in the case that f = Xn − 1 and g = X` − b for small b then if ` and n are coprime there exists a
p such that `p ≡ 1 mod n in which case the map X 7→ Xp can be used to first transform the problem into one with
g = X − b. More generally, if the greatest common divisor of ` and n is d then we can transform the problem into
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one with g = Xd − b so we can assume that deg g | n. Now, we can play the same game except instead of treating
each copy of Rg as a single integer to be written in base b we have d integers (the coefficients of the polynomial
resulting from applying repg) which are to be written in base b. We choose coefficients of this base b expansion
which we allow to be non-zero and hope that there is a solution where these non-zero coefficients are small enough
to be found by lattice reduction. A similar idea works for f = Xn + 1 by considering the greatest common divisor
with 2n instead of n.

When f = Xn + f0 for some small integer f0 and g has small degree and small coefficients and the above
paragraph does not apply, one should choose sets of deg g consecutive coordinates which are allowed to be
non-zero. To illustrate this, we give the following example.

Example 1. Suppose we have f = Xn − 1 and g = X2 − X − 2 for some odd n (so that there is no evaluation at
−1 attack). It is easy to check that Xp ≡ 1

3 (2
j+1 + (−1)j)Xp−j + 2

3 (2
j − (−1)j)Xp−j−1 mod gR for any 0 ≤ j < p.

Taking our sublattice of Λ′K (h) to have pairs of consecutive non-zero coordinates means we will always be able
to find a vector in this sublattice corresponding to a desired solution. Furthermore, there are trivial vectors in
the sublattice of norm 1

3

√
22j+3 − 4(−2)j + 14 where j is the difference (modulo n coming from the structure of R)

between two such pairs of non-zero coordinates (counting from the first coordinate of each pair, say). Thus, so long
as we spread out our guesses for these pairs of consecutive non-zero coordinates enough to ensure that any trivial
vectors in the sublattice are not too short then we have a reasonable probability of solving the Ideal-NTRU problem
by running the LLL algorithm on that sublattice (over a random distribution of u and v).

On the other hand, when g is not of this form due to having at least one coefficient that is not small then we can
apply the standard Ideal-NTRU lattice attack of Section 4.1.

We further remark that in the case of the MLHR problem, de Boer et al. modify the lattice to balance the
expected sizes of the first kx+ ky entries of the lattice vectors by scaling the ith coordinate by certain powers of two.
Further, to simplify matters they chose exactly k non-zero coordinates in every copy of R so that kx = ky = km.

Without scaling, our lattice now has volume (aK)rm and as we take K to be very large the lattice is clearly
in the approximation regime so we expect that running the LLL algorithm will output particularly short vectors.
In practice, when attacking the MLHR search problem we found that even with a suitable guess for the non-zero
coordinates, LLL is not guaranteed to find a valid solution since other shorter vectors may exist in the lattice which
do not correspond to admissible solutions due to having negative entries (although they will most often do so).

Requirements. The main requirement for this type of attack is that the small elements we are interested in have
sparse coefficient vectors, meaning that many of the coefficients are zero. Further, the applicability and usefulness
of the attack are very dependent on the shape of f and g. Again, if these polynomials are very sparse and have
very small coefficients the attack works well while the more non-zero coefficients that f and g have and the larger
they are, the harder the attack is to perform.

4.3 MEET-IN-THE-MIDDLE ATTACK
Following a description given by Odlyzko; Howgrave-Graham, Silverman and Whyte [49] describe and analyse

a meet-in-the-middle attack on the NTRU problem. One assumes that u has a fixed number d of coefficients which
are one and the remaining coefficients are all zero. The main idea is to split u in two, u = u1 + u2, such that both
u1 and u2 have d/2 non-zero coefficients. One notes that hu1 + hu2 ≡ v mod q so that the coefficients of hu1 and
−hu2 differ by either zero or one modulo q when v has binary coefficients.

When f = Xn − 1, it is easy to show that some rotation of u (i.e. some uX j) has exactly d/2 non-zero
coefficients among its first n/2, thus we can restrict the possible u1 to only have non-zero coefficients among its
first n/2 coefficients and to u2 only among its last n/2 coefficients. One must then compute all possible hu1 and
sort them into a suitably chosen set of buckets. Secondly, one begins computing −hu2 for each u2 in turn, in each
case searching in the associated buckets for a u1 such that h(u1 + u2) has binary coefficients. When such a pair
(u1,u2) is found one stops otherwise one continues to the next u2.

In the basic approach, they suggest choosing an integer k such that 2k is larger than
(n/2
d/2

)
and labelling each

bucket by a binary string of length k. If bi is the most-significant bit of the ith coefficient of hu1 then one places
u1 in the bucket labelled (b0b1 · · · bk−1)2. One computes the buckets in which to check for a collision in the same
way, though now also any bucket with a label which arises by adding one to each element of any subset of the first
k coefficients of −hu2 is also checked.

The authors of [49] analyse the time and memory required for this as well as further improvements to this
design.
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THE MEET-IN-THE-MIDDLE ATTACK OF DE BOER ET AL.
The same idea can be applied to the MLHRn,h problem. Indeed, de Boer et al. [22] not only analysed the attack

of Beunardeau et al. but also such a meet-in-the-middle attack. If we define |C |Ham to be the Hamming weight of
C as a bit string for any C ∈ {0,1, . . . ,M − 1} where again M = 2n − 1, then the aim of the attack is to find a u such
that |u|Ham = h and |hu mod M |Ham = h. To do this one defines two sets, depending on a parameter α ∈ [0,1],

S(α)1 :=
{
s ∈ {0,1, . . . ,M − 1}

��� 2 d(1−α)ne | s and |s |Ham = bαhc
}

S(α)2 :=
{

s ∈
{
0,1, . . . ,2 d(1−α)ne − 1

} ��� |s |Ham = d(1 − α)he
}
.

While there is no guarantee that u can be written as u1 + u2 for some u1 ∈ S(α)1 and u2 ∈ S(α)2 , due to the form of
M , it is true that 2ku can be written in this form for at least one 0 ≤ k < n and both 2ku and 2kv = h · 2ku mod M
still have Hamming weight h.

The attack begins by enumerating the pairs (u1,hu1 mod M) for all u1 ∈ S(α)1 and then for each u2 ∈ S(α)2
computing −hu2 mod M and looking for an approximate collision with some hu1 such that the Hamming distance
between hu1 mod M and −hu2 mod M is not much bigger than 2h.

In order to efficiently check for an approximate collision de Boer et al. employ a locality-sensing hash function.
In particular, for any subsetB ⊆ {0,1, . . . ,n} one defines the hash functionHB : Z/ZM → F |B |2 whichwhen applied
to an n-bit integer (bn−1bn−2 · · · b0)2 returns (bi1, . . . , biB ) where B = {i1, . . . , iB} and the ij are ordered in some
fixed order, say ascending order. For a suitable size B of B one has that if two n-bit integers have Hamming distance
not much larger than 2h then they are likely to agree on HB . By storing the hash value HB(Hs1 mod M) instead
of simply Hs1 mod M and sorting via this value one can quickly find all such collisions with HB(−hu2 mod
M) and then test whether each u1 coming from such a collision has the property that |u1 + u2 |Ham = h and
|h(u1 + u2) mod M |Ham = h. If so then u = u1 + u2 gives a solution to the MLHRn,h problem.

On analysing this approach and under some simple heuristics the authors gave the following lemma.

Lemma 1 (Lemma 3 from [22]). When α = 1/2 and B =
⌈
log2

(n/2
h/2

)⌉
, the time complexity of the meet-in-the-middle

algorithm is Õ
(√(n

h

) )
.

By using a quantum algorithm they also show that choosing α = 1/3 and B =
⌈
log2

(n/3
h/3

)⌉
gives a running time

of Õ
(

3
√(n

h

) )
with the same memory requirement with most of that memory required to be quantumly accessible.

GENERALISATION
The generalisation of this type of attack is pretty straightforward. Given a quotient of small elements h = vu−1

in Rm×m
g , the basic idea is to split the small element u into two parts as u = u1 + u2 where u1 ∈ U1 and u2 ∈ U2

for two sets U1 and U2. Then one can compute and store all possible values hu1 and attempt to find a u2 such
that −hu2 approximately collides with one of the stored values. An approximate collision occurs between hu1 and
−hu2 if their difference consists of small elements; namely that h(u1 + u2) is small. The hope is that u1 + u2 and
h(u1 + u2) satisfy the requirements to be a solution to the problem.

One wants to define the sets U1 and U2 in a way which minimises their size while still allowing for at least one
solution u′ to be written as a sum of one element of each set. We have seen the two cases where f = Xn − 1 and
g is either constant or linear and small elements of R are taken to have many zero coefficients and the remaining
coefficients are one. In both cases determining an approximate collision is easy, though to speed up the process of
finding one, the list of stored values is processed so that entries are placed in a number of different buckets.

When moving to the general setting a few issues can arise. Perhaps the most important of which is whether
there is an efficient test for determining approximate collisions as this seems to rely on an efficient method for
testing smallness. Secondly, for a more general polynomial f one may not be able to rely on a symmetry argument
to reduce the size of U1 and U2 since multiplying by X need not preserve smallness. On a similar note, the error
distribution used will play a role in how to optimally define U1 and U2. Alternatively, when m > 1 splitting u
component wise with respect to m gives an easy choice for U1 and U2.

Requirements. To be able to apply this attack one must be able to efficiently determine whether two elements of
Rg differ by a small element: an approximation collision. When m = 1 the attack works best when the distribution
of small elements χ is sparse and remains fixed under multiplication by X .
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4.4 A HYBRID ATTACK
In [47], Howgrave-Graham gives a hybrid attack on the NTRU problem, Ideal-NTRU f ,q,1,χ,ρ, which combines

lattice reduction and a meet-in-the-middle approach. This attack assumes that f is the original NTRU polynomial
f = Xn − 1 and that u and v have binary coefficients.

The starting point for the attack is the observation that while running a moderately strong lattice reduction
algorithm (say the BKZ algorithm with a relatively small block size) does not recover a solution, it does produce a
reduced basis whose first few, say k, Gram-Schmidt vectors have length q andwhose final few, say k ′, Gram-Schmidt
vectors have length 1.

Defining the slightly modified basis matrix for the standard NTRU lattice as

B :=
(
qIn 0
H In

)
,

where H = (hi, j) with the hi, j as defined in Section 4.1, then this means there are matrices P ∈ GL(2n,Z) and Q
orthogonal such that the partially reduced basis matrix is PB and T := PBQ is lower-triangular. More illustratively,
this final product can be written as

©­«
Ik 0 0
0 P′ 0
0 0 Ik′

ª®¬ ©­«
qIk 0 0
∗ B′ 0
∗ ∗ Ik′

ª®¬ ©­«
Ik 0 0
0 Q′ 0
0 0 Ik′

ª®¬ = ©­«
qIk 0 0
∗ T ′ 0
∗ ∗ Ik′

ª®¬ ,
with P′B′Q′ = T ′. Since Q is orthogonal, the lattice spanned by the rows of T contains the short vector(
v0 v1 · · · vn−1 u0 u1 · · · un−1

)
Q as well as the n − 1 other similar vectors coming from the cyclic

symmetry of R. Furthermore, due to the structure of Q, these short vectors are binary in their first k and last k ′

coordinates.
Suppose we are looking for the lattice vector v in the row span of T and let v̄ be the vector whose first 2n − r ′

entries are zero and final r ′ binary entries match those of v. Howgrave-Graham showed that, if v − v̄ is small
enough then applying Babai’s nearest plane algorithm to the target vector v̄T − v̄ and the lattice generated by the
rows of T , then one can recover v. Thus a valid strategy is to enumerate over possible v̄ for a suitable r ′.

The more efficient attack proposed is to apply a meet-in-the-middle attack of the same type described in
Section 4.3 on the vector v̄. With a modified approach requiring less memory, this hybrid attack is claimed to be
the most practical attack on the NTRU problem for these parameters.

4.5 A FOLDING ATTACK
When the defining polynomial f is of the form Xn − 1 and n is composite, say d | n and 1 ≤ d < n, then Xd − 1

divides f and hence there is a natural ring homomorphism

π : R =
Z[X]
(Xn − 1)

→
Z[X]
(Xd − 1)

given by simply reducing modulo Xd − 1.
Gentry [39] showed that this ring homomorphism can be used to transform the 2n-dimensional standard NTRU

lattice to a 2d-dimensional folded lattice which contains small vectors corresponding to the rotations of the folded
secret elements π(u) and π(v).

There are two points to this, firstly that we can construct this smaller dimensional lattice from the public value
h and secondly that the shortest vectors in this lattice do correspond to a rotation of π(u) and π(v).

The first point is straightforward; since π is a ring homomorphism which fixes q we have that π(h)π(u) =
π(hu) ≡ π(v) mod q. Thus we can construct the folded lattice in the same way as the standard lattice by replacing
h with π(h) and n by d.

For the second point, we must look at how small the coefficient vectors of π(u) and π(v) are. Since each
coefficient of the folded element is a sum of n/d of the original coefficients, they will remain small when d is not
too small.

If one can mount a successful attack on this smaller dimensional problem one can recover the folded secret
elements π(u) and π(v). Gentry gives a method to recover the full secret (u,v) from this partial information which
reduces the dimension 2n of the standard lattice attack to a dimension of roughly 2(n − d). This reduction comes
from the fact that knowledge of π(u) gives us d linear relations between the coefficients of u and similarly for the
coefficients of v. We refer to the paper [39] for the explicit case when n = 2d.

Gentry remarks that this attack only really requires that, modulo q, the polynomial f has a factor f1 such that
the projection Zq[X]/( f (X)) → Zq[X]/( f1(X)) does not distort the notion of smallness too much. Namely, the
coefficients of f1 must be very small and, ideally, only the low degree monomials (except the leading term) should
have non-zero coefficients. This condition on f1 seems highly sporadic in general.
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GENERALISATION
Due to π being a ring homomorphism such an attack can be directly applied to themore general Ideal-NTRU f ,q,m,χ,ρ

problem component-wise. For a more general ciphertext modulus g, we would need an appropriate factor of f
when considered modulo g and again π(χ) must remain a distribution of small elements.

4.6 A SUBFIELD ATTACK
In the case that the defining polynomial f is irreducible then the ring R can be seen as an order in the number

field K = Q(X)/( f (X)). If this number field has subfields then one can consider maps whose codomain is contained
in such a subfield, L say. Such maps include the relative norm and trace maps, NK/L and TrK/L .

Since the norm map is multiplicative and the trace map is additive it is natural to consider the norm map first as
the public value h is a quotient of small elements. Importantly though, this quotient is taken modulo q so one must
consider how the norm map interacts with reduction modulo q. As the relative norm map is defined as the product
of the field embeddings, σi , that fix L and hence q we have for any lift h̃ of h to R ⊆ K that for any k ∈ R

NK/L(h̃ + qk) =
∏
i

σi(h̃ + qk) =
∏
i

(
σi(h̃) + qσi(k)

)
≡

∏
i

σi(h̃) = NK/L(h̃) mod qOL,

where OL is the ring of integers of L.3 This is true since considering the left hand side of the equivalence as a
polynomial in q, all coefficients are symmetric with respect to the field embeddings and hence lie in OL . For much
the same reasoning, we also have TrK/L(h̃ + qk) ≡ TrK/L(h̃) mod qOL . Hence, there is a well-defined notion of
taking the norm or trace of an element of Rq which we denote in the same manner.

USING THE RELATIVE NORM MAP
Now it is clear that NK/L(u)NK/L(h) = NK/L(v), we are in much the same situation as with the folding attack,

discussed above, only with NK/L instead of π. Firstly, one needs to see how large the elements NK/L(u) and
NK/L(v) are and secondly, if one can recover these elements, how can one recover the original u and v?

This sort of approach was first considered in [40, Section 6 and 7] where it is attributed to Gentry, Szydlo,
Jonsson, Nguyen and Stern. The setting is slightly different in the fact that they work with the defining polynomial
f (X) = Xn − 1 for a prime n (so folding is not possible) which is not irreducible however it is closely related to
the case when the defining polynomial is the irreducible nth cyclotomic polynomial Φn(X) and the subfield is the
maximal real subfield. The Gentry-Szydlo algorithm described in Section 7 of their paper can be seen as a method
for computing v from h and the relative norm of v with respect to the maximal real subfield.

More generally, Albrecht, Bai and Ducas [5] were the first to consider the case of arbitrary subfields of
cyclotomic number fields. They use the following heuristic on the growth of the canonical norm ‖ · ‖can and the
operator norm | · |op, defined as |y |op := supx∈K× ‖xy‖

can /‖x‖can.

Heuristic 1. Let [K : Q] = n and [K : L] = ` and suppose that u and v are sampled from a reasonable isotropic
distribution of variance ς2. Then, for any c > 0, there exists a constant C such that

NK/L(v)



can
≤

(
ςnC

)`
,



NK/L(u)


can
≤

(
ςnC

)`
,��NK/L(u)

��
op ≤ (ςnC)`,

��NK/L(u)−1��
op ≤ (n

C/ς)`

except with probability O(n−c).

This heuristic tells us that for suitable subfields, so that the numerator and the denominator are small compared
to q, one may be able to recover NK/L(u) and NK/L(v) by using a strong enough lattice reduction algorithm on the
standard NTRU lattice ΛNTRU(NK/L(h)), as long as the associated lattice vector remains an unusually small vector.
In particular, Albrecht et al. give the following theorem.

Theorem 1 (Theorem 2 from [5]). Let û and v̂ be elements of OL such that the principal ideals they generate are
coprime and that ûĥ ≡ v̂ mod qOL for some ĥ ∈ OL . By an abuse of notation write (x̂, ŷ) for the vector which
concatenates the coefficients of x̂ and ŷ. If (x̂, ŷ) ∈ ΛNTRU(ĥ) has length satisfying

‖(x̂, ŷ)‖ ≤
q

‖(û, v̂)‖

then x̂ = wû and ŷ = wv̂ for some w ∈ OL .

3The ring of integers of L, OL , is the set of elements in L which are the root of a monic polynomial with integer coefficients.
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Finally, the authors give a simple method to lift a short lattice vector (x̂, ŷ) ∈ ΛNTRU(NK/L(h)) as in the above
theorem to a pair (u′,v′) ∈ ΛNTRU(h) by setting u′ = x̂ and v′ = hx̂−1. While this will not return the shortest
vector in ΛNTRU(h) it may be small enough to be a solution to the NTRU problem Ideal-NTRU f ,q,1,χ,ρ when q is
exponentially large. Explicit details of this can be found in [5].

USING THE RELATIVE TRACE MAP
Another approach to a subfield attack is to use the relative trace map as was done by Cheon, Jeong and Lee [29]

in work that was done concurrently to [5]. Unlike with the relative norm map, the relative trace map is not
multiplicative. Instead, one has when [K : L] = ` that

TrK/L(h) =
∑̀
i=1

σi(h) ≡
∑̀
i=1

σi(v)
σi(u)

=

∑
i=1 σi(v)

∏
j,i σj(u)∏`

i=1 σi(u)

≡

TrK/L
(
σ1(v)

∏`
i=2 σi(u)

)
NK/L(u)

mod qOL .

From this, one can notice that when u and v have roughly the same size, applying the norm map gives a better
bound on the numerator of the result. However, when v is significantly larger than u the trace map is better. Since
one can compute h−1 this also holds when u is significantly larger than v.

Cheon et al. focus on the power-of-two cyclotomic case and consider u and v to have Euclidean norms
bounded by reals D and N , respectively. Let us write ψD and χN for distributions which satisfy these bounds and
NTRU f ,q,χN ,ψD ,ρ for the NTRU problem (with m = 1) which uses these two distributions for v and u, respectively.
Then they prove the following reduction can be achieved by using the trace map.
Theorem 2 (Theorem 1 from [29]). Let q be a positive integer and D and N be positive real numbers and let
n be a power of two. Set ρ := min{q/2D

√
n,q/2N

√
n}. Then for m > 1 with m | n, there is a reduction from

NTRUXn+1,q,χN ,ψD ,ρ to NTRUXm+1,q,χN ′ ,ψD′ ,ρ
′ , where

ρ′ = min{q/2D′
√

n,q/2N ′
√

n,q/2n3/2N2 

v−1

},
D′ = Dm

√
(n/
√

m)log2 m/
√

m and

N ′ = NDm−1
√
(n/
√

m)log2 m/
√

m.

The proof uses the same method as [5] to lift a solution from a subfield to the full field. Further, much the same
requirements on q are required for this result to be used in a practical attack; a very large q. Again, for what this
means precisely, see [29].

OTHER WORK
Finally, we comment that Kirchner and Fouque [52] revisited the subfield attack and proposed a variant of these

subfield attacks which performs better in practice.

GENERALISATION
Let us assume that f is irreducible and hence K = Q[X]/( f (X)) is a number field containing R as a subring. If

this is not the case we may be able to first apply the ideas from Section 4.5 to reduce to this case. Further, we let L
be a subfield of K and denote by NK/L and TrK/L the relative norm and trace maps from K to L, respectively. For
simplicity, we assume m = 1 however we later show how this generalises for larger m.

We first need to determine whether the multiplicative property of the norm map respects reduction modulo g

when g is a polynomial. To do this we note that hu ≡ v mod gR is equivalent to the existence of k ∈ R such that
h̃u = v+ kg in R. Suppose [K : L] = ` and σ1, σ2, . . . ,σ` are the ` distinct field embeddings K ↪→ C fixing L. For
the approach to work we require a modulus g′ ∈ OL ⊂ L such that NK/L(h)NK/L(u) ≡ NK/L(v) mod g′OL . Now
we compute

NK/L(h̃)NK/L(u) = NK/L(h̃u) = NK/L(v + kg)

=
∏̀
i=1

σi(v + kg) =
∏̀
i=1
(σi(v) + σi(k)σi(g))

= NK/L(v) +
∑̀
j=1

σj(k)σj(g)
∏
i=1
i,j

σi(v) + · · ·

71



Bootland, C. & Castryck W. & Szepieniec A. & Vercauteren F.

and since k and v are unknown we realistically need g′ to divide σi(g) for every i which seems to force g ∈ L, so
that g is fixed by each σi , and then we take g′ = g. The result would also hold if there was a way to choose h̃ such
that k = 0 however we have no way to know how to choose such h̃ without knowledge of u and v already. For
arbitrary g not in L then, the required condition will not hold in general and the attack appears to be foiled in this
case.

When using the trace map instead of the norm map a similar obstruction occurs. In the simplest case we take
` = 2 and let σ1 be the identity map embedding K into C. Now, writing our relation instead as vu−1 = h̃ + kg in K
we have

TrK/L
(
vu−1

)
=

v
u
+ σ2

( v
u

)
=

vσ2(u) + uσ2(v)
uσ2(u)

=
TrK/L(vσ2(u))

NK/L(u)

so that if σ2 and both the trace and norm maps sufficiently maintain smallness, the trace of a quotient of small
elements is also a quotient of small elements. This time we require a modulus ĝ ∈ L such that TrK/L(h̃) ≡
TrK/L(vu−1) mod ĝOL . We again compute

TrK/L(vu−1) = TrK/L(h̃ + kg) = TrK/L(h̃) + Tr(kg)
= TrK/L(h̃) + kg + σ2(k)σ2(g)

and for the same reasoning, the condition g ∈ L is sufficient to allow ĝ = g and appears to be necessary for the
congruence to hold for any arbitrary lift h̃.

For larger values of `, the formula for the trace of a quotient becomes

TrK/L(vu−1) =
TrK/L

(
v
∏`

i=2 σi(u)
)

NK/L(u)
,

which again for appropriate choices may be seen as a quotient of small elements and the attack can proceed as
before.

In both approaches then, the subfields of K we can use are those between K and Q(g(θ)) for θ a root of f . If g
is linear then there are no such (non-trivial) subfields. An example for which g is a non-constant polynomial and
this attack can be applied is when f is a power-of-two cyclotomic polynomial, and g can be written as a polynomial
in some power of X , Xp say, where p is a power of two that is larger than one. Concretely, for example, the choice
f = X1024 + 1, g = X8 − X4 − q for very large q would allow the choice L = Q(ζ512) of subfield of K = Q(ζ2048).

When considering the problem for larger values of m we note that the entries of the matrix h are of the form
hi, j = hi, j(vi,u)/det(u) where vi is the ith row of v and hi, j is a sum of m! distinct monomials of degree m in
the entries of vi and u. This can be seen by using Cramer’s rule. One can attempt to recover the numerators and
common denominator assuming they are small enough via the above methods, since the determinant is exponential
in m we can only realistically expect this to work for small m. Indeed, in the next section we briefly look at using
the determinant map as a multiplicative homomorphism, this allows one to recover det(u) with high probability,
when applicable.

Remark 2. We point out that, as described in [5, Section 3.3], one can naïvely lift a solution h′ ≡ v′u′−1 mod g in
the subfield L to one in K for h ≡ ts−1 by setting s = π(u′) and t = π(u′(hπ(h′)−1)) where π is the natural inclusion
map L → K .

Requirements. In conclusion, for this attack we need to be able to consider the problem in a number field K with
a subfield L for which g ∈ L. Further, the infinity norm of g should be exponential in the degree of K .

DETERMINANT ATTACK
In the specific case where the module structure introduces square matrices over the ciphertext space Rg, the

determinant map det : Rm×m
g → Rg provides a similar norming down function to the trace and norm. In this case,

there is no restriction on g as we always have

v ≡ hu mod gRm×m ⇒ det(v) ≡ det(h) det(u) mod gR.

However, with the determinant map the size of elements blows up exponentially in m, and so the attack will only be
applicable for very small m or an exponentially large infinity norm |g |∞. Further, there is no simple way to find a
solution to the original problem from only det(u) and det(v) meaning this attack can only be applied to try to solve
a decisional version of the Ideal-NTRU problem.
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5 ATTACKS ON THE LWE FAMILY OF PROBLEMS
5.1 A BRUTE FORCE ATTACK ON THE LWE SECRET

The most naïve approach to solving the search LWE problem Ideal-LWEX ,q,m,1,`,χ is to try to guess the secret
s. If we guess that the secret is s′ we can compute the value c = b − as′. If s′ = s then the components of c will
be samples from the LWE error distribution χ, otherwise they will be essentially uniformly random values modulo
q. With enough samples one can determine which is the case with any desired probability. By searching over all
possible s′ until we find one where the components of c are suitably distributed we can solve the LWE problem.
This approach is a brute force approach.

One can perform a more intelligent brute force attack by first using m samples to convert the problem to normal
form as described in Section 2.8. Now, one has a much smaller search space for the possible secret.

Albrecht, Player and Scott [7] give the following result on the time and memory complexity of this exhaustive
attack. Here t is chosen so that the error is bounded by tαq with overwhelming probability and DZ,α is the
discretised Gaussian with parameter α.

Theorem 3 (Theorem 5.1 from [7]). The time complexity of solving the Ideal-LWEX ,q,m,1,`,DZ,α with success
probability ε using an exhaustive search is ` · (2tαq + 1)m · 2m and the memory complexity is m when ` ≥ m +m′,
t = ω(

√
log m) and

m′ =
log(1 − ε) − m log(2tαq + 1)

log(2tα)
.

It is clear that exactly the same approach can be carried out for the general Ideal-LWE f ,g,m,k ,`,χ problem as
long as the distribution χ can be efficiently distinguished from uniform when reduced modulo g.

5.2 A MEET-IN-THE-MIDDLE ATTACK ON SPARSE SECRET LWE
Adapting the idea of Odlyzko’s meet-in-the-middle attack on the NTRU problem described in Section 4.3,

Cheon, Hhan, Hong and Son [28] give a meet-in-the-middle attack on the LWE problem when the secret is both
sparse and has ternary entries, that is from {−1,0,1}. We note that Bai and Galbraith [16] mentioned the existence
of such a meet-in-the-middle attack on LWE but did not give details however they did state that the attack requires
Õ(3n/2) space and time.

The basic idea is to assume that the secret vector s has Hamming weight at most h and to split it in some way
as s = s1 + s2 where both parts have Hamming weight at most h/2. One then has the approximate equality, when
considered modulo q,

as1 ≈ b − as2

since b ≡ as + e mod q. Further, suppose that the entries of e are all bounded by B. Naïvely, one can first list all
possible values of as1 as s1 varies through all possible ternary vectors of Hamming weight at most h/2 and then
compute b − as2 for each possible s2 until one finds an approximate collision on the list; that is the coordinates
differ by at most B.

Rather than this naïve approach, Cheon et al. apply the same techniques described in Section 4.3 to sort the list
into 2` buckets based on the most significant bit of each entry. Now, instead of checking all items on the list in
the second step, one just needs to check a limited number of buckets; the only adaptation needed is that one must
potentially check many more buckets as one must accommodate coordinates differing by up to B rather than simply
by 1. Further, they suggest splitting up the secret in a potentially unbalanced way; namely, into s1 of Hamming
weight at most h1 and s2 of Hamming weight at most h2 with h = h1 + h2.

As written above, the attack is against the search version of the LWE problem, however Cheon et al. consider
it as an attack on the decision problem by deciding the samples are uniformly random if no secret s2 can be found
which creates an approximate collision with any of the as1.

GENERALISATION
One can readily adapt this approach to workmore generally. One assumes that the secret is distributed according

to a distribution of small elements (not necessarily the same as the errors); if not one first applies the transformation
to normal form given in Section 2.8. Again, the attack then follows the same approach as the meet-in-the-middle
attack on Ideal-NTRU but instead we are looking for an approximate collision between b − as2 and as1 such that
s1+ s2 = s. Again, we will assume s1 and s2 lie in two sets S1 and S2 and we try to find the smallest possible choices
for S1 and S2 which allow such a splitting of an arbitrary secret.

Typically, this is done by only allowing certain module coordinates to be non-zero in the case where the module
dimension m is much larger than one, or else allowing only certain coefficients of elements from R to be non-zero.
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One small difference arises when considering the Ideal-LWE problem instead of the Ideal-NTRU problem.
Firstly, one need not compute as1 using the full element a. Instead one can choose a smaller `′ with 1 ≤ `′ ≤ `
such that after dropping the last ` − `′ rows of a and b the secret is still (almost) unique with high probability. If
one does find multiple possible secrets one can use the remaining samples to check whether each one is valid or a
spurious solution.

As before, the main obstruction which could stop this attack from working is if there is no efficient way to test
for an approximate collision which would be the case if there is no efficient test of smallness in Rg.

In general, assuming that one can efficiently test for approximate collisions, if S is the set of all possible secrets
(with high probability) then the meet-in-the-middle attack takes Õ(

√
|S |) time and memory in the classical setting

and Õ( 3
√
|S |) time and memory in the quantum setting due to Grover’s algorithm.

Requirements. This approach requires an efficient method of determining approximate collisions. Further, when
m = 1 the attack works best when R has symmetries which allow the sets S1 and S2 to be chosen to be smaller than
without such symmetries.

5.3 REDUCING LWE TO BDD: THE PRIMAL ATTACK
One can view the Ideal-LWEX ,q,m,1,`,χ problem as the bounded distance decoding (BDDγ) problem on `-

dimensional integer q-ary lattices of the form4

Λq(a) :=
{

z ∈ Z`
�� zT ≡ asT mod q for some s ∈ Zmq

}
with target vector (any lift of) b. Here, the approximation factor γ defining the problem depends on the choice of
χ. This assumes that one can find n linearly independent rows of a so that one can recover s from as, if not one can
only recover partial information about s without more samples.

The primal attack consists of solving this bounded distance decoding problem using lattice reduction as was
first suggested by Lindner and Peikert [54]. Since lattice reduction techniques strongly depend on the dimension of
the lattice, which here is the number of LWE samples, it is not wise to use too many samples when constructing the
so called primal lattice Λq(a). Further, there are a number of different approaches to solving the BDDγ problem,
perhaps the most straightforward of which is to use Babai’s nearest plane algorithm [14] which takes as input a
basis matrix B for a lattice and a target vector t and outputs a vector e such that t − e lies in the lattice Λ(B).

The idea of Babai’s nearest plane algorithm is to recursively compute the closest vector to the target vector in
the sublattice spanned by the last i basis vectors. This process can be performed in polynomial time as follows.
Let b?1 , . . . ,b

?
d
be the Gram-Schmidt vectors in order of increasing length. Then setting td := t one computes for i

from d to 1 the vectors

ti−1 := ti −
⌈
〈ti,b?i 〉
〈b?i ,b

?
i 〉

⌋
bi

and returns t0. Denoting the fundamental parallelepiped of the lattice spanned by the Gram-Schmidt vectors by
P(B?), Babai gave the following result.

Lemma 2 ([15]). Let B be a basis matrix for a lattice Λ and B? be the corresponding Gram-Schmidt matrix. For
a target vector t in the span of Λ, Babai’s nearest plane algorithm returns the unique vector e ∈ P(B?) such that
t − e ∈ Λ.

Clearly then, using Babai’s nearest plane algorithm requires a well-reduced basis of the lattice as input if it is to
be used to solve the bounded distance decoding problem. Hence, one applies a strong lattice reduction algorithm
to the basis before applying this so-called decoding step. Many methods for solving the BDD problem follow this
approach of first reducing the lattice and then applying some kind of decoding step, however not all do.

Lindner and Peikert [54] use a simple extension of Babai’s nearest plane algorithm tailored to the known
Gaussian distribution of the error typically used in the LWE problem. This approach introduces a quality/time
trade-off in decoding allowing a faster but weaker lattice reduction step at the cost of increasing the time for
decoding, this however can give a lower overall running time for the attack.

The main drawback of Babai’s nearest plane algorithm is that for a typical reduced basis the first few Gram-
Schmidt vectors are much shorter than average and the final few much longer, thus the parallelepiped P(B?) is very
‘long and skinny’ so the algorithm is unlikely to recover the Gaussian error in the LWE samples. To overcome this
Lindner and Peikert introduce a second recursion layer which recurses over some di ≥ 1 distinct planes on the ith
outer recursion with the effect of making the parallelepiped wider in the direction of b?i by a factor of di . One
should then choose the di which maximises mini(di



b?i 

) so as to capture the most probability mass of the error
distribution. One can see this as trying the di closest integers to 〈ti,b?i 〉/〈b

?
i ,b

?
i 〉 in Babai’s nearest plane algorithm

rather than simply only the closest. One then has the following lemma.
4We note that the LWE and SIS lattices are dual to each other up to a scaling factor q, Λq (A) = qΛ⊥q (A

T )∗.
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Lemma 3 (Lemma 4 from [54]). For t ∈ Span(B), the modified nearest plane algorithm returns the set of all
v ∈ Λ(B) such that t ∈ v + P(DB?) where D is the diagonal matrix with diagonal di . The running time is
essentially

∏
i di times that of Babai’s nearest plane algorithm.

On the assumption that the discrete Gaussian errorDZ,α used has large enough width α, the success probability
of the modified nearest plane algorithm is very close to

∏
i erf

(
di



b?i 

√π/(2αq)
)
.

Returning to the lattice reduction phase, Lindner and Peikert employ BKZ reduction which achieves a given
root Hermite factor δβ depending on the block size β. They give the optimal dimension `, corresponding to the
number of LWE samples used, as ` =

⌊√
m log q/log δβ

⌉
.

Improvements to this approach have been suggested by Liu and Nguyen [55] using (pruned) enumeration,
and further by Aono et al. [11]. However, a generalised framework was proposed by Herold et al. [44] which
encompassed all such enumeration techniques for decoding and showed that asymptotically they achieve the same
running time.

Alternatively, one can use the embedding technique of Kannan [50] to reduce the BDDγ problem to an instance
of the unique shortest vector problem, uSVPγ′ , as was done by Lyubashevsky and Micciancio [56]. Here, one
embeds the target vector t together with the original lattice Λ(B) in a higher dimensional lattice with basis matrix(

B 0
t t

)
for some embedding factor t.

This approach to solving the BDD problem in the context of the LWE problem was considered by Albrecht et
al. in [6]. They give the following lemma on the gap between the shortest non-zero vector and the second lattice
minimum.

Lemma 4 (Lemma 2 from [6]). Let a ∈ Z`×mq , α > 0 and let c > 1. Further, let e be drawn from the discrete
Gaussian DZ` ,αq . Under the assumption that the shortest vector of Λq(a) is at least as large as predicted by the
Gaussian heuristic and the assumption that the columns of a are linearly independent over Zq , one can create an
embedded lattice with λ2/λ1-gap greater than

min
{
q, q

1−m/`Γ(1+`/2)1/`
√
π

}
cαq
√
`

√
π

≈

min
{
q,q1−m/`

√
`

2πe

}
cαq
√
`

√
π

with probability greater than 1 − (c · exp((1 − c2)/2))` .

When applying a lattice reduction algorithm achieving root Hermite factor δ0, the experimental results of
Albrecht et al. match those of Gama and Nyugen [38] whereby the vector ±(e, t) lies in the reduced basis with some
fixed probability whenever the gap satisfies

λ2
λ1
≥ τtδ

`
0

for some real constant 0 < τt ≤ 1 depending on the desired probability level. Experimentally, they found that
τ‖e‖ ≥ 0.4 is needed for a success probability of 0.1 with the parameters of Regev [65], depending on the algorithm
used. Albrecht et al. also determine that a value of ` =

⌊√
m log q/log δβ

⌉
is optimal in this case too.

Determining the optimal choice for t does not appear to be a simple task. One choice proposed by Lyubashevsky
and Micciancio [56] is t = Dist(Λ(B), t) so that the new lattice contains a vector of length

√
2t. Although this value

is not known exactly, it can be approximated. According to Albrecht et al., for smaller values of t it is difficult
to determine the gap λ2/λ1. The choice t = 1 has been found to be more efficient in practice giving a value of
τ1 ≈ 0.3 [6].

One concludes with the following result.

Lemma 5 (Lemma 5.18 from [7]). Any lattice reduction algorithm achieving log root Hermite factor

log δ0 =
log2(cτα

√
2e)

4m log q

can be used to solve the Ideal-LWEX ,q,m,1,`,DZ,α problem via reduction to uSVP with success probability greater
than ετ · (1 − (c · exp((1 − c2)/2))`) for some c > 1 and some fixed τ ≤ 1 and 0 < ετ < 1 as a function of τ.
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GENERALISATION
We can straightforwardly generalise the LWE lattice to

Λ(a) := {ι(r) ∈ Zk`n | r ∈ R`×k, r ≡ at mod gR for some t ∈ Rm×k
g }

and note that the target vector ι(repg(b)) is somewhat close to a point in this lattice. Indeed if e is not too large we
again have an instance of the bounded distance decoding problem. With high probability Λ(a) is full rank and has
volume adeg(r)k(`−m).

We can perform lattice reduction onΛ(a) to find a reduced basis of the lattice and with this basis we can perform
a decoding step in an attempt to find a lattice vector close to the target vector as before.

The constructed lattice will have k orthogonal components corresponding to the k independent columns of the
secret matrix s so we can independently perform lattice reduction on each orthogonal component. This is equivalent
to the fact that we can view b = as + e as k distinct instances of Ideal-LWE (with k = 1) which have the same
public matrix a. Thus without loss of generality for security, we can consider the case k = 1 only so that s and e
are vectors having entries in Rg and R respectively.

To be able to recover the secret by solving the bounded distance decoding instance we require that the norm
of the error vector is not much larger than the length of the shortest vector in Λ(a). This is true in the standard
settings of LWE and polynomial LWE but we can see immediately that if g is a polynomial with small coefficients,
or indeed any of the polynomials in gR has only small coefficients, then the shortest vector in Λ(a) may be much
smaller than the norm of the error vector, essentially meaning that in practice such a lattice attack is futile. This is
not immediately evident though since lattice basis reduction outputs a whole basis for the lattice. Thus, in theory,
it might be that one can still recover some secret information by solving the BDD instance. However, this has not
been possible in practice and remains merely speculative.

Requirements. For the primal attack to work on the Ideal-LWE f ,g,m,1,`,χ problem, and hence also on the
Ideal-LWE f ,g,m,k ,`,χ problem, when using the embedding technique with embedding constant 1 we require:√

`nσ2 + 1 <
√
(`n + 1)/2πe · adeg(r)(`−m)/(`n+1)√

`nσ2 + 1 < min{‖x‖ | x ∈ gR \ {0}}

where σ is the standard deviation of the distribution χ. The conditions come from the fact that we need the vector
we want to find to have norm smaller than the Gaussian heuristic as well as that no other shorter non-zero vectors
exist in the lattice.

5.4 REDUCING SHORT SECRET LWE TO INHOMOGENEOUS SIS
When considering the short secret variant of the learning with errors problem one can enhance the primal attack

as was done by Bai and Galbraith [16] where they focussed on the case when the secret has components in {0,1}
or {−1,0,1}. The idea is to reduce the problem to the inhomogeneous SIS problem as we now explain.

Suppose one is given an Ideal-LWEX ,q,m,1,`,χ instance (a,b) ∈ Z`×mq × Z`×1
q in which the secret s ∈ Zm×1 is

short. Define `′ := ` + m, a′ :=
(
a I`

)
and z :=

(
sT eT

)
where e ≡ b − as mod q is the short error vector.

Then a′zT ≡ b mod q is an instance of the inhomogeneous Ideal-SISX ,q,`,`′,ρ problem with target vector b and ρ
an upper bound on ‖z‖ (with high probability).

The standard approach to solving the inhomogeneous version of the SIS problem is to find one solution w
without consideration of its size, for example in this case w =

(
0 bT

)
, and then attempt to solve the BDDρ

problem in the associated SIS latticeΛ⊥q (a′)with target vector w. On finding a vector v ≈ w with a′vT ≡ 0T mod q,
we note that z = w − v is short and satisfies a′zT ≡ b mod q as required. One hopes that the first m coordinates of
−v are indeed the LWE secret s.

To solve the bounded distance decoding problem one can use any of the approaches given in the preceding
section discussing the primal attack. Bai and Galbraith use the embedding technique with embedding constant
t = 1.

If one has ‖s‖ � ‖e‖, Bai and Galbraith suggest multiplying the first m columns of Λ⊥q (a′) by a scalar µ to
balance the vector w − v before solving the closest vector problem (the target vector w does not need to change
as it is zero in these coordinates). A further trick suggested when the secret has binary coefficients is to change
the target vector to

(
− 1

2 µ1m bT
)
where 1m is the vector of all 1s of length m. In this manner the difference

w − v =
(
± 1

2 µ · · · ± 1
2 µ e1 · · · em

)
is more balanced.
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GENERALISATION
This reduction works more generally and allows one to reduce short secret Ideal-LWE f ,g,m,k ,`,χ to k instances

of the inhomogeneous Ideal-SIS f ,g,`,m+`,ρ problem which all have the same matrix A =
(
a I`

)
defining the

problem but with differing target vector t, namely the rows of bT , and solution vector z the corresponding row of(
sT eT

)
; hence ρ should be taken as an upper bound on the size of such vectors. One important distinction must

be made however in that while the inhomogeneous Ideal-SIS problem allows any solution which satisfies the bound
ρ, we are looking for a particular solution in order to solve the short secret Ideal-LWE problem which may be an
issue for certain choices of g.

For example, if using the embedding technique as mentioned above, then one must consider the lattice

Λ(a,b) = {(ι(x), ι(y), z) ∈ Zd | x ∈ Rm, y ∈ R`, axT + yT ≡ zbT mod gR},

where d := (` + m)n + 1 and attempt to find the short lattice vector (ι(s), ι(e),1). We can construct this lattice by
computing a spanning set {vi}mn

i=0 of the solution space to ax+y−zb = 0 over R. Namely, we set v0 = (0, ι(repg(b)),1)
and the other vectors v1, . . . ,vmn as (ι(pi, j), ι(−apT

i, j),0) for i = 1, . . . ,m and j = 1, . . . ,n, where pi, j is the power-
basis for the i-th copy of R in Rm. Then the lattice is spanned by the rows of the block-matrix

©­­­­­­­­­­­«

v0
...

vmn

G 0
G 0

. . .
...

G 0

ª®®®®®®®®®®®¬
∈ Z(d+mn)×d, G :=

©­­­­«
ι(g)
ι(Xg)
...

ι(Xn−1g)

ª®®®®¬
∈ Zn×n. (1)

It is clear that the vector (ι(s), ι(e),1) lies in this lattice and that it is rather short. However, the important fact
for this approach to work isn’t that this vector is short but again that it is shorter than all the other non-zero vectors
in the lattice Λ(a,b), which is not necessarily the case. This issue is something that also other methods for solving
the inhomogeneous Ideal-SIS problem must contend with in this setting.

The main example of this is with theMLHC problem in which the lattice (1) contains many vectors of Euclidean
length

√
5; this will be much smaller than the length of an element sampled from the error distribution used in

practice. A similar phenomenon is observed when considering the LPN problem (LWE with modulus 2); lattice
reduction fails because there are many vectors of norm 2. Other approaches are required to attack these sorts of
problems.

Again, one may wish to try to balance the entries of the solution vector if the secret and error distributions are
different in the original Ideal-LWE instance.

5.5 REDUCING LWE TO SIS: THE DUAL ATTACK
The idea of the dual attack is to reduce the problem of solving the decision LWE problem to solving the SIS

problem as was suggested by Micciancio and Regev [62]. The approach is to find a short vector in the (scaled)
lattice dual to the primal lattice Λq(a) which we noted is the SIS lattice Λ⊥q (aT ).

Suppose that one has found a short vector v ∈ Λ⊥q (aT ) so that va ≡ 0 mod q, the attack proceeds by taking the
inner product of v with the vector bT . If we are in the case that the samples came from the LWE distribution As,χ
then

〈v,bT 〉 ≡ vas + 〈v,eT 〉 ≡ 〈v,eT 〉 mod q

which is the inner product between two short vectors and so is also relatively small. If however, the samples were
uniformly random and assuming the greatest common divisor of the coordinates of v together with q is one, the
inner product will also be uniformly random modulo q. Distinguishing between these two distributions therefore
allows one to attack the decision LWE problem.

In [62], the authors suggest that when χ is a discrete Gaussian with parameter α,DZ,α, then if one can only find
a vector v with ‖v‖ ≥ 1.5

√
2π/α then the two distributions are within negligible statistical distance of one another.

On the other hand and in the same setting, Lindner and Peikert [54] state that when ‖v‖ is not much larger than
1/α then the advantage in distinguishing is very close to exp(−π(‖v‖ α)2). Hence, to use this approach to solve
Ideal-DLWEX ,q,m,1,`,DZ,α with advantage ε one must solve the Ideal-SISX ,q,m,`,ρ problem for ρ = 1

α

√
ln(1/ε)/π.

If one uses lattice reduction to solve the SIS instance then typically one finds a number of short vectors rather
than just one. Naturally, having many relatively short vectors vi such that via ≡ 0 mod q increases the chance
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of being able to distinguish between the uniform distribution and the LWE distribution by using the Chernoff
bound [30].

It has been suggested by Albrecht [4] that when using lattice reduction it may be possible to amortize its cost
to find multiple short vectors in the dual lattice by first performing one strong lattice reduction step, noting the
shortest vector and then re-randomising the reduced basis by a sparse unimodular matrix and running a cheaper
reduction algorithm to recover another short vector, repeating this process a number of times gives multiple short
vectors which experimentally enable a better advantage in distinguishing.

GENERALISATION
Suppose we are given the pair (a,b) ∈ R`×mg × R`×kg then we again aim to find a short vector v ∈ R` such that

va ≡ 0 mod gR. Then we have that if (a,b) is from the Ideal-LWE distribution then vb ≡ vas + ve ≡ ve mod gR
which has coefficients that are the inner products of two short vectors. Again, we can assume k = 1 so we do. If v
is short enough this should be distinguishable from vb with b a random matrix. This can be rephrased as finding a
short vector v in the scaled dual lattice of a:

Λ
⊥(a) = {ι(x) ∈ Z`n | x ∈ R`, xa ≡ 0 mod gR}.

To find a basis for this lattice, see Section 3.1 where we consider the general lattice attack on the Ideal-SIS problem.
This time, with high probability, the lattice has full rank `n and volume am deg r . We remark that for there to be
non-trivial vectors in this lattice we require ` > m which we already assume to be the case in the definition of the
problem.

As with the primal attack, if the secret s is known to be sampled from a distribution of small elements then this
information can be used to enhance the dual attack [16]. We can construct the lattice

Λ
′
λ(a) = {(λι(x), ι(y)) ∈ R

`n × Zmn | x ∈ R`, y ∈ Rm, xa ≡ y mod gR}

for a real scalar λ and find a short non-zero vector (λι(v), ι(w)) in this lattice. If (a,b) is taken from the Ideal-LWEdis-
tribution then we have vb ≡ vas+ ve ≡ λws+ ve mod gR. One chooses λ to balance the size of λs and e so that we
have the sum of two products of small elements of roughly the same size. Alternatively, if b is uniformly random
then vb is uniformly random over vR`g.

Just as in the primal attack, if gR contains short vectors then the lattice Λ⊥(a) (or Λ′λ(a)) will contain short
trivial vectors. However, unlike in the primal attack this does not immediately cause the attack to fail as we are
not interested in finding a specific vector, only a short enough non-trivial vector (that is non-zero when considered
as an element of R`g). Since these non-trivial vectors must exist, it is just a matter of running a strong enough
lattice reduction algorithm to find them. We found that running BKZ can find non-trivial vectors of length roughly
δ`n0 am deg(r)/`n, where δ0 depends on the block size used as given in [27].

In the general case, we observed that the coefficients of v roughly follow a (discretised) Gaussian distribution
centred about zero so its norm is approximately Chi distributed. If we denote the standard deviation of the
distribution of the coefficients of the vectors found by solving the Ideal-SIS problem by σSIS then, together with
the approximation for the length of the short vector we can find, we have

√
`nσSIS ≈

√
2

Γ((`n + 1)/2)
Γ(`n/2)

σSIS ≈ δ
`n
0 am deg(r)/`n.

Suppose (a,b) is from the Ideal-LWE distribution so that vb ≡ ve mod gR, we first consider ve in R as
∑`

i=1 viei
where vi,ei ∈ R with ei sampled from the error distribution χ. Suppose for simplicity that the coefficients of
elements sampled from χ have variance σ2

χ and further define the constants fα,β,γ, for 0 ≤ α, β, γ < n by

Xα · Xβ ≡

n−1∑
γ=0

fα,β,γXγ mod f ,

then

ve =
n−1∑
γ=0

©­«
n−1∑
α=0

n−1∑
β=0

(∑̀
i=1

vi,αei,β

)
fα,β,γ

ª®¬ Xγ

where vi,α are the coefficients of vi and ei,β are the coefficients of ei . For f of cryptographic interest, by which
we mean having small coefficients so that the fα,β,γ are small, we find the coefficient of Xγ of ve computed
over R is approximately normally distributed with zero mean and variance σ2

γ := `σ2
SISσ

2
χ

∑n−1
α,β=0 | fα,β,γ |. The
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analysis assumes that the standard deviations are large enough that discrete Gaussians behave like their continuous
counterparts.

However, we can only compute vb modulo gR. Since Rg has adeg r distinct elements, if
∏n−1
γ=0 σγ is much

larger than this value we do not expect to be able to distinguish using vb mod gR. In the case n = 1 of LWE this
reduces to the same remark of Lindner and Peikert [54] that ‖v‖ should not be much larger than g/σχ. In their
case they can conclude by considering the statistical distance that the advantage of distinguishing is very close to
exp(−2π2σ2

χ/g
2). In our more general case we can do the same although we were unable to find a formula for the

advantage in the general case due to its intricate dependence on the shape of the ciphertext modulus g.

Example 2. As a simple yet important example, consider the case when f = Xn ± 1; then

| fα,β,γ | =

{
1 if α + β ≡ γ mod n
0 otherwise

,

and hence each coefficient of ve is approximately normal with variance `nσ2
SISσ

2
χ. In the case that g is a positive in-

teger, the advantage of distinguishing can be considered coefficient wise so that it is close to exp(−2π2`nσ2
SISσ

2
χ/g

2)

per coefficient when
√

2π`nσ2
SISσ

2
χ is not much larger than g. With the integer version of Ring-LWE [41] where

g = X − q we again have a similar result for q not much smaller than
√

2π‖v‖σχ, one must essentially distinguish
the uniform distribution on Znq from the spherical discrete Gaussian distribution of variance roughly `n‖v‖2σ2

χ and
the advantage will be essentially the same.

Of course, having multiple short non-trivial vectors can increase the advantage of distinguishing.

Requirements. For the dual attack on the Ideal-LWE f ,g,m,k ,`,χ problem using a lattice reduction algorithm
achieving root Hermite factor δ0 one must have

δ`n
2

0 σn
χn−n/2

n−1∏
γ=0

√√√ n−1∑
α,β=0

| fα,β,γ | 6� a(1−m/`) deg r .

This condition is very dependent on the shape of both f and g, the attack is most feasible when f is sparse and/or
has small coefficients and at least one of the coefficients of g are large.

5.6 THE BLUM-KALAI-WASSERMAN ALGORITHM
In [21] Blum, Kalai and Wasserman introduced an algorithm which solves the learning parity with noise

problem using a slightly subexponential time and number of samples. This algorithm came to be known as the
BKW algorithm. Regev [66], noted that one can adapt the BKW algorithm to work against the LWE problem
but it requires 2O(m) time and samples. We remark that in the case of LWE one can use the sample amplification
technique of Herold et al. [44] to increase the number of samples one has available if required.

In its simplest form, the approach is somewhat similar to the dual attack in that one finds a short vector in the
dual lattice of A though this time this vector will be a ternary vector of length

√
2t for some chosen t, having entries

in {−1,0,1}, and so we will require many more samples; one can compare this with the attack of Camion, Patarin
and Wagner in Section 3.3. As with the dual attack, this will attempt to solve the decisional variant of the LWE
problem.

Instead of using lattice reduction to find such a vector in the dual lattice, the BKWalgorithm splits the dimension
m of the first component of the LWE samples into t blocks of length roughly m/t and proceeds iteratively block
by block computing, at each stage i = 1, . . . , t, samples whose first components are zero on the first i blocks and
which are a signed sum of 2i original samples. One thus ends up with samples of the form (0,b′) where b′ is equal
to either the signed sum of 2t samples from the LWE error distribution χ or is uniformly random.

During each step, one simply considers samples produced in the previous step, say that have first component
having zeros in the first i blocks, and looks for two samples which agree on the (i + 1)th block.5 Upon finding such
a pair, subtracting one sample from the other component-wise produces a sample of the required form. If no such
collision is found, more samples are requested and processed until such a collision is found. Thus, the approach
can be seen as constructing t + 1 sorted lists Li of samples, indexed from 0 to t, all of which are initially empty
and for each sample we proceed through each list modifying the sample until we can insert it into a list for which
no sample in list Li matches the (modified) sample on block i. The modifications come when a match is found in
a previous list L j and then one subtracts the sample found in that list from the modified sample so that the newly

5Since changing the sign of both components of a sample gives another valid sample with the same magnitude of noise we should also look
for blocks which sum to zero rather than whose difference is zero, this will be implicitly assumed throughout this whole section.
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modified sample has first component which is zero on the jth block. All samples which have not been inserted
into a list by Lt−1 are inserted into Lt and when there are enough samples in Lt one stops. This can be seen as
analogous to performing Gaussian elimination on the rows of the matrix a but instead of considering each column
independently we consider blocks of (roughly) m/t columns.

It can immediately be seen that such an approach requires storing t lists each containing approximately qm/t

entries and while this can be reduced somewhat it is ultimately the dominant factor in determining the running
time of this style of attack. Albrecht et al. [10] analysed the complexity of this approach for attacking the decision
LWE problem. Here we give the slightly modified conclusion presented in [64] which assumes the need for more
samples than the optimistic number used in [10].

Theorem 4 (Theorem 6 from [64]). Let 0 < u ≤ m and set t = dmu e. The expected cost of using the BKW algorithm
to solve the Ideal-DLWEX ,q,m,1,`,DZ,α problem with success probability ε is

qu − 1
2

(
t(t − 1)

2
(m + 1) −

ut(t − 1)
4

)
−

u(qu − 1)
12

(
(t − 1)3 +

3
2
(t − 1)2 +

1
2
(t − 1)

)
additions/subtractions in Zq to produce the lists and

ε exp(2tπα2)
t(m + 2)

2

additions/subtractions in Zq to produce the new samples, all of which uses

t
⌈

qu

2

⌉
+ ε exp(2tπα2)

original samples. The memory requirement is

qu

2
t
(
m + 1 − u

t − 1
2

)
elements of Zq .

In order to be able to distinguish the two distributions using the same ideas in the dual attack one should choose
t such that

√
2tαq ≤ q and hence t ≤ −2 logα. This gives the following corollary.

Corollary 1. The expected cost of applying the BKW algorithm to attack the Ideal-DLWEX ,q,m,1,`,DZ,α problem
is O(qn/(−2 logα)(−2 logα)2n) operations in Zq using ` ≥ −2 logα

⌈
qm/(−2 logα)/2

⌉
+ poly(m) samples.

ATTACKING THE SEARCH VARIANT
More generally, one can consider using the BKW algorithm to attack the search version of the problem as

explained in [10]. This approach can be split into three different stages. The first stage is the iterative Gaussian
elimination stage explained above, though one stops before the last iteration. The second stage is to perform a
hypothesis test on a candidate for a part of the secret vector s in order to recover a component of it. Finally, using
this partial information a back substitution stage is performed so that one can proceed to solving a smaller instance
of the problem.

Splitting up the secret vector s into blocks in the same way as when splitting the first component of a sample,
the hypothesis testing stage will attempt to recover in reverse order the blocks of s. The back substitution
phase takes this knowledge, say one concluded that blockwise the secret has final blocks s′

i+1, . . . , s
′
t and write

s′i
T = (0,0, . . . ,0, s′

i+1, . . . , s
′
t ), and computes for each sample (a,b) in list Li−1 the new sample (a′,b′) = (a(i),b −

as′i mod q) where a(i) is the vector consisting of the first i blocks of a. If s′i is a correct guess then s− s′i is non-zero
only on the first i blocks. This means that (a′,b′) is a lower dimensional sample with secret s(i) and error a sum
of 2i outputs from the original error distribution; further, a′ has the property that it is zero on all but its last block.
Hence the problem has been reduced to a smaller dimensional one of the same form and one can proceed to the
hypothesis testing stage using these new samples.

In [10], the authors note that for the hypothesis testing stage one can simply use an exhaustive search over the
part of the secret being tested since even with this approach the running time is dominated by the first stage. They
score each guess using the log-likelihood ratio and take the guess with the highest score. Alternatively, any other
method which can tolerate the enlarged errors can be used in this step.
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Duc, Tramèr and Vaudenay [35] replaced the log-likelihood ratio approach in the hypothesis testing stage by
one using a multidimensional discrete Fourier transform and made further optimizations. They give the following
analysis of the BKW algorithm when used against the search LWE problem.

Theorem 5 (Theorem 17 from [35]). Let u and t be positive integers such that ut = m and denote by C the small
constant in the complexity of the fast Fourier transform computation. Further, let 0 < ε < 1 be a targeted success
rate and define ε ′ := (1 − ε)/t. For 0 ≤ j ≤ t − 1, set

`j ,ε := 8u log(q/ε)
(
1 − πα2

)−2t− j
.

The time complexity to solve the Ideal-LWEX ,q,m,1,`,DZ,α problem with probability at least ε is c1 + c2 + c3 + c4
where

c1 =
qu − 1

2

(
(t − 1)(t − 2)

2
(m + 1) −

u
6
(t(t − 1)(t − 2))

)
is the number of additions in Zq to produce the lists,

c2 =

t−1∑
j=0

`j ,ε
t − 1 − j

2
(n + 2)

is the number of additions in Zq to produce the samples required to recover all blocks of s with probability ε ,

c3 = 2 ©­«
t−1∑
j=0

`j ,ε
ª®¬ + Cmqu log q

is the number of operations in C to prepare and compute the discrete Fourier transforms, and

c4 = (t − 1)(t − 2)u
qu − 1

2

is the number of operations in Zq for back substitution. The number of samples required is

(t − 1)
qu − 1

2
+ `0,ε .

Finally, the memory complexity in number of elements from Zq and C is respectively

qu − 1
2
(t − 1)

(
m + 1 − u

t − 2
2

)
+ `0,ε and qu .

Further improvements The first stage was later modified by Guo, Johansson and Stankovski [42] in order to
more efficiently find collisions. Instead of looking for exact collisions between two samples on a given block of
the first component they relax this by using a q-ary linear code of length the given block size and consider there
to be a collision when the two blocks map to the same codeword. This gives rise to some additional error which
is the inner product of the actual difference on the two blocks and the corresponding secret block; hence, if the
secret is not initially short one should first apply the normal form transformation given in Section 2.8. Again,
one iterates the procedure over the different blocks and since additional errors arising in the first blocks increase
exponentially in the later iterations one should choose different codes with decreasing rates as one runs over the
different blocks. This approach is called coded-BKW. Since coded-BKW improves on the first stage of the attack
which is the bottleneck of the algorithm, this approach outperforms the previous works; the exact analysis is rather
technical and relies on a number of algorithm specific parameters so we do not state it here.

A similar proposal to coded-BKWwas given in concurrent work by Kirchner and Fouque [51]. Instead of using
coding theory to improve the first stage they generalise the approach of Albrecht et al. [8] called lazy modulus
switching which was used to attack the LWE problem with a binary secret. There, a collision is taken to occur
between two samples whose first components after modulus switching are equal on a given block, though one
does not actually perform modulus switching until it is needed, hence the term lazy; this can be seen as requiring
a collision in only the most significant bits of coefficients in the block. This latter point of view is adopted by
Kirchner and Fouque who allow the number of significant bits required for a collision to decrease as one iterates
over the blocks, at the same time allowing the remaining blocks to consist of a larger number of coefficients to keep
the overall size of the lists roughly constant. They give the following analysis of this approach under a bound on
the secret.
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Theorem 6 (Theorem 4 from [51]). Assume that the secret s is such that |si | ≤ S for all i = 1, . . . ,m with S ≥ 2
and define β =

√
m/2/α. Assume further that max(β, log q) = 2o(m/log n) and β = ω(1). Then one can solve the

Ideal-DLWEX ,q,m,1,`,DZ,α in time 2(m/2+o(m))/ln(1+log β/log S) for large enough `.

Finally, in the case of polynomial LWE, Stange [70] offers some methods to speed up the hypothesis testing
phase and removing the need for a back-substitution phase. Since it is the iterative phase which is the bottleneck
of this approach these ideas do not significantly improve the running time of the attack however they are still
interesting. We discuss these ideas in Appendix A.

GENERALISATION
Since this attack only uses themodule structure it can be applied inmuch the samewaywheneverm is reasonably

large. In the other case, for example where m = 1 so we have polynomial LWE, we could convert the problem to
an LWE instance by considering Rg as a free Za-module of dimension deg r however this loses sight of some of
the additional ring structure that we would like to take advantage of. We will see in Appendix A how one can use
this structure although this will not significantly speed up this approach.

Requirements. One can readily apply the BKW algorithm to instances of the Ideal-LWE f ,g,m,k ,`,χ problem when
the module dimension m is relatively large and ` is very large. If m is small one may be able to use the fact that Rg

is a free Za-module of dimension deg r with which to define a block structure. If ` is not large enough one may be
able to apply sample amplification techniques to increase it.

5.7 THE ARORA-GE ATTACK
When the error distribution χ used in the LWE distribution As,χ is very narrow, Arora and Ge [13] noticed

that one can attack the problem by defining a system of non-linear equations in the entries of the secret vector s.
With enough samples one can linearise the system, and solve for the secret.

One first chooses an integer d such that the (discretised) error is bounded by d with very high probability when
sampled from χ. Define the polynomial

P(η) := η
d∏
i=1
(η − i)(η + i);

then with very high probability we have P(e) = 0 when e← χ. Let x = (x1, . . . , xm) be m variables. Then for each
sample (ai,bi) ← As,χ we have a multivariate polynomial

pi(x) = P(bi − 〈ai,x〉)

for which pi(s) ≡ 0 mod q. Define the variables yv, indexed by a vector v ∈ Nm
0 with 0 ≤

∑m
i=1 vi ≤ 2d + 1, where

yv =
∏m

i=1 xvii . In total there are
(m+2d+1

m

)
such variables so with enough samples it is likely that, when linearised,

the equations pi(y) ≡ 0 mod q are overdetermined and one can attempt to solve the linear system of equations. If
all the error terms are indeed bounded by d then one can recover the secret as a solution.

As we require many samples to set up the linear system we must worry about the possibility that one of the
error terms is larger than d causing the attack to fail. If one increases d even slightly then one needs significantly
more samples and we have the same problem that it is now much more likely that one of the samples contains an
error term larger than the new value for d. In practice then, the attack works well only when we can take d to be
very small. More generally, Albrecht, Cid, Faugère and Perret give the following result after refining the analysis
of this approach.

Theorem 7 (Theorem 5 from [9]). Let DZ,α be the discrete Gaussian with parameter α and define D :=
8(αq)2 log m + 1. Denote by ω the linear algebra constant. If D ∈ o(m) then the Arora-Ge algorithm solves
the Ideal-LWEX ,q,m,1,`,DZ,α problem in time complexity

O
(
2ωD log(m/D)αq2 log q

)
and memory complexity

O
(
22D log(m/D)αq2 log q

)
.

If D ∈ o((αq)2 log n) then the Arora-Ge algorithm solves the Ideal-LWEX ,q,m,1,`,DZ,α problem in time complexity

O
(
2ωm log(D/m)αq2 log q

)
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and memory complexity
O

(
22m log(D/m)αq2 log q

)
.

When performing the linearisation approach given by Arora and Ge one must have access to as many samples
as required and if this is not the case then this approach fails. However, other approaches to solving a system
of multivariate equations exist. Both Ding [34, 33] and Albrecht et al. [9] have proposed to use Gröbner bases
to find a solution to the system of multivariate equations. Under the assumption that the polynomials pi form a
semi-regular system, they give the following result showing that using Gröbner bases gives an exponential speed-up
over linearisation. However, it does not lead to a subexponential attack on the LWE problem.

Theorem 8 (Special case of Theorem 6 from [9]). Let ω be the linear algebra constant and set α =
√

m/q.
There is an algorithm solving the Ideal-LWEX ,q,m,1,`,DZ,α problem, where ` = exp(πm/4), in time complexity
O

(
2m(2.35ω+1.13)) and memory complexity O

(
25.85m)

with success probability at least 1 − 2/π
√

m.

GENERALISATION
The attack also works against polynomial LWE, that is Ideal-LWE f ,q,1,1,`,χ, simply by considering a polynomial

LWE sample as n LWE samples; however, this is best suited for error distributions that are defined coefficient-wise.
For example, if the error distribution produces error polynomials with coefficient vectors of at most a fixedHamming
weight h, one can proceed as in the original attack against the learning parity with structured noise problem and
consider any suitable polynomial p(x), defined with respect to a full polynomial LWE sample, of degree h+1 using
the idea that among any h + 1 coefficients of the error there is at least one that is zero so their product is guaranteed
to be zero. Since any set of h + 1 coefficients gives a distinct polynomial it makes sense to use all of them so in
this case instead of defining p as a single polynomial we define it as

( n
h+1

)
polynomials each of degree h + 1 and

depending on a single polynomial LWE sample. We follow this latter approach of having p be a set of polynomials
defined by a sample from Rm

g × Rg.
Porting this attack to the generic ciphertext modulus setting presents a complication. In the simplest case, the

polynomial p(x) evaluates to zero only in the components of samples of χ. However, when the ciphertext modulus
g is not just a constant, the small coefficients of samples from χ become intertwined when reduced modulo g. One
may think of trying to reverse the operation of reduction modulo g when this is easy to do such as the case of a
linear g (this amounts to expanding with respect to some integer base) however this is not a polynomial operation
so is not compatible with this attack.

Instead, we must consider the coefficients of the distribution χ when reduced into Rep(Rg), these coefficients
will be polynomials in the original error coefficients. In the integer modulus case the polynomial p had degree
2D + 1 because we assumed that with overwhelming probability the error coefficient can be one of only 2D + 1
values. In the general case that g is not a constant polynomial we must typically use a larger degree for p due to
the increased range of possible values a given coefficient in Rep(Rg) can take. This can dramatically increase the
degree of the polynomials making up p; how much depends on how the coefficients of the original error e in R are
mixed when reduced modulo g into Rep(Rg).

For example, if g is linear then elements in Rep(Rg) are constants so all coefficients are mixed; in this case p
will consist of a single polynomial whose degree is now (2D + 1)n in the simple bounded error case. As another
example we can consider f = Xn + 1 and g = Xn/2 − b for some b so that a = b2 + 1 and r = g. In this case, when
mapping an error from R to Rep(Rg), each coefficient of the output depends only on two of the input coefficients so
that we need to use a p consisting of n/2 polynomials of degree (2D + 1)2 when the error coefficients are bounded
by D.

This growth in the maximal degree of the polynomials defining p renders this attack all but useless when either
D is large or the coefficients of an error term mix too much in Rep(Rg). In the case of the MLHC problem, the error
polynomials have a fixed Hamming weight, say h, and g = X − 2, this leads to the polynomial p having degree at
least

(n
h

)
, again making this approach intractable.

Requirements. The Arora-Ge attack requires that the ciphertext modulus is an integer or more generally that very
little mixing of error coefficients occurs when going from R to Rep(Rg). Further, the errors must be taken from a
very narrow distribution.

5.8 EVALUATION ATTACKS
One can consider the folding attack of Gentry on NTRU described in Section 4.5 as the first evaluation attack.

Here we consider how such an attack can be mounted on the polynomial LWE problem instead. In [36], Eisenträger,
Hallgren and Lauter gave a simple attack on the Ideal-LWE f ,q,1,1,`,χ problem when the defining polynomial f has
a root at 1 when taken modulo a prime modulus q: f (1) ≡ 0 mod q. Due to this property, the evaluation at one
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map Zq[X]/( f (X)) → Zq given by a(X) + (q, f (X)) 7→ a(1) + qZ is well defined. The attack consists of applying
this map component wise to the samples (a,b) and noting that the evaluation at one map is a ring homomorphism
so that if the samples are sampled from the polynomial LWE distribution then b(1) = a(1)s(1) + e(1) mod q
and we have one dimensional LWE samples with secret s(1). Hence, one can test each possible value of s(1),
computing b(1) − a(1)s(1) mod q and consider this new distribution. In the case of an incorrect guess for s(1) or
the case of uniformly random b, since q is prime, the distribution is uniformly random modulo q. On a correct
guess for s(1) however, the distribution will be non-uniform so that for large enough q it is distinguishable and
hence we can determine that the original samples were not uniformly distributed. In this way, one can solve the
Ideal-DLWE f ,q,1,1,`,χ problem in time Õ(q).

The authors further suggest a slight generalisation of the attack for which f has a root ξ modulo q of small order
in Z×q . The attack now uses the evaluation at ξ map instead of the evaluation at 1 map. Further, ei(ξ)may no longer
be small but due to the small order of ξ can still be distinguished from uniform with non-negligible advantage for
suitably large q.

The above evaluation attack was analysed by Elias et al. in [37] where they give the following proposition.

Proposition 1 (Proposition 1 and 2 from [37]). Let q be a prime and f (X) ∈ Z[X] of degree n be such that there
exists ξ ∈ Z with f (ξ) ≡ 0 mod q and ξ having order t in the multiplicative group Z×q . Also let χσ be the spherical
Gaussian distribution on Z[X]/( f (X)), with respect to the power basis, with standard deviation σ but that has been
truncated at width 2σ. Assume one of the three following cases:

1. (4σn/t)t < q and set p = (4σn/t)t/2;

2. ξ = ±1 and 8σ
√

n < q and set p = 1/2;

3. ξ has small multiplicative order t ≥ 3 modulo q and

8σ
√

n
√

t

√
β2t − 1√
β2 − 1

< q,

and set p = 1/2.
Then one can solve Ideal-DLWE f ,q,1,1,`,χσ with probability at least 1 − p` . The running time of this attack is
Õ((` + n)q) in case 1 and Õ(`q) otherwise.

GENERALISATION
The attack can be generalised to the generic ideal setting upon considering that evaluation-at-z is equivalent to

reductionmodulo X−z. The resulting congruence is well defined as long as (X−z, f (X),g(X)) , (1) asZ[X]-ideals.
In fact, one can consider more generally reduction modulo a polynomial h(X) as long as ( f (X),g(X), h(X)) , (1)
as ideals. Reducing samples modulo h(X) into the ring Z[X]/( f (X),g(X), h(X)) gives samples in a smaller ring
which may be easier to solve than in Rg if the error distribution is mapped to one which is still distinguishable from
uniform. For larger values of m it is straightforward to consider applying the same techniques coordinate-wise.

While this attack is potentially very powerful, it is straightforward to choose parameters where there are no
suitable choices for h. We note that the MLHC problem is naturally immune to this attack, since neither evaluation
at 2, nor evaluation at 1, results in any non-trivial information.

Requirements. For this attack to work we require the existence of a polynomial h(X) ∈ Z[X] for which the
Z[X]-ideal ( f (X),g(X), h(X)) is not trivial and where the reduction modulo (g(X), h(X)) of the error distribution
is still distinguishable from the uniform distribution.

5.9 ZERO-FORCING: THE ATTACK OF CORON AND GINI
Inspired by the zero-forcing attack ofBeunardeau et al. on theMLHRn,h problem [20], Coron andGini [32] give a

variant of the attack against the Mersenne low Hamming combination assumption, i.e. Ideal-DLWEXn−1,X−2,1,1,2,χ
with χ the uniform distribution on binary polynomials in R having h non-zero coefficients and the secret also
sampled from χ. Further, this can easily be modified to attack the MLHCn,h , Ideal-LWEXn−1,X−2,1,1,1,χ, problem
which success 2−2h over all possible choices of s and e.

First, assume that one is given (a1,b1) and (a2,b2) where bi ≡ ais + ei mod M for i = 1,2, where again
M = 2n − 1, and s,e1,e2 are n bit integers with binary expansions having Hamming weight h. One again chooses a
balanced interval-like partition for each of s, e1 and e2 this time consisting of k, ` and j blocks respectively. In their
approach, blocks are not classified as zero or non-zero and can be thought of as implicitly consisting of a non-zero
block together with its following zero block. Let the partition of s have blocks starting at indices p1, . . . , pk , and
similarly q1, . . . ,q` for e1 and r1, . . . ,rj for e2.
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For a constant β, one constructs the lattice spanned by the rows of the matrix

©­­­­­­­­­­­­­­­­­­­­­­­­«

β 0 0 · · · 0 0 · · · 0 b12−q1 0 · · · 0 b22−r1

0 1 0 · · · 0 0 · · · 0 −a12pk−q1 0 · · · 0 −a22pk−r1

0 0 1 · · · 0 0 · · · 0 −a12pk−1−q1 0 · · · 0 −a22pk−1−r1

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 1 0 · · · 0 −a12p1−q1 0 · · · 0 −a22p1−r1

0 0 0 · · · 0 1 · · · 0 −2q`−q1 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · 1 −2q2−q1 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 M 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 0 1 · · · 0 −2rj−r1

...
...

...
. . .

...
...

. . .
...

...
...

. . .
...

...
0 0 0 · · · 0 0 · · · 0 0 0 · · · 1 −2r2−r1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 M

ª®®®®®®®®®®®®®®®®®®®®®®®®¬
and notes that, on writing

s =
k∑
i=1

xi2pi mod M, e1 =
∑̀
i=1

yi2qi mod M, and e2 =

j∑
i=1

zi2ri mod M,

the vector
(
β x1 · · · xk y1 · · · y` z1 · · · zj

)
lies in the lattice and for a well chosen set of partitions

it is a short vector.
Just as in the attack of Beunardeau et al. the approach is to sample random balanced interval-like partitions

with k = ` = j, construct the associated lattice and run LLL reduction on it in the hope of recovering s, e1 and e2

(or some rotation). The probability of success is now given by
(

2
3

)3h
≈ 2−1.75h over all possible choices of s, e1

and e2. Now, if b1 and b2 are actually random integers modulo M then the success probability of finding a solution
consisting of three n-bit integers having Hamming weight h is negligible so one can distinguish between the two
cases with non-negligible advantage in time O(21.75h).

If one removes the final j columns of the lattice and sets e1 = e and a1 = a then one recovers the attack on the
MLHCn,h problem mentioned above which runs in time O(22h).

GENERALISATION
The idea here is the same as the zero-forcing attacks on Ideal-NTRU only applied to the primal-LWE lattice

instead of the NTRU lattice. This time, we will first have to slightly modify the LWE lattice. We assume that k,
the number of independent secrets, is one as before and that the secret s is sampled from the error distribution (we
drop this condition later but it helps to ease the exposition) and that the error distribution produces elements of R
which have many zero coefficients. Define d = (m + `)n + ` deg r + 1 and the modified lattice

Λ
′(a,b) =

{
(ι(x), ι(y),z,w) ∈ Zd

��� x∈Rm , y∈R` ,
z≡ι(repg (wb+axT+yT )) mod a

}
,

where again we have abused notation and dropped the zero coefficients appearing at the end of z.
As before, we are only interested in vectors for which z is zero so we will scale these coordinates by a large

constant K . We may also scale the final coordinate by some small non-zero scalar W to balance the coordinates of
the small vector we are trying to recover. For this purpose we define the lattice

Λ
′
K ,W (a,b) = {(x,y,z,w) ∈ Z

d | (x,y,K−1z,W−1w) ∈ Λ′(a,b)}.

It is clear that if b = as + e then (ι(s), ι(e),0,−W) is a short element in this lattice. Further, we can easily compute
a basis for the lattice by setting the first basis vector as (0,0,K ι(repg(b)),W), the next mn vectors running over
the power-basis for x ∈ Rm and fixing y = 0 and w = 0, the next `n vectors running over the power-basis for
y ∈ R` while x and w are fixed to zero and finally ` deg r vectors which perform reduction modulo Ka in the third
component, while all other entries are set to zero.

Just as before, the important point now is that it is easy to find a basis for the lattice corresponding to setting
certain coefficients of some element of R to be zero. The approach of the zero-forcing attack is to guess positions
that can be set to zero to significantly reduce the dimension of this lattice, then reducing this sublattice using LLL
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and assuming that the guess was correct we may be able to find the corresponding secret and errors. For more
details on how exactly this is done see the zero-forcing attack on the Ideal-NTRU problem as the process is almost
identical.

Remark 3. Finally, we remark that the attack is still applicable if the secret is not sampled from the error distribution
and one cannot convert the problem to such an instance. To proceed, one simply drops the columns corresponding
to x in Λ′(a,b) and allow z to be any element satisfying z ≡ ι(repg(wb + axT + yT )) for some x ∈ Rm.

Requirements. The requirements for this attack are much the same the zero-forcing attack on Ideal-NTRU, only
this time the errors also need to be sparse; something that is typically not the case for standard LWE type problems.
Further, f and g should have sparse coefficient vectors with small coefficients.

6 CONCLUSION
In this paper we have detailed the most relevant attacks on standard variants of the NTRU, LWE and SIS

problems as well as those on the newer MLHR and MLHC problems and considered if and how they can be applied
to the more general Ideal-NTRU, Ideal-LWE and Ideal-SIS problems which use a general polynomial ciphertext
modulus.

We have seen that attacks such as theArora-Ge attack and the zero-forcing attacks require very specific parameter
choices in order to be generalised beyond their original intended use while other attacks such as lattice attacks
on the Ideal-SIS problem can be applied for any choice of ciphertext modulus. In between these two extremes,
we have attacks such as subfield attacks on the Ideal-NTRU problem and the primal attack on Ideal-LWE which
still require the ciphertext modulus to conform to a rather restrictive set of requirements as well as the dual attack
on Ideal-LWE and combinatorial attacks on Ideal-SIS which have more minimal requirements on the ciphertext
modulus.

Whilst we were able to give somewhat high-level conditions which need to be satisfied for the attacks we
consider to be applicable, determining a set of concrete parameter choices for which a problem achieves a certain
level of security is currently not possible outside of the standard problems. It remains important future work to
obtain a deeper understanding of the applicability and running times of the generalised attacks presented in this
work. In doing so it may then be possible to provide concrete estimates for the security of a given instance of either
the Ideal-NTRU, the Ideal-LWE, or the Ideal-SIS problems.
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A RING-BKW
One can apply the BKW attack directly to any ring variant of the learning with errors problem, under the

assumption that the error term has small coefficients, by considering one sample as n LWE samples. If one does
this however, a ring sample which is zero on the first block only has one LWE sample with this property in general.

Instead of simply splitting the coefficients into blocks as in the original BKW attack, Stange, in an unpublished
work [70], proposes to use the ring structure to do better. We remark that the exposition here mainly follows the
first version of [70] which includes the use of the Chinese remainder theorem to reduce the size of the problem.
This idea was removed in later versions of the paper since such a reduction can be achieved using the other main
idea present in the first version which is to use the trace map.

Stange’s attack restricts to using the power-of-two cyclotomic polynomial in the polynomial LWE setting and
further assumes that q is prime and6 q ≡ 1 mod 4 so that, on defining ν := ord2(q − 1) ≥ 2, t := 2ν−1 and u := n/t,
we have

Xn + 1 ≡ f1(X) · · · ft (X) mod q

with each fi irreducible modulo q and having degree u. Hence, we have the isomorphisms

Rq :=
Zq[X]
(Xn + 1)

�
Fq[X]
( f1(X))

× · · · ×
Fq[X]
( ft (X))

� Fqu × · · · × Fqu = Ftqu

using the Chinese remainder theorem. In fact, we have fi = Xu − c2i−1 where the c is any root of X t + 1 in Fq .

6If not using the CRT decomposition then q is assumed only to be an odd prime which is unramified in R.
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We further assume, for simplicity, that the error distribution can be written so that we can sample it coefficient
wise from χ and allow the secret to be sampled from an arbitrary distribution.

This structure of Rq gives us two tools which are used to improve the BKW attack; firstly, we can apply a ring
homomorphism from Rq to some smaller ring and secondly, one can use the subfield structure inside the fields Fqu

or the number field Q[X]/( f (X)). Both tools cannot simply be applied naïvely as we now see.
For a ring homomorphism ρ : Rq → R/a � Fqu , for a | qR, the coefficient-wise error distribution is mapped to

the coefficient wise distribution ξ :=
∑t−1

i=0 ρ(X
u)i χi where χi are independent and identically distributed according

to χ. This is true since ρ fixes Fq and hence χ. We therefore see that smallness is not preserved in general.
In the case of going from the field Fqu to a subfield Fqd or from Q[X]/( f (X)) to a subfield we can use the field

norm or trace maps. However, applying these maps also increases the size of the errors in much the same way as
we saw in Section 4.6.

Once these two obstacles have been overcome the approach is as before. First choose a block size β | u and
perform the BKW algorithm on the coefficients of the CRT representations of the first component of the samples
if using the CRT decomposition or simply on the first component of the samples if not. In doing so we can reduce
the problem to solving the problem for instances in smaller subfields. After solving these instances we can rebuild
the original secret. We now give the details.

CRT Reduction Let us write ρi : Rq → Fq[X] for i = 1, . . . , t defined simply by reduction with respect to fi(X)
to a polynomial of degree at most u. We choose not to map into Fq[X]/( fi(X)) for clarity later on and instead
define multiplicative binary operations �i : Fq[X] × Fq[X] → Fq[X] given by a �i b := ρi(ab). Define the t × t
matrix P as

P :=
©­­­­«
ρ1(X0) ρ2(X0) · · · ρt (X0)
ρ1(Xu) ρ2(Xu) · · · ρt (Xu)

...
...

. . .
...

ρ1(Xn−u) ρ2(Xn−u) · · · ρt (Xn−u)

ª®®®®¬
=

©­­­­«
1 1 · · · 1
c c3 · · · c2t−1

...
...

. . .
...

ct−1 c3(t−1) · · · c(2t−1)(t−1)

ª®®®®¬
.

We note that the entries of P are elements of Fq in our specific case so we consider P to be a matrix in GL(t,Fq).
If we write ρ = (ρ1, . . . , ρt ) as the full CRT isomorphism then for an element a ∈ Rq with coefficients aj ∈ Fq we
have

ρ(a) = ρ ©­«
n−1∑
j=0

ajX jª®¬ =
n−1∑
j=0

aj ρ(X j) =

t−1∑
i=0

©­«
u−1∑
j=0

aiu+jX jª®¬ ρ(X iu).

We thus define αi :=
∑u−1

j=0 aiu+jX j , α = (αi)t−1
i=0 and note that ρ(a) = αP. Further, denoting P−1 = (µi, j)

t
i, j=1 we

have µi, j = c−(2i−1)(j−1)/r and α = ρ(a)P−1 which implies αi =
∑t

j=1 µj ,i+1ρj(a). Assume now that (a,b = as + e)
is a sample from the polynomial learning with errors problem. We thus see that if ρj(a) = 0 for all j except t then
we have ρj(b) = ρj(e) for all j except for t where we have ρr (b) = ρt (a) �t ρt (s)+ ρt (e). Hence for each i we have

t∑
j=1

µj ,iρj(b)︸          ︷︷          ︸
βi

= µt ,iρt (a)︸    ︷︷    ︸
αi

�t ρt (s) +
t∑

j=1
µj ,iρj(e)︸         ︷︷         ︸
εi

which we can consider as a polynomial LWE sample in the ring Zq[X]/( ft (X)) with secret ρt (s) and error
εi =

∑u−1
j=0 eiu+jX j which has small coefficients assuming the original samples had small error coefficients ej .

More generally, if for some j0 we have ρj(a) = 0 for j = 1, . . . , j0 − 1 and ρj(s) is known for j = j0 + 1, . . . , t
then we can compute samples

(ãi, b̃i) := ©­«µj0 ,iρj0 (a),
t∑

j=1
µj ,iρj(b) −

t∑
j=j0+1

µj ,iρj(a) �j ρj(s)
ª®¬ (2)

which when considered modulo fj0 are polynomial LWE samples with secret ρj0 (s) and error distrubtion χu .
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The trace map Let us first suppose that we have polynomial LWE samples (a,b) where the ring is also a field
isomorphic to Fqu as is the case with the samples (ãi, b̃i) (over multiple instances of suitable (a,b)). We consider
the trace map Tr : Fqu → Fqd for some d | u in this case. For convenience we denote by Sq the subfield Fqd in this
case.

Alternatively, if we have samples in Rq where R = OK for K = Q[X]/( f (X)) we let L ⊆ K be the 2dth-
cyclotomic subfield and note that the trace map TrK/L : K → L respects reduction modulo q. That is for a,b ∈ R
we have TrK/L(a+qb) = TrK/L(a)+qb′ for some b′ ∈ OL . This time, denote by Sq the subset of Rq corresponding
to OL/qOL , then we have a well defined trace map Tr : Rq → Sq (again see Section 4.6 for more detail). We also
set u = n in this case.

We specifically use the same notation Tr and Sq in both cases as the maps behave in the same manner so we
can give a unified treatment. Whichever case we are in, we can apply the trace map to the samples to give

Tr(b)︸︷︷︸
b′

= Tr(as + e) = Tr(as) + Tr(e) = Tr(a)︸︷︷︸
a′

Tr(as)
Tr(a)︸ ︷︷ ︸

s′

+ Tr(e)︸︷︷︸
e′

.

We need s′ to depend only on s and not on a. To achieve this one notes that, for λ ∈ Sq , Tr(λa) = λTr(a) so if
every sample has a in some fixed coset of S×q this is true. In particular, suppose they all lie in the coset υS×q and
Tr(υ) ∈ S×q , then we have s′ = Tr(υs)/Tr(υ).

Looking at the new error e′ = Tr
(∑u−1

i=0 eiX i
)
=

∑u−1
i=0 eiTr(X i), one notes

Tr(X i) =

{
0 if i . 0 mod (u/d)
u
d X i otherwise,

(3)

irrespective of which case we are in and hence e′ = u
d

∑d−1
i=0 eiu/dX iu/d . Thus the (non-zero) coefficients of e′

are u
d times a sample from the original coefficient error distribution. Thus, if one instead defines new samples

(ã, b̃) :=
(
d
u Tr(a), du Tr(b)

)
we have polynomial LWE samples with secret s′ and errors with coefficients sampled

from χ.
Solving this new instance of the polynomial LWE problem using some other method gives us s′ but we cannot

recover s immediately. For this one notes that (a,−bXn−j) is a sample with secret −sXn−j and more importantly the
same error distribution for j = 1, . . . , d − 1 after taking the trace, namely we will have d

u Tr
(
−

∑u−1
i=0 eiXn−j+i

)
=∑d−1

i=0 eiu/d+jX iu/d .7 We can therefore apply the same approach to recover ςj := Tr(−υsXn−j)/Tr(υ) for each
j = 0, . . . ,u/d − 1. Using (3) we can see that

d
u Tr(υ)

u/d−1∑
j=0

ςjX j = d
u

u/d−1∑
j=0

Tr(−υsXn−j)X j = υs

and then multiplying by υ−1 gives us the secret s in the full field.

Putting it together We have seen that one can reduce the polynomial LWE problem with f = Xn + 1, n a power
of two, and q ≡ 1 mod 4 to one in a finite field using the Chinese remainder theorem, assuming that all but one of
the components of the ‘a-part’ of the samples are zero. Further, if required we can reduce the problem in a finite
field to one in a subfield if all the samples have their ‘a-part’ in the same coset of the multiplicative group of the
subfield.

Alternatively, for the same f and now q any odd prime that is unramified we can use the cyclotomic subfield
structure to reduce the problem to one using a smaller power-of-two cyclotomic field if we can recover enough
samples for which the ‘a-part’ lies in a fixed coset of the ring of integers of this smaller cyclotomic field.

Such conditions can be satisfied by a suitable choice of block size β and ordered basis with respect to which
BKW reduction is performed. In particular, to use the above mentioned subfields we must choose a block size
β | d. Further, the basis should be ordered globally with respect to the CRT mapping, if used, and then we use the
basis 1,X,X2, . . . ,Xu−1 ordered according to the following rules:

• if one of X i and X j generates a strictly smaller subfield8 than the other, then it comes after the other;
• if X i and X j generate the same subfield then the ordering is the standard one.

7Stange instead multiplies the b by X j rather than its inverse which leads to a distortion of the error when applying the trace map.
8The subfield is modulo q in the case of using the CRT decomposition and of K otherwise.
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If using the CRT decomposition, we will recover samples in the final BKW list whose first component’s CRT
decomposition is all zero except in the last coordinate which will lie in Fqβ . Using such samples, we can recover
the final CRT component of the secret (in Fqu ). With this knowledge we can find the appropriate BKW list to
repeat the process for the previous CRT components until we have recovered all components of the original secret.

Otherwise, we will recover samples in the final BKW list whose ‘a-part’ lies in Sq , while not guaranteed to be
in S×q , this is enough to be able to apply the trace map as in the previous section to be able to recover the original
secret by solving n/d polynomial LWE problems in Sq . This method has the advantage that no back-substitution
of the partial secret is required so all smaller dimensional problems can be solved in parallel, something which is
not true when using the CRT decomposition.

We remark that the only growth in the size of the error coefficients occurs during the BKW reduction step and
depends exponentially on the number of blocks n/β used. Further, it is possible to use any of the improvements to
the basic BKW reduction algorithm together with this attack as well as using blocks of differing size though we do
not expand on this here.

GENERALISATION
We attempt to generalise Stange’s attack to Ideal-LWE, remaining in the case m = 1 for simplicity, as we now

explain. Firstly, we consider in which cases one can successfully apply the CRT map. Secondly, we look at what
to replace the trace map with when it does not exist due to the problem no longer being defined in a finite field or
with respect to a power-of-two cyclotomic number field where the trace map is very well behaved. We will see that
we have differing levels of success in both parts.

CRT REDUCTION
To be able to utilize the CRT decomposition we assume that we can write f =

∏t
i=1 fi + κg for polynomials

fi ∈ Z[X] of the form fi = Xu − ci for distinct ci ∈ Z and a polynomial κ ∈ Z[X]. Assume further that as ideals
( fi,g) can be written as (ai,ri) where ai | a. We also require that the t × t Vandermonde matrix with (i, j)th entry
ci−1
j is invertible modulo a; that is its determinant

∏
1≤i< j≤t (cj − ci) is coprime to a, hence so is each cj − ci .

Further, define integers µi, j which are thought of as the entries of the inverse of the above Vandermonde matrix so
that we have

t∑
u=1

µu,ic
j−1
u ≡ δi, j mod a,

where δi, j is the Kronecker delta function.
Then we define the maps ρi : Rg → Z[X]/( fi,g) � Zai [X]/(ri(X)) for i = 1, . . . , t as reduction modulo fi . We

will actually need to use maps ρ̃i : Rg → Rg which map a to the representative of ρi(a) in Rep(Z[X]/( fi,g)) and
then reduce this modulo g so that it is an element of Rg. Suppose a ∈ Rg is such that for some 1 < j0 ≤ t we have
ρ̃i(a) = 0 for 1 ≤ i < j0 and that we know the values of ρ̃i(s) for j0 < i ≤ t. For b ≡ as + e mod gR, we then
have ρ̃i(b) = ρ̃i(e) for 1 ≤ i < j0 but we don’t necessarily have ρ̃i(b) − ρ̃i(ρ̃i(a)ρ̃i(s)) = ρ̃i(e) for j0 ≤ i ≤ t as this
equation only holds modulo the ideal ( fi,g) = (ai,ri). By considering degrees, we can instead write

ρ̃i(b) − ρ̃i(ρ̃i(a)ρ̃i(s)) = ρ̃i(e) + ai∆i,

with ∆i a polynomial of degree at most deg(rj)−1 and with small coefficients. This is our first potential obstruction.
Next, we define

(ãi, b̃i) := ©­«µj0 ,i ρ̃j0 (a),
t∑

j=1
µj ,i ρ̃j(b) −

t∑
j=j0+1

µj ,i ρ̃j
(
ρ̃j(a)ρ̃j(s)

)ª®¬ .
We then have b̃i−ãi ρ̃j0 (s) ≡

∑t
j=1 µj ,i ρ̃j(e)+

∑t
j=j0

µj ,iaj∆j mod ( fj0,g).We further consider the term
∑t

j=1µj ,i ρ̃j(e);
to this end we define the polynomials ε` :=

∑k−1
i=0 e(`−1)k+iX i where the ei are the coefficients of e. It is clear that

ρ̃j(e) ≡
∑t
`=1 ε`c

`−1
j mod ( fj,g) so we define κj such that we have

ρ̃j(e) =
t∑̀
=1
ε`c`−1

j + aj κj

in Rg. Ideally, we want κj = 0 for all j but this is not true in general so we have a second obstruction. We therefore
have

t∑
j=1

µj ,i ρ̃j(e) =
t∑̀
=1
ε`

t∑
j=1

µj ,ic`−1
j +

t∑
j=1

µj ,iaj κj = εi +

t∑
j=1

µj ,iaj κj
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since by definition
∑t

j=1 µj ,ic
`−1
j = δi,` . Thus we can conclude that

b̃i − ãi ρ̃j0 (s) = εi +
t∑

j=1
µj ,iaj κj +

t∑
j=j0

µj ,iaj∆j .

Considering the sample (ãi, b̃i) modulo ( fj0,g) with secret ρj0 (s) we see that the error is given by

εi +

t∑
j=1

µj ,iaj κj +

t∑
j=j0+1

µj ,iaj∆j mod ( fj0,g) (4)

which in general is not small due to the last two terms.
We note two cases where we can still apply this attack. Firstly, for the case that g is an integer we have that for

each i, ai = a = g, and hence the only term left in the error in (4) is εi which has small coefficients when lifted to
Z[X]/( fj0 (X)). We remark that there is no reason to assume g is prime, though the Vandermonde matrix is less
likely to be invertible if g has many small factors.

Secondly, we look at the case of g = X − b; in this case a =
∏

i ai and the fact that the Vandermonde matrix
is assumed to be invertible implies that the ai = bu − ci are coprime. We have that ε` ≈ e`u−1bu−1 and hence
ρ̃j(e) =

∑t
`=1 ε`c

`−1
j ≈

∑t
`=1 e`u−1bu−1c`−1

j ≈ en−1bu−1ctj which may be relatively small compared to aj0 when ctj
is of the order of b or smaller. In other words, if this is the case then κj is small.

Further, we note that
∑t

j=1 µj ,iaj ≡
∑t

j=1 µj ,i(cj0 − cj) ≡ δ1,icj0 − δ2,i mod aj0 . Unfortunately, in general the
terms κj + ∆j are not equal so this is not very useful however when t = 2 we see that the additional error term is
equal to (κ3−j0 + ∆3−j0 )cj0 if i = 1 and −(κ3−j0 + ∆3−j0 ) when i = 2; thus choosing the samples with i = 2 still gives
small error terms assuming κj is small for all j.

Requirements. In summary, we have two situations in which we can use the CRT decomposition. Firstly, when
g is an integer and f can be written as

∏t
i=1(X

u − ci) modulo g for integer ci such that the ci − cj are invertible
modulo g for j , i. Secondly, when g = X − b with f ≡ (Xu − c1)(Xu − c2) mod g for integers c1, c2 such that
c1 − c2 invertible in Rg and c2

1 and c2
2 are of the order of b in magnitude or smaller. Finally, in both cases we

require a large number of samples to be able to run the BKW reduction.

GENERALISED TRACE REDUCTION

For this approach we assume that we can write f (X) = f̃ (Xd) and g(X) = g̃(Xd) for some d > 1. Let deg f̃ = ñ.
We first define the map θ : Z[X] → Z[X] by θ(

∑
i aiX i) =

∑
i : d |i aiX i . Clearly the map is a homomorphism of

abelian groups (with respect to addition). We define C ⊆ Z[X] to be the subring of elements for which θ is the
identity map, i.e. C is the set of elements which can be written as an integer sum of powers of Xd . Then for
c =

∑
j cjXdj ∈ C and a =

∑
i aiX i we have ac =

∑
i

∑
j aicjX i+dj which implies

θ(ac) =
∑
i : d |i

∑
j

aicjX i+dj = θ(a)c.

Since f ,g ∈ C, we see that θ respects reduction modulo f and g, namely that θ(a+k f + lg) = θ(a)+ θ(k) f + θ(l)g.
We can therefore define θ̃ : Rg → Rg in the same manner as θ. Define the set Sg to be the subring of Rg which is
fixed by θ̃.

Now, suppose we have samples (ai,b = ais + ei) ∈ Rg × Rg such that each ai lies in the same coset of R×g/S
×
g ,

say υS×g . We can relax this slightly to assuming that we can write ai = ciυ for some ci ∈ Sg and υ ∈ R×g . Then,
assuming further that θ̃(υ) ∈ S×g so that ci = θ̃(ai)/θ̃(υ), we have

θ̃(bi) = θ̃(ciυs + ei) = ci θ̃(υs) + θ̃(ei) = θ̃(ai)
θ̃(υs)
θ̃(υ)

+ θ̃(ei).

Clearly, if the coefficients of ei are small then so are those of θ̃(ei). Thus the samples (θ̃(ai), θ̃(bi)) are from a
smaller instance (the dimension has been reduced by a factor d) of the same problem with the secret now being
θ̃(υs)/θ̃(υ).

More generally, assuming that the constant term of f is invertible modulo a, one can consider the samples
(θ̃(ai), θ̃(biX−j)) for 0 ≤ j < d which for the same reasoning can be seen to have secret σj := θ̃(υsX−j)/θ̃(υ) and
errors θ̃(eiX−j). Due to the shape of f and g we will have θ̃(eiX−j) ≡

∑ñ−1
t=0 ei,td+jX td mod ( f ,g) where ei,t are

the coefficients of ei . We can solve these smaller instances of the problem to recover the σj using any other suitable
method. Once one has recovered the σj it is easy to see that θ̃(υ)

∑d−1
j=0 σjX j = υs and hence dividing this by υ

gives the full secret.
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What remains is thus to derive samples which have ai ∈ υSg for some invertible υ, for which θ̃(υ) is also
invertible, from ordinary samples more efficiently than simply computing a coset representative a/θ̃(a) and looking
for multiple collisions. This is where the BKW algorithm is used. One can perform BKW reduction until we find
samples whose first component a is in Sg since this can be viewed as an additive group; this amounts to taking
υ = 1. More generally, one could consider a/υ rather than a for any suitable υ and run the same reduction in parallel
for differing values of υ if computing power and memory is cheap; this will find samples with first component in
the υSg.

Requirements. To be able to apply the generalised trace reduction, both f and g must be integer sums of powers
of Xd for some d > 1. Also the constant term of f should be invertible modulo a. As for all BKW attacks one must
have access to a large number of samples or use some type of sample amplification technique that is compatible
with the ring structure.
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