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Abstract A (symmetric) C-all-or-nothing transform is a bĳective mapping defined on the set of B-tuples over
a specified finite alphabet. It is required that knowledge of all but C outputs leaves any C inputs completely
undetermined. There have been numerous papers developing the theory of AONTs as well as presenting various
applications of AONTs in cryptography and information security. In this paper, motivated by an application of
Karame et al. [10], we initiate a study of asymmetric all-or-nothing transforms (or asymmetric AONTs). We
replace the parameter C by two parameters C>DC and C8=, where C8= ≤ C>DC . The requirement is that knowledge of
all but C>DC outputs leaves any C8= inputs completely undetermined. When C8= < C>DC , we refer to the AONT as
asymmetric. We give several constructions and bounds for various classes of asymmetric AONTs, especially those
with C8= = 1 or C8= = 2. We pay particular attention to linear transforms, where the alphabet is a finite field F@ and
the mapping is linear.
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1 INTRODUCTION
In this paper, motivated by an application of Karame et al. [10], we study asymmetric all-or-nothing transforms,

which we define informally as follows.

Definition 1.1. Suppose B is a positive integer and q : ΓB → ΓB , where Γ is a finite set of size E (called an alphabet).
Thus q is a function that maps an input B-tuple x = (G1, . . . , GB) to output B-tuple y = (H1, . . . , HB). Suppose C8=
and C>DC are integers such that 1 ≤ C8= ≤ C>DC ≤ B.

The function q is an (C8=, C>DC , B, E)-all-or-nothing transform (or (C8=, C>DC , B, E)-AONT) provided that the follow-
ing properties are satisfied:

1. q is a bĳection.

2. If any B − C>DC of the B outputs H1, . . . , HB are fixed, then the values of any C8= inputs G8 (for 1 ≤ 8 ≤ B) are
completely undetermined.

Remark 1.1. It is not difficult to see that C8= ≤ C>DC if a (C8=, C>DC , B, E)-AONT exists, as follows. If only C>DC outputs
are unknown, then the number of possible values taken on by any subset of the inputs is at most EC>DC . Since a
subset of C8= inputs must be completely undetermined, we must have EC8= ≤ EC>DC , or C8= ≤ C>DC .

All-or-nothing-transforms (AONTs) were invented in 1997 by Rivest [12]. Rivest’s work concerned AONTs that
are computationally secure. Some early papers on various generalizations of AONTs include [1, 2, 5]. Stinson [13]
introduced and studied all-or-nothing transforms in the setting of unconditional security. Further work focussing
on the existence of unconditionally secure AONTs can be found in [4, 7, 8, 9, 14, 15]. AONTs have had numerous
applications in cryptography and information security; see [6] for an overview.

Rivest’s original definition in [12] corresponded to the special case C8= = C>DC = 1. Most research since then
has involved AONTs where C8= = C>DC = C for some positive integer C. (Such an AONT is often denoted as a
(C, B, E)-AONT in the literature.) In such an AONT, knowing all but C outputs leaves any C inputs undetermined.
Here we mainly consider AONTs where C8= < C>DC . Such an AONT can be thought of asymmetric in the sense that
the number of missing outputs is greater than the number of inputs about which we are seeking information. In
general, asymmetric AONTs are easier to construct than AONTs in which C8= = C>DC because the requirements are
weaker.

The first example of asymmetric AONTs in the literature is apparently found in Stinson [13, §2.1]. We present
this construction in Example 1.1.
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Example 1.1. For B even, a (1, 2, B, 2)-AONT exists as follows. Given B inputs G1, . . . , GB ∈ Z2, define

A =

B∑
8=1

G8

H8 = A + G8 , for 1 ≤ 8 ≤ B.

This yields the B outputs H1, . . . , HB . The inverse transformation is computed as

A ′ =
B∑
8=1

H8

G8 = A
′ + H8 , for 1 ≤ 8 ≤ B.

Suppose we are given B − 2 of the B outputs, so two outputs are missing. It is clear that each input depends on
B − 1 outputs: G8 is a function of all the H 9 ’s, except for H8 . Thus, if two outputs are missing, then no values can be
ruled out for G8 . �

We note that the construction given in Example 1.1 only works for even B (when B is odd, the mapping is not
invertible). A construction for odd values of B will be given later (see Lemma 3.9).

Karame et al. [10] introduced Bastion, which is a scheme for securely dispersing a document over multiple cloud
storage services. Bastion involves encrypting a plaintext using counter mode and then applying a (1, 2, B, 2)-AONT
to the resulting ciphertext blocks. The paper [10] considered a threat model where the adversary may have access
to the key or use a backdoor to decrypt the ciphertext. To protect against these threats, assuming the adversary
cannot access at least two parts, they suggest to divide the ciphertext into multiple parts and store each part on a
different server after applying the AONT.

1.1 OUR CONTRIBUTIONS
Our goal in this paper is to develop the basic mathematical theory of asymmetric AONTs. In Section 2, we

discuss a combinatorial approach to asymmetric AONTs, and we examine how different combinatorial definitions
impact the security of the transforms. We also present some connections with other combinatorial structures such
as orthogonal arrays and split orthogonal arrays. Section 3 focusses on existence and bounds for linear asymmetric
AONTs. We complete the solution of the existence problem for C8= = 1, as well as when C8= = 2 and C>DC = B − 1.
Then we turn to cases where C8= ≥ 2. We prove a general necessary condition for existence, and then we consider
the case C8= = 2 in detail. New existence results are obtained from computer searches. Finally, Section 4 is a brief
summary.

We note that many of the results in this paper were first presented in the PhD thesis of the first author [6].

2 COMBINATORIAL DEFINITIONS AND SECURITY PROPERTIES
Definition 1.1 is phrased in terms of security properties, i.e., it specifies information about a subset of inputs that

can be deduced if only a certain subset of the outputs is known. (As mentioned in the introduction, we are studying
AONTs in the setting of unconditional security.) It is useful to employ a combinatorial description of AONTs in
order to analyze them from a mathematical point of view. Combinatorial definitions of AONTs have appeared
in numerous papers, beginning in [13]. However, the connections between security definitions and combinatorial
definitions turn out to be a bit subtle, as was recently shown by Esfahani and Stinson [9].

First, as noted in [9], there are two possible ways to interpret the security requirement. In the original definition
of AONT due to Rivest [12], as well as in Definition 1.1, we only require that the values of any C8= inputs are
completely undetermined, given the values of B − C>DC outputs. In other words, assuming that every possible input
B-tuple occurs with positive probability, the probability that the C8= specified inputs take on any specified possible
values (given all but C>DC outputs) is positive. This notion is termed weak security in[9].

An alternative notion that is discussed in detail in [9] is that of perfect security. Here, we require that the a
posteriori distribution on any C8= inputs, given the values of B − C>DC outputs, is identical to the a priori distribution
on the same inputs. Thus, no information about any C8= inputs is revealed when B − C>DC outputs are known.

The standard combinatorial definition for (C, C, B, E)-AONT (see, e.g., [4, 7]) involves certain unbiased arrays.
We review this definition now and discuss when weak or perfect security can be attained (the security may depend
on the probability distribution defined on the input B-tuples). Then we generalize this approach to handle the
slightly more complicated case of asymmetric AONTs.

An (#, :, E)-array is an # by : array, say �, whose entries are elements chosen from an alphabet Γ of order E.
Suppose the : columns of � are labelled by the elements in the set �. Let � ⊆ �, and define �� to be the array
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obtained from � by deleting all the columns 2 ∉ �. We say that � is unbiased with respect to � if the rows of ��
contain every |� |-tuple of elements of Γ exactly #/E |� | times. Of course, this requires that # is divisible by E |� | .

An AONT, say q, is a bĳection from ΓB to ΓB , where Γ is a E-set. The array representation of q is a (EB , 2B, E)-
array, say �, that is constructed as follows: For every input B-tuple (G1, . . . , GB) ∈ ΓB , there is a row of � containing
the entries G1, . . . , GB , H1, . . . , HB , where q(G1, . . . , GB) = (H1, . . . , HB).

Our combinatorial definition of anAONT,Definition 2.1, involves arrays that are unbiasedwith respect to certain
subsets of columns. This definition is an obvious generalization of previous definitions for (C, C, B, E)-AONTs from
[4, 7].

Definition 2.1. A (C8=, C>DC , B, E)-all-or-nothing transform is a (EB , 2B, E)-array, say �, with columns labelled
1, . . . , 2B, that is unbiased with respect to the following subsets of columns:

1. {1, . . . , B},
2. {B + 1, . . . , 2B}, and
3. � ∪ �, for all � ⊆ {1, . . . , B} with |� | = C8= and all � ⊆ {B + 1, . . . , 2B} with |� | = B − C>DC .

We interpret the first B columns of � as indexing the B inputs and the last B columns as indexing the B outputs.
Then, as mentioned above, properties 1 and 2 ensure that the array � defines a bĳection q. Property 3 guarantees
that knowledge of any B − C>DC outputs does not rule out any possible values for any C8= inputs.

The following results concerning (C, C, B, E)-AONTs are from [9].

Theorem 2.1. Suppose q : ΓB → ΓB is a bĳection, where Γ is an alphabet of size E, and suppose 1 ≤ C ≤ B.
1. Suppose any input B-tuple occurs with positive probability. Then the mapping q is a weakly secure AONT if

and only if its array representation is a (C, C, B, E)-AONT.
2. The mapping q is a perfectly secure AONT if and only if its array representation is a (C, C, B, E)-AONT and

every input B-tuple occurs with the same probability.

Whenwe turn to asymmetric AONTs, there is an additional subtlety, namely that we can obtain weak security for
combinatorial structures that are weaker than the arrays defined in Definition 2.1. We can characterize asymmetric
AONTs achieving weak security in terms of arrays that satisfy covering properties with respect to certain sets of
columns. As before, suppose � is an (#, :, E)-array, whose entries are elements chosen from an alphabet Γ of
order E and whose columns are labelled by the set �. Also, for � ⊆ �, define �� as before. We say that � is
covering with respect to a subset of columns � ⊆ � if the rows of �� contain every |� |-tuple of elements of Γ at
least once.

Remark 2.1. An array that satisfies the covering property for all subsets of C columns is called a C-covering array.
Such arrays have many important applications, including software testing. See [3, §VI.10] for a brief survey of
covering arrays.

We state a few simple observations without proof.

Lemma 2.2. Suppose � is an (#, :, E)-array with columns labelled by �.
1. If � is unbiased or covering with respect to � ⊆ �, then # ≥ E |� | .
2. If � is unbiased with respect to � ⊆ �, then � is covering with respect to �.
3. If � ⊆ � and # = E |� | , then � is unbiased with respect to � if and only if � is covering with respect to �.
4. If � is unbiased or covering with respect to � ⊆ �, then � is unbiased or covering (resp.) with respect to all
� ′ ⊆ �.

Definition 2.2. A (C8=, C>DC , B, E)-weak-all-or-nothing transform is a (EB , 2B, E)-array, say �, with columns labelled
1, . . . , 2B, that is covering with respect to the following subsets of columns:

1. {1, . . . , B},
2. {B + 1, . . . , 2B}, and
3. � ∪ �, for all � ⊆ {1, . . . , B} with |� | = C8= and all � ⊆ {B + 1, . . . , 2B} with |� | = B − C>DC .

Wenote that a (C, C, B, E)-weak-AONT is equivalent to a (C, C, B, E)-AONT. This follows immediately fromLemma
2.2. However, a (C8=, C>DC , B, E)-weak-AONT is not necessarily a (C8=, C>DC , B, E)-AONT if C8= < C>DC . Example 2.1
depicts a (1, 2, 3, 2)-weak-AONT that is not a (1, 2, 3, 2)-AONT.

Example 2.1. We present a (1, 2, 3, 2)-weak AONT over the alphabet {0, 1}. The array representation of this
AONT is as follows:
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G1 G2 G3 H1 H2 H3
a a a a a a
a a b b b a
a b a b a b
a b b b a a
b a a a b b
b a b a b a
b b a a a b
b b b b b b

This array is biased with respect to various pairs of columns (G8 , H 9 ). For example, we verify that this array is
biased with respect to columns G1 and H1. Specifically, the ordered pairs (0, 0) and (1, 1) each occur once, but the
ordered pairs (0, 1) and (1, 0) each occur three times.

However, for all choices of G8 and H 9 , it can be verified that � is covering with respect to the pair of columns
(G8 , H 9 ). �

The following theorem extends part of Theorem 2.1 to the asymmetric case. Proofs are omitted, as they are
essentially the same as the proofs in [9].

Theorem2.3. Suppose q : ΓB → ΓB is a bĳection, whereΓ is an alphabet of size E, and suppose 1 ≤ C8= ≤ C>DC ≤ B.
1. Suppose any input B-tuple occurs with positive probability. Then the mapping q is weakly secure if and only

if its array representation is a (C8=, C>DC , B, E)-weak-AONT.
2. The mapping q is perfectly secure if its array representation is a (C8=, C>DC , B, E)-AONT and every input B-tuple

occurs with the same probability.

Remark 2.2. The second part of Theorem 2.1 is “if and only if”. However, we do not know if the converse of the
second part of Theorem 2.3 is true when C8= < C>DC .

2.1 GENERAL PROPERTIES
In the rest of the paper, we focus on (C8=, C>DC , B, E)-AONTs that satisfy Definition 2.1. These are the AONTs

that are unbiased with respect to various subsets of columns. First, we record various general properties about these
AONTs. Some of these results are generalizations of previous results pertaining to (C, C, B, E)-AONT, and most of
them follow easily from Lemma 2.2.

The following result was shown in [14] for the case C8= = C>DC . The generalization to arbitrary C8= ≤ C>DC is
obvious.

Theorem2.4. Amapping q : XB → XB is a (C8=, C>DC , B, E)-AONT if and only if q−1 is an (B−C>DC , B−C8=, B, E)-AONT.

Proof. Interchange the first B columns and the last B columns in the array representation of the AONT q. �

An orthogonal array OA(C, :, E) is a (EC , =, E) array, say �, that is unbiased with respect to any C columns. The
next theorem generalizes [7, Corollary 35].

Theorem 2.5. If there exists an OA(B, 2B, E), then there exists a (C8=, C>DC , B, E)-AONT for all C8= and C>DC such that
1 ≤ C8= ≤ C>DC ≤ B.

Proof. It suffices to show that an OA(B, 2B, E) satisfies the conditions of Definition 2.1. This follows immediately
from Lemma 2.2 and the observation that

1 ≤ C8= + B − C>DC ≤ B

for all C8= and C>DC such that 1 ≤ C8= ≤ C>DC ≤ B. �

Levenshtein [11] defined split orthogonal arrays (or SOAs) as follows. A split orthogonal array SOA(C1, C2; =1, =2; E)
is a (EC1+C2 , =1 + =2, E) array, say �, that satisfies the following properties:

1. the columns of � are partitioned into two sets, of sizes =1 and =2, respectively, and
2. � is unbiased with respect to any C1 + C2 columns in which C1 columns are chosen from the first set of =1

columns and C2 columns are chosen from the second set of =2 columns.
From the definition of split orthogonal arrays, we can immediately obtain the following theorem.

Theorem 2.6. Suppose there exists a (C8=, C>DC , B, E)-AONT. Then there exists an SOA(C8=, B − C>DC , B, B, E).
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Proof. Consider the array representation of a (C8=, C>DC , B, @)-AONT. Denote =1 = B, =2 = B, C1 = C8= and C2 = B−C>DC .
Fixing any C2 outputs does not yield any information about any C1 inputs. Hence, the array is unbiased with respect
to any B − C>DC + C8= columns where C8= columns are chosen from the first set of B columns and B − C>DC columns are
chosen from the second set of B columns. Therefore the array is an SOA(C8=, B − C>DC , B, B, E). �

Theorems 2.5 and 2.6 show that, in a certain sense, AONTs (symmetric and asymmetric) are “between” orthog-
onal arrays and split orthogonal arrays. More precisely, an OA(B, 2B, E) implies the existence of a (C8=, C>DC , B, E)-
AONT (for 1 ≤ C8= ≤ C>DC ≤ B), which in turn implies the existence of an SOA(C8=, B − C>DC , B, B, E).

3 LINEAR ASYMMETRIC AONTS
Suppose @ is a prime power. If every output of a (C8=, C>DC , B, E)-AONT is an F@-linear function of the inputs,

the AONT is a linear (C8=, C>DC , B, @)-AONT. Note that we will write a linear (C8=, C>DC , B, @)-AONT in the form
y = x"−1, where " is an invertible B by B matrix over F@ (as always, x is an input B-tuple and y is an output
B-tuple). Of course it holds also that x = y" .

Remark 3.1. The (1, 2, B, 2)-AONT described in Example 1.1 (for even values of B) is a linear AONT, where " is
the B by B matrix with 0’s on the diagonal and 1’s elsewhere. When B is even, " is invertible and "−1 = " .

The following lemma generalizes [4, Lemma 1].

Lemma 3.1. Suppose that @ is a prime power and " is an invertible B by B matrix with entries from F@ . Suppose
1 ≤ C8= ≤ C>DC ≤ B. Then the function y = x"−1 defines a linear (C8=, C>DC , B, @)-AONT if and only if every C>DC by
C8= submatrix of " has rank C8=.

Proof. Suppose �, � ⊆ {1, . . . , B}, |� | = C8=, |� | = C>DC . Let x′ = (G8 : 8 ∈ �). We have x′ = y" ′, where " ′ is the B
by C8= matrix formed from " by deleting all columns not in �. Now assume that H 9 is fixed for all 9 ∉ � and denote
y′ = (H 9 : 9 ∈ �). Then we can write x′ = y′" ′′ + c, where " ′′ is the C>DC by C8= submatrix of " formed from "

by deleting all columns not in � and all rows not in �, and c is a vector of constants. If " ′′ is of rank C8=, then x′ is
completely undetermined, in the sense that x′ takes on all values in (F@)C8= as y′ varies over (F@)C>DC . On the other
hand, if C ′ = rank(" ′′) < C8=, then x′ can take on only (F@)C

′ possible values. �

The following corollaries pertain to the special case where C8= = C>DC = C.

Corollary 3.2. [4] Suppose " is an invertible B by B matrix with entries from F@ . Then y = x"−1 defines a linear
(C, C, B, @)-AONT if and only if every C by C submatrix of " is invertible.

Corollary 3.3. Suppose that y = x"−1 defines a linear (C, C, B, @)-AONT. Then y = x" defines a linear (B − C, B −
C, B, @)-AONT.

Corollary 3.4. Suppose " is an invertible B by B matrix with entries from F@ . Then y = x"−1 defines a linear
(C, C, B, @)-AONT if and only if every B − C by B − C submatrix of "−1 is invertible.

Another approach to construct asymmetric AONTs is to use C-AONTs or other asymmetric AONTs. The
following results will present various such constructions. First, we generalize [7, Theorem 20].

Lemma 3.5. If 1 ≤ C8= ≤ C>DC < B, then the existence of a linear (C8=, C>DC , B, @)-AONT implies the existence of a
linear (C8=, C>DC , B − 1, @)-AONT.

Proof. Let " be a matrix for a linear (C8=, C>DC , B, @)-AONT. Since " is invertible, if we calculate its determinant
using the cofactor expansion of " with respect to its first row, at least one of the (B − 1) × (B − 1) submatrices is
invertible. Also, any C>DC × C8= submatrix of " , including those in the invertible submatrix, are of rank C8=. Hence,
the invertible submatrix is a (C8=, C>DC , B − 1, @)-AONT. �

Lemma 3.6. If 1 ≤ C8= ≤ C>DC ≤ B, then the existence of a linear (C8=, C>DC , B, @)-AONT implies the existence of a
linear (C8=, C ′>DC , B, @)-AONT for all C ′>DC such that C>DC ≤ C ′>DC ≤ B.

Proof. Consider the matrix representation of the linear (C8=, C>DC , B, @)−AONT. Every C ′>DC by C8= submatrix is rank
C8=, because all its C>DC × C8= submatrices are of rank C8=. �

Lemma 3.7. If 1 ≤ C8= ≤ C>DC ≤ B, then the existence of a linear (C8=, C>DC , B, @)-AONT implies the existence of a
linear (C ′

8=
, C>DC , B, @)-AONT for any C ′

8=
such that 1 ≤ C ′

8=
≤ C8= ≤ B.
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Example 3.1. We observe that existence of a linear (C8=, C>DC , B, @)-AONT does not necessarily imply the existence
of a linear (C8=, C8=, B, @)-AONT or a linear (C>DC , C>DC , B, @)-AONT. Consider the linear (2, 3, 4, 2)-AONT presented
by the following matrix ©«

1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 0

ª®®®¬ .
While every 3 × 2 submatrix of the matrix above is of rank 2, a (2, 2, B, 2)-AONT does not exist if B > 2, as was
proven by D’Arco et al. [4].

Additionally, from Corollary 3.3, a linear (3, 3, 4, 2)-AONT would be equivalent to a linear (1, 1, 4, 2)-AONT.
Since it was shown in [13] that an (1, 1, 4, 2)-AONT does not exist, we conclude that a linear (3, 3, 4, 2)-AONT
does not exist. �

The main general construction for linear (C, C, B, @)-AONTs in [4] uses Cauchy matrices. We provide a general-
ization that applies to asymmetric AONTs.
Theorem 3.8. Suppose @ ≥ 2B is a prime power and 1 ≤ C8= ≤ C>DC ≤ B. Then there exists a linear (C8=, C>DC , B, @)-
AONT.

Proof. In [4, Theorem 2], it was shown that a linear (C, C, B, @)-AONT exists if @ ≥ 2B is a prime power and
1 ≤ C ≤ B. Let C8= = C>DC = C and then apply Lemma 3.7. This shows that there is a a linear (C ′

8=
, C>DC , B, @)-AONT

provided that 1 ≤ C ′
8=
≤ C>DC ≤ B.

�

3.1 LINEAR (1, C>DC , B, @)-AONT
We noted in Remark 3.1 that there exists a linear (1, 2, B, 2)-AONT for all even values of B ≥ 2. In the next

lemma, we show that linear (1, 2, B, 2)-AONTs exist for odd values of B.
Lemma 3.9. There is a linear (1, 2, B, 2)-AONT for any odd value of B ≥ 3.
Proof. Suppose B ≥ 3 is odd. Let " be the B by B matrix whose first subdiagonal consists of 0’s, but all other
entries are 1’s. For example, when B = 5, we have

" =

©«
1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

ª®®®®®¬
.

The matrix " is invertible and its inverse is an B by B matrix with a right top submatrix that is an identity matrix,
and 1’s occur along the last row and first column. For example, when B = 5, we have

"−1 =

©«
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 1 1 1 1

ª®®®®®¬
.

Further, any 2 by 1 submatrix of " has rank 1 because there is at most one occurrence of 0 in each column of
" . �

Recall that y = x"−1 and x = y" . Given B inputs G1, . . . , GB ∈ Z2, the above-discussed transform can be
computed as follows:

H1 =

B∑
8=1

G8 .

H8 = G8−1 + GB , for 2 ≤ 8 ≤ B.
This yields the B outputs H1, . . . , HB . The inverse transform is computed as

GB =

B∑
8=1

H8

G8 = GB + H8+1, for 2 ≤ 8 ≤ B.
Thus, computation of the transform or its inverse requires 2B − 2 addition operations in Z2 (i.e., exclusive-ors).
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Theorem 3.10. Suppose @ is a prime power and 1 ≤ C>DC ≤ B. Then there is a linear (1, C>DC , B, @)-AONT unless
@ = 2 and C>DC = 1. Further, there does not exist any (1, 1, B, 2)-AONT.

Proof. When @ > 2, it was shown in [13, Corollary 2.3] that there exists a linear (1, 1, B, @)-AONT for all B ≥ 1.
Applying Lemma 3.6, there exists a linear (1, C>DC , B, @)-AONT for all prime powers @ > 2 and all C>DC and B such
that 1 ≤ C>DC ≤ B.

We have also noted in Remark 3.1 that there exists a linear (1, 2, B, 2)-AONT for all even values of B ≥ 2.
Applying Lemma 3.6, there exists a linear (1, C>DC , B, 2)-AONT for all C>DC and B such that B is even and 2 ≤ C>DC ≤ B.
From Lemmas 3.6 and 3.9, there exists a linear (1, C>DC , B, 2)-AONT for all C>DC and B such that B is odd and
2 ≤ C>DC ≤ B.

Finally, it was shown in [13] that there does not exist any (1, 1, B, 2)-AONT. �

3.2 LINEAR (2, B − 1, B, 2)-AONT
In this section, we consider linear (2, B − 1, B, 2)-AONTs.
For even values of B ≥ 4, we use the (1, 2, B, 2)-AONT from Remark 3.1. This AONT is based on the B by B

matrix " with 0’s on the diagonal and 1’s elsewhere. We have already noted that this matrix is invertible. To show
that it gives rise to a (2, B − 1, B, 2)-AONT, we need to show that any B − 1 by 2 submatrix has rank 2. It can be
observed that any choice of B− 1 rows and two columns will contain at least B− 3 ≥ 1 occurrences of the row (1, 1)
and at least one copy of the row (0, 1) or (1, 0). Therefore, we have proven the following.

Lemma 3.11. For any even integer B ≥ 4, there exists a linear (2, B − 1, B, 2)-AONT.

Now we turn to odd values of B.

Lemma 3.12. For any odd integer B ≥ 5, there is a linear (2, B − 1, B, 2)-AONT.

Proof. For an odd integer B ≥ 5, define the B by B matrix �B to have 1’s in the entries on the main diagonal, the last
row and the last column, and 0’s elsewhere.

For example, the matrix �5 is as follows:

©«
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1

ª®®®®®¬
.

Suppose we subtract rows 1, . . . , B − 1 of �B from row B. Then we obtain an upper triangular matrix with 1’s
on the main diagonal. This proves that �B is invertible.

Now we prove that any B − 1 by 2 submatrix has rank two. First, consider columns 8 and B, where 1 ≤ 8 ≤ B − 1.
The B rows of this submatrix contain two copies of (1, 1) and B − 2 copies of (0, 1). Therefore, any B − 1 rows still
contain at least one copy of (1, 1) and at least one copy of (0, 1). This means that the B − 1 by 2 submatrix has rank
2.

Next, we consider columns 8 and 9 , where 1 ≤ 8 < 9 ≤ B − 1. The B rows of this submatrix contain one copy of
each of (0, 1), (1, 0) and (1, 1). Therefore, any B − 1 rows still contain at least two of the three pairs (0, 1), (1, 0)
and (1, 1). This means that the B − 1 by 2 submatrix has rank 2. �

Theorem 3.13. There is a linear (2, B − 1, B, 2)-AONT if and only if B ≥ 4.

Proof. If a (C8=, C>DC , B, @)-AONT exists, we must have C8= ≤ C>DC . Hence, B ≥ 3 if a (2, B − 1, B, 2)-AONT exists.
D’Arco et al. [4] proved that a linear (2, 2, 3, 2)-AONT does not exist. For B ≥ 4, Lemmas 3.11 and 3.12 show that
a linear (2, B − 1, B, 2)-AONT exists. �

3.3 LINEAR (C8=, C>DC , B, @)-AONT WITH C8= ≥ 2
In this section, we study linear (C8=, C>DC , B, @)-AONTs with C8= ≥ 2. We first prove a general upper bound on B

as a function of C8=, C>DC and @. Then we consider the case C8= = 2 in detail.

Theorem 3.14. Suppose there exists a linear (C8=, C>DC , B, @)-AONT with 2 ≤ C8= ≤ C>DC . Then the following bound
holds:

B ≤ (C>DC − 1) (@
C8= − 1)

(C8= − 1) (@ − 1)
.
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Proof. Fix any C8= columns of the matrix " and consider the resulting submatrix " ′. Recall that any C>DC by C8=
submatrix of " must have rank C8=.

There are @C8= possible C8=-tuples for any given row of " ′. We can replace an all-zero C8=-tuple with any other
C8=-tuple, and it does not decrease the rank of any C>DC by C8= submatrix in " ′. Hence, we can assume that there is
no all-zero C8=-tuple among the rows of " ′. Therefore, there are @C8= − 1 possible rows in " ′.

For any two nonzero C8=-tuples, say 0 and 1, define 0 ∼ 1 if there is a nonzero element U ∈ F@ such that 0 = U1.
Clearly ∼ is an equivalence relation, and there are (@C8= − 1)/(@ − 1) equivalence classes, each of size @ − 1.

Suppose the equivalence classes of rows are denoted by E8 . Further, suppose there are 08 rows from E8 in " ′,
for 1 ≤ 8 ≤ (@C8= − 1)/(@ − 1). The sum of the 08’s is equal to B and hence the average value of an 08 is

0 =
B(@ − 1)
@C8= − 1 .

Let ! denote the sum of the C8= − 1 largest 08’s. It is clear that

! ≥ (C8= − 1)0 =
B(C8= − 1) (@ − 1)

@C8= − 1 .

Also, because the C>DC rows of " ′ cannot come from fewer than C8= equivalence classes, we have

! ≤ C>DC − 1.

Hence, combining the two inequalities, we see that

B ≤ (C>DC − 1) (@
C8= − 1)

(C8= − 1) (@ − 1)
.

�

We now look at the case C8= = 2 in more detail.

Theorem 3.15. Suppose there exists a linear (2, C>DC , B, @)-AONT with 2 ≤ C>DC . Then the following bound holds:

B ≤ max{1 + (C>DC − 2) (@ + 1), 2 + (C>DC − 1) (@ − 1)}.

Proof. Consider an B by 2 submatrix " ′ and let 00 be the number of (0, 0) rows in this submatrix. We divide the
proof into two cases.
case (1)

Suppose 00 ≥ 1. We claim that " ′ contains at most C>DC − 00 − 1 rows from any one equivalence class E8 ,
where equivalence classes are as defined in the proof of Theorem 3.14. This follows because C>DC − 00 rows
from one equivalence class, together with the 00 rows of 0’s, would result in " ′ having rank 1. Excluding
the rows of 0’s, there are @ + 1 possible equivalence classes of rows, so

B ≤ 00 + (C>DC − 00 − 1) (@ + 1) ≤ 1 + (C>DC − 2) (@ + 1).

case (2)

If we are not in case (1), then 00 = 0 for every B by 2 submatrix " ′. There can be at most one 0 in each row
of " , so there are at most B occurrences of 0 in " . Therefore, there must be two columns in " that contain
a total of at most two 0’s. We focus on this particular B by 2 submatrix " ′.
Let the number of 0’s in " ′ be denoted by 0; we have noted that 0 ≤ 2. In the B − 0 rows that do not contain
a 0, there are at most C>DC − 1 rows from any equivalence class E8 . Note that we have excluded two E8’s, i.e.,
(∗, 0) and (0, ∗), so

B ≤ 0 + (C>DC − 1) (@ − 1) ≤ 2 + (C>DC − 1) (@ − 1).

Since one of the above two cases must hold, we have

B ≤ max{1 + (C>DC − 2) (@ + 1), 2 + (C>DC − 1) (@ − 1)}.

�
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Table 1: Examples of bounds from Theorems 3.14 and 3.15.

C8= @ C>DC Upper bound on ((C8=, C>DC , @) Justification
2 2 2 C>DC + 1 Theorem 3.15
2 2 ≥ 3 3C>DC − 5 Theorem 3.15
2 3 2, 3 2C>DC Theorem 3.15
2 3 ≥ 4 4C>DC − 7 Theorem 3.15
2 4 2, 3 3C>DC − 1 Theorem 3.15
2 4 ≥ 4 5C>DC − 9 Theorem 3.15

3 3 any 13(C>DC−1)
2 Theorem 3.14

3 4 any 20(C>DC − 1) Theorem 3.14

3 5 any 121(C>DC−1)
2 Theorem 3.14

We note that
1 + (C>DC − 2) (@ + 1) < (C>DC − 1) (@ + 1)

and
2 + (C>DC − 1) (@ − 1) < (C>DC − 1) (@ + 1),

so
max{1 + (C>DC − 2) (@ + 1), 2 + (C>DC − 1) (@ − 1)} < (C>DC − 1) (@ + 1).

Hence the bound from Theorem 3.15 improves Theorem 3.14 when C8= = 2.
For positive integers C8= and C>DC , where 1 ≤ C8= ≤ C>DC , and a prime power @, define

((C8=, C>DC , @) = max{B : a linear (C8=, C>DC , B, @)-AONT exists}.

Note that ((C8=, C>DC , @) ≥ C>DC because the C>DC by C>DC identity matrix is a (C8=, C>DC , C>DC , @)-AONT.

Theorem 3.16. Suppose 1 ≤ C8= ≤ C>DC and @ is a prime power. Then there exists a (C8=, C>DC , B, @)-AONT for
C>DC ≤ B ≤ ((C8=, C>DC , @).

Proof. This is an immediate consequence of Lemma 3.5. �

We mainly consider cases where 2 ≤ C8= < C>DC . However, before proceeding, we recall some previous results
concerning the special case C8= = C>DC = 2. Theorems 3.14 and 3.15 both assert that ((2, 2, @) ≤ @ + 1. However,
the stronger result that ((2, 2, @) ≤ @ was previously shown in [7, Theorem 14]. There are also some known lower
bounds on ((2, 2, @), which are recorded in the following theorem.

Theorem 3.17. Suppose @ is a prime power. Then the following bounds hold.
1. b@/2c ≤ ((2, 2, @) ≤ @.

2. @ − 1 ≤ ((2, 2, @) ≤ @ if @ = 2= − 1 is prime, for some integer =.

3. ((2, 2, @) = @ if @ is prime.

Proof. 1. and 2. are shown in [7], while 3. is proven in [14]. �

The cases when C8= < C>DC have not received previous study in the literature. Theorems 3.14 and 3.15 provide
upper bounds on ((C8=, C>DC , @). We evaluate some of these upper bounds for specific families of parameters in
Table 1.

We can also obtain lower bounds on ((2, C>DC , @), for specific choices of C>DC and @, from computer searches. The
results of our searches are presented in Examples A.1 to A.15. Table 2 lists upper and lower bounds on ((2, C>DC , @),
for some fixed values of C>DC , and @. There are four cases where we can report exact values of ((2, C>DC , @).
When (C>DC , @) = (3, 2) and (3, 3), we have found examples that meet the upper bounds from Theorem 3.15. For
(C>DC , @) = (4, 2) and (5, 2), the searches were run to completion and the exact values of ((2, C>DC , @) turn out to be
strictly less than the bounds obtained from Theorem 3.15, which are ((2, 4, 2) ≤ 7 and ((2, 5, 2) ≤ 10.
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Table 2: Upper and lower bounds on ((2, C>DC , @)

C>DC @ lower bound reference upper bound reference
3 2 4 Example 3.1 4 Theorem 3.15
4 2 5 Example A.1 5 exhaustive search
5 2 8 Example A.2 8 exhaustive search
6 2 10 Example A.3 13 Theorem 3.15
7 2 12 Example A.4 16 Theorem 3.15
8 2 13 Example A.5 19 Theorem 3.15
3 3 6 Example A.6 6 Theorem 3.15
4 3 8 Example A.7 9 Theorem 3.15
5 3 9 Example A.8 13 Theorem 3.15
6 3 13 Example A.9 17 Theorem 3.15
3 4 6 Example A.10 8 Theorem 3.15
4 4 9 Example A.11 11 Theorem 3.15
5 4 11 Example A.12 16 Theorem 3.15
3 5 8 Example A.13 10 Theorem 3.15
4 5 10 Example A.14 14 Theorem 3.15
3 7 8 Example A.15 14 Theorem 3.15

4 DISCUSSION
There are many open problems involving asymmetric AONTs. It would certainly be of interest to find improved

necessary conditions and general constructions. The first cases are when C8= = 2. A starting point would be to close
the gaps in the bounds reported in Table 2.

As mentioned in Remark 2.2, it is unknown if the converse of part 2 of Theorem 2.3 is true when C8= < C>DC .
We feel that this question is worthy of further study.
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A APPENDIX
Example A.1. A linear (2, 4, 5, 2)-AONT:

©«
1 1 1 0 1
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1

ª®®®®®¬
.

Example A.2. A linear (2, 5, 8, 2)-AONT:

©«

1 1 1 0 0 0 1 1
1 1 0 1 0 1 1 0
1 0 1 0 1 1 0 0
1 0 0 1 1 0 1 0
0 1 1 0 1 0 1 0
0 1 0 1 1 0 0 1
0 0 1 1 0 1 1 1
0 0 0 0 1 1 1 1

ª®®®®®®®®®®®¬
.

Example A.3. A linear (2, 6, 10, 2)-AONT:

©«

1 1 0 1 0 0 0 1 1 1
1 1 0 0 1 1 0 0 1 0
1 0 1 1 0 1 0 1 0 0
1 0 1 0 1 0 1 1 1 0
1 0 0 1 1 1 1 0 0 1
0 1 1 1 0 1 1 0 1 0
0 1 1 0 1 1 0 1 0 1
0 1 0 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1

ª®®®®®®®®®®®®®®®¬

.

Example A.4. A linear (2, 7, 12, 2)-AONT:

©«

1 1 1 0 0 0 1 0 0 1 0 1
1 1 0 1 0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1
1 0 1 1 0 1 0 1 0 0 0 1
1 0 1 0 1 0 1 1 1 0 1 0
1 0 0 1 1 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 0 1 0 1 1 0
0 1 0 1 1 0 1 1 0 0 0 1
0 0 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1

ª®®®®®®®®®®®®®®®®®®®¬

.
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Example A.5. A linear (2, 8, 13, 2)-AONT:

©«

1 1 1 0 0 0 1 0 0 1 0 1 0
1 1 0 1 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0 1 0 0 1 1
1 0 1 1 0 1 0 1 0 0 0 1 1
1 0 1 0 1 0 1 1 1 0 1 0 1
1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 1 0 1 1 0 1 0 1 0 1
0 1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 0 0 1 1
0 0 1 1 1 0 0 0 1 1 0 1 0
0 0 0 0 0 1 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®®®®®®¬

.

Example A.6. A linear (2, 3, 6, 3)-AONT:

©«

0 1 1 1 1 1
1 0 1 1 2 2
1 1 0 2 1 2
1 1 2 0 2 1
1 2 1 2 0 1
1 2 2 1 1 0

ª®®®®®®®¬
.

Example A.7. A linear (2, 4, 8, 3)-AONT:

©«

0 0 0 1 1 1 1 2
0 1 1 0 1 2 2 0
0 1 1 1 0 0 1 1
1 0 1 0 1 0 1 2
1 0 1 1 0 1 2 0
1 1 0 2 2 0 1 0
1 1 2 0 1 1 2 1
1 2 0 1 0 2 1 1

ª®®®®®®®®®®®¬
.

Example A.8. A linear (2, 5, 9, 3)-AONT:

©«

0 0 0 0 0 0 0 1 1
0 0 0 1 1 1 1 1 1
0 1 1 0 0 1 1 1 2
0 1 1 1 2 0 2 2 0
1 0 1 0 1 0 2 2 1
1 0 1 1 0 2 1 2 0
1 1 0 2 0 0 1 2 1
1 1 2 0 1 1 2 1 0
1 2 0 1 2 1 1 2 0

ª®®®®®®®®®®®®®¬
.

Example A.9. A linear (2, 6, 13, 3)-AONT:

©«

0 0 0 0 0 0 0 1 1 1 1 1 2
0 0 0 1 1 1 1 0 1 1 1 2 2
0 1 1 0 0 1 1 0 1 1 2 2 0
0 1 1 1 1 0 0 1 1 1 0 1 1
0 1 1 1 2 1 2 1 0 0 1 2 2
1 0 1 0 2 1 1 2 0 2 0 1 2
1 0 1 1 0 0 2 0 1 2 2 1 2
1 0 1 1 1 2 0 2 2 0 1 2 0
1 1 0 2 0 2 0 1 1 2 2 2 2
1 1 2 0 1 1 0 0 2 1 2 1 2
1 1 2 0 2 0 2 2 1 0 1 1 1
1 2 0 1 2 0 1 1 0 1 2 2 0
1 2 0 2 1 1 2 0 1 0 0 2 1

ª®®®®®®®®®®®®®®®®®®®®®¬

.
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Example A.10. A linear (2, 3, 6, 4)-AONT:

©«

0 0 1 1 1 1
0 1 0 1 1 2
1 0 0 1 2 1
1 1 1 0 1 3
1 2 3 0 1 2
1 3 2 1 0 2

ª®®®®®®®¬
.

Example A.11. A linear (2, 4, 9, 4)-AONT:

©«

0 0 0 0 1 1 1 1 1
0 1 1 1 0 1 1 1 2
0 1 1 1 1 0 1 2 1
1 0 1 2 0 1 2 3 1
1 0 1 2 1 0 3 1 2
1 1 0 3 0 2 1 1 1
1 1 2 0 3 3 2 1 3
1 2 0 3 1 0 1 3 2
1 2 3 0 2 1 1 3 3

ª®®®®®®®®®®®®®¬
.

Example A.12. A linear (2, 5, 11, 4)-AONT:

©«

0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1 2
0 1 1 1 1 1 0 1 1 2 3
1 0 1 2 0 1 0 1 2 3 1
1 0 1 2 1 0 1 1 3 2 1
1 1 0 3 0 1 1 2 3 1 3
1 1 2 0 3 0 2 1 3 3 2
1 2 0 3 3 0 0 1 2 3 3
1 2 3 0 2 1 0 2 1 3 3
1 3 2 1 1 2 1 0 3 2 3

ª®®®®®®®®®®®®®®®®®¬

.

Example A.13. A linear (2, 3, 8, 5)-AONT:

©«

0 1 1 1 1 1 1 1
0 1 1 1 1 2 2 4
1 0 1 2 3 2 4 1
1 0 1 2 4 3 1 2
1 1 0 3 2 1 3 4
1 1 0 3 4 4 2 2
1 2 3 0 1 3 2 1
1 2 3 0 1 4 1 4

ª®®®®®®®®®®®¬
.

Example A.14. A linear (2, 4, 10, 5)-AONT:

©«

0 0 0 0 0 0 1 1 1 1
0 1 1 1 1 1 0 1 1 1
0 1 1 1 1 4 1 0 1 2
1 0 1 2 3 1 0 1 4 2
1 0 1 2 3 4 1 0 2 1
1 1 0 3 4 2 0 1 2 2
1 1 0 3 4 3 2 2 1 4
1 2 3 0 1 1 1 4 3 4
1 2 3 0 1 4 4 3 1 2
1 3 4 1 0 2 2 2 2 3

ª®®®®®®®®®®®®®®®¬
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Example A.15. A linear (2, 3, 8, 7)-AONT:

©«

0 0 0 0 1 1 1 1
0 1 1 1 0 1 1 1
1 0 1 2 0 1 2 3
1 1 0 3 1 1 2 4
1 2 3 5 3 0 1 3
1 3 4 6 6 0 1 2
1 4 5 0 5 2 5 1
1 5 6 4 2 3 0 1

ª®®®®®®®®®®®¬
.
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