
Mathematical Cryptology, 0(1): 8–21

Reduction Modulo 2448 − 2224 − 1
Kaushik Nath1,*, Palash Sarkar1
1Indian Statistical Institute, Kolkata, India

Received: 15th July 2020 | Revised: 4th September 2020 | Accepted: 23rd December 2020

Abstract An elliptic curve known as Curve448 defined over the finite field F? , where ? = 2448 − 2224 − 1, has been
proposed as part of the Transport Layer Security (TLS) protocol, version 1.3. Elements of F? can be represented
using 7 limbs where each limb is a 64-bit quantity. This paper describes efficient algorithms for reduction modulo
? that are required for performing field arithmetic in F? using 7-limb representation. A key feature of our work
is that we provide the relevant proofs of correctness of the algorithms. We also report efficient constant-time
64-bit assembly implementations for key generation and shared secret computation phases of the Diffie-Hellman
key agreement protocol on Curve448. Timings results on the Haswell and Skylake processors demonstrate that the
new 64-bit implementations for computing the shared secret and key generation are significantly faster than the
previously best known 64-bit implementations.

Keywords: Curve448, Goldilocks prime, modulo reduction, elliptic curve cryptography, Diffie-Hellman key
agreement.

2010 Mathematics Subject Classification: 94A60

1 INTRODUCTION
As part of the Transport Layer Security (TLS) protocol, version 1.3 [21], RFC 7748 [11] specifies the Mont-

gomery form elliptic curve Curve448 and its birationally equivalent Edwards form elliptic curve Edwards448. The
curve Edwards448 was originally proposed in [9] where it was named Ed448-Goldilocks. The underlying field for
Curve448 and Edwards448 is F? where ? is the prime 2448 − 2224 − 1.

Implementation of elliptic curve operations require arithmetic over the underlying field F? . Specifically,
addition, subtraction, multiplication and squaring are required. Additionally, for implementingMontgomery ladder
for Curve448, it is required to implement multiplication by a small constant. All of these operations require
reduction modulo ?.

For 64-bit architecture, an element of F? can be represented using 7 limbs where each limb is a 64-bit quantity.
Such a representation can be considered to be a packed or, saturated limb representation of the elements of F? .
Alternatively, elements of F? may be represented using 8 limbs where each limb is a 56-bit quantity stored in a
64-bit word. Such a representation can be considered to be a redundant or, unsaturated limb representation. For
modern Intel processors such as Skylake and later processors, the implementation of field arithmetic using the
saturated limb representation turns out to be faster than that of the unsaturated limb representation.

OUR CONTRIBUTIONS
Algorithms along with their proofs of correctness. In this work, we consider the 7-limb saturated limb rep-
resentation of elements of F? . Our focus is on the reduction algorithms which are required to implement field
arithmetic operations in F? .

The main contribution of the paper is to present explicit reduction algorithms along with their proofs of
correctness for all the field arithmetic operations required to implement Diffie-Hellman key agreement using
Curve448. The algorithms proceed over several iterations successively reducing the size of the input. As part of
the proof of correctness, it is required to argue that the algorithms terminate without any overflow. The termination
argument has a certain amount of subtlety. To the best of our knowledge, no previous work had considered the
issue of proof of correctness. Without a formal argument about termination, a reduction strategy may turn out
to be incomplete or may perform redundant operations; we provide a short discussion of these possibilities in
Appendix A.

*Corresponding Author: kaushikn_r@isical.ac.in

8



Reduction Modulo 2448 − 2224 − 1

Efficient constant-time 64-bit assembly implementations of X448. The computation of the Diffie-Hellman key
agreement over the curve Curve448 is based on the computation of scalar multiplication over Curve448. This
computation has been named as X448 in [11]. Implementation of scalar multiplication requires implementation of
field arithmetic over the underlying field. We have implemented field arithmetic over F? , and based on it we have
developed efficient constant-time assembly implementations of the X448 function of Curve448. The performances
of our 64-bit implementations for shared secret computation and key generation are faster than the previously best
known 64-bit implementations. Timing details are provided later. We have made our software publicly available at
the following link.

https://github.com/kn-cs/x448/tree/master/7limb

1.1 RELATED WORK
Efficient implementation of elliptic curve cryptography requires efficient implementation of arithmetic over the

underlying finite field. Good introductions to implementation of field arithmetic can be found in [10, 12]. Many
important elliptic curves have been defined over prime order fields. There have been a number of proposal where the
field order is either aMersenne or a pseudo-Mersenne prime. Examples are the prime 2521−1 used for a NIST curve
and the prime 2255 − 19 used for the famous Curve25519 [1]. There are a number of works in the literature which
explore various aspects of implementation of field arithmetic in the context of implementations of Curve25519 [1,
4, 6, 7, 14, 16]. For a comprehensive description of algorithms for implementing field arithmetic over Mersenne
and pseudo-Mersenne primes we refer to [17]. The literature also contains proposals of elliptic curves defined
over prime order fields where the prime is not a (pseudo-)Mersenne prime. For such fields, use of Montgomery
arithmetic [13, 2, 5] is generally found to be helpful for efficient implementations [3]. An implementation of NIST
P-256 based using Montgomery arithmetic has been reported in [8].

2 ARITHMETIC IN F%
Let ? = 2448 − 2224 − 1 and \ = 264. For 3 ≥ 0, define the polynomial

5 (\) = 50 + 51\ + · · · + 53\3 (1)

where 50, 51, . . . , 53 are non-negative integers. Following usual convention, we will call the 58’s to be limbs of
5 (\).

As mentioned above, we consider the 7-limb representation of the elements of F? . So, elements of F? can be
represented as a polynomial 5 (\) = 50 + 51\ + · · · + 56\6 where 0 ≤ 50, 51, . . . , 56 < \. Note that the set of all
such 5 (\) is in one-one correspondence with the set of integers {0, 1, . . . , 2448 − 1}. Since, ? < 2448 − 1, a degree
6 polynomial 5 (\) with 0 ≤ 50, 51, . . . , 56 < \ is not necessarily reduced modulo ?. So, some elements of F?
have non-unique representation. This, however, is a not a problem for intermediate quantities in an elliptic curve
computation. It is only the final result that is reduced to have a unique representation modulo ?. Avoiding obtaining
unique representations for the intermediate quantities leads to an overall faster algorithm for performing the elliptic
curve computation. Consequently, given a polynomial ℎ(\) = ℎ0 + ℎ1\ + · · · + ℎ3\3 , with 3 > 0, by reduction
modulo ?, we will denote the task of obtaining a polynomial 5 (\) = 50+ 51\ + · · ·+ 56\6 with 0 ≤ 50, 51, . . . , 56 < \
such that 5 (\) ≡ ℎ(\) mod ?.

For 8 ≥ 2, let G and H be two 648-bit integers. Suppose, it is required to compute the integer product G · H. If
G = H, then this corresponds to the squaring operation, while if G ≠ H, then a general multiplication operation is
required. Intel processors from Broadwell (launched in 2014) onwards provide a special set of 64-bit multiplication
and addition instructions which allow very fast computation of the product G · H. For 8 = 4, the multiplication and
squaring algorithms have been illustrated using diagrams in two Intel white papers [19, 20]. Explicit descriptions
of the squaring and multiplication algorithms in the general case have been provided in [17].

A field multiplication/squaring in F? consists of the following two broad steps. Suppose that 5 (\) and 6(\)
are two 7-limb integers from the set {0, 1, . . . , 2448 − 1} representing elements of F? . In the first step, the
integer product of 5 (\) and 6(\) is obtained in ℎ(\). The quantity ℎ(\) can be written as a 14-limb quantity
ℎ(\) = ℎ0 + ℎ1\ + · · · + ℎ13\13, where 0 ≤ ℎ0, ℎ1, . . . , ℎ13 < 264. The second step consists of reducing ℎ(\) to a
7-limb integer which is congruent to ℎ(\) modulo ?.

The Montgomery ladder [2, 5, 15] algorithm for Curve448 requires multiplying a 7-limb quantity 5 (\) by the
constant 2 = 39082 (note, 215 < 2 < 216 and so 2 is a 16-bit quantity). The integer product 2 · 5 (\) can be computed
much faster than a general integer multiplication of two 7-limb quantities. The result 2 · 5 (\) can be written as
an 8-limb quantity where all the limbs are 64-bit quantities. A reduction algorithm is to be applied to this 8-limb
quantity to reduce it to a 7-limb quantity which represents an element of F? .

9

https://github.com/kn-cs/x448/tree/master/7limb


Nath K. & Sarkar P.

The integer addition of two 7-limb integers 5 (\) and 6(\) results in an 8-limb integer. In this case, the last limb
is a single bit. Nevertheless, the result of the addition has to be reduced to a 7-limb quantity.

Subtraction of two elements 5 (\) and 6(\) in F? is more problematic. The integer operation 5 (\) − 6(\) can
turn out to be negative. To avoid handling negative numbers a suitable multiple of ? is added to the result. This
creates subtleties in the reduction algorithm.

3 REDUCTION IN F%
In Section 3.1 below, we describe the method for reducing a 14-limb quantity to a 7-limb quantity. As part of

this algorithm, it is required to reduce an 8-limb quantity to a 7-limb quantity. Correspondingly, this part can be
used to reduce the result obtained either after multiplication by a 64-bit constant or after addition of two 7-limb
quantities. This is pointed out in Section 3.2. The case of subtraction in F? is described in Section 3.3.

3.1 REDUCTION FROM 14-LIMB TO 7-LIMB
Let ℎ(\) be the 14-limb polynomial which is to be reduced. The polynomial ℎ(\) represents an integer I

of 2 · 448 = 896 bits. A formal description of the algorithm to reduce ℎ(\) is given in Function reduce448 of
Algorithm 1. All the operations in reduce448 can be performed using 64-bit arithmetic instructions available in
modern processors. For showing correctness of the algorithm it is required to argue that the output is indeed
congruent to the input modulo ?. Further, it is also required to argue that the procedure terminates without any
overflow.

Let ℎ (0) (\) = ℎ(\). Function reduce448 takes the 14-limb polynomial ℎ (0) (\) as input and reduces it through
the intermediate polynomials ℎ (1) (\), ℎ (2) (\) finally producing the 7-limb output polynomial ℎ (3) (\). A summary
of the properties of the polynomials ℎ (1) (\), ℎ (2) (\) and ℎ (3) (\) and the different steps of reduce448 that produces
these polynomials are as follows:

• ℎ (1) (\) has 8 limbs. The last limb is at most 2 bits long. The computation of ℎ (1) (\) from ℎ (0) (\) is achieved
by Steps 4-26.

• ℎ (2) (\) has 8 limbs. The last limb is at most 1-bit long and further, if ℎ (2)7 = 1, then ℎ (2)4 = ℎ
(2)
5 = ℎ

(2)
6 = 0.

The computation of ℎ (2) (\) from ℎ (1) (\) is achieved by Steps 27-33.
• ℎ (3) (\) has 7 limbs where each limb is a 64-bit quantity. The computation of ℎ (3) (\) from ℎ (2) (\) is achieved
by Steps 34-38.

The properties of ℎ (1) (\), ℎ (2) (\) and ℎ (3) (\) stated above are formally proved in Theorem 1. In particular, we
note that the second property stated above is required to argue that the procedure terminates without any overflow
in the next iteration.

Theorem 1. Suppose the input ℎ (0) (\) = ℎ
(0)
0 + ℎ

(0)
1 \ + · · · + ℎ (0)13 \

13 to reduce448 is such that 0 ≤ ℎ (0)
8

< 264

for 8 = 0, 1, . . . , 13. Then the output ℎ (3) (\) of reduce448 is such that ℎ (3) (\) = ℎ (3)0 + ℎ
(3)
1 \ + · · · + ℎ (3)6 (\) with

0 ≤ ℎ (3)
9
< 264 for 9 = 0, 1, . . . , 6. Further, ℎ (3) (\) ≡ ℎ (0) (\) mod ?.

Proof. Let [ = 64. We have the prime ? = 2448 − 2224 − 1 and since \ = 264 = 2[ , we have

2448 = \7 ≡ 2224 + 1 = 2[/2\3 + 1 mod ?. (2)

Reduction from ℎ (0) (\) to ℎ (1) (\). The input ℎ (0) (\) to reduce448 can be written as

ℎ (0) (\) = (ℎ (0)0 + ℎ
(0)
1 \ + · · · + ℎ (0)6 \6) + (ℎ (0)7 \7 + ℎ (0)8 \8 + · · · + ℎ (0)13 \

13),

= (ℎ (0)0 + ℎ
(0)
1 \ + · · · + ℎ (0)6 \6) + (ℎ (0)7 + ℎ

(0)
8 \ + · · · + ℎ (0)13 \

6)\7,

≡ (ℎ (0)0 + ℎ
(0)
1 \ + · · · + ℎ (0)6 \6) + (ℎ (0)7 + ℎ

(0)
8 \ + · · · + ℎ (0)13 \

6) (2[/2\3 + 1) mod ? [using (2)],

= (ℎ (0)0 + ℎ
(0)
1 \ + · · · + ℎ (0)6 \6) + (ℎ (0)7 + ℎ

(0)
8 \ + · · · + ℎ (0)13 \

6) +

(ℎ (0)7 + ℎ
(0)
8 \ + · · · + ℎ (0)13 \

6)\32[/2. (3)

Steps 4-8 add the two polynomials (ℎ (0)0 + ℎ
(0)
1 \ + · · · + ℎ (0)6 \6) and (ℎ (0)7 + ℎ

(0)
8 \ + · · · + ℎ (0)13 \

6) limb-wise by
forwarding the 1-bit carry, producing the polynomial (A (0)0 + A

(0)
1 \ + · · · + A (0)7 \7). Hence, from (3) we write

ℎ (0) (\) ≡ (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7)︸                             ︷︷                             ︸

through Steps 4-8

+ (ℎ (0)7 + ℎ
(0)
8 \ + · · · + ℎ (0)13 \

6)\32[/2 mod ?, (4)

10



Reduction Modulo 2448 − 2224 − 1

Algorithm 1 Reduction from 14-limb to 7-limb in F? . In the algorithm, [ = 64.

1: function reduce448(ℎ (0) (\))
2: input: ℎ (0) (\) = ℎ (0)0 + ℎ

(0)
1 \ + · · · + ℎ (0)13 \

13 such that 0 ≤ ℎ (0)
8

< 2[ for 8 = 0, 1, . . . , 13.
3: output: ℎ (3) (\) = ℎ

(3)
0 + ℎ

(3)
1 \ + · · · + ℎ (3)6 \6 such that 0 ≤ ℎ

(3)
8

< 2[ for 8 = 0, 1, . . . , 6 and ℎ (3) (\) ≡
ℎ (0) (\) mod ?.

4: C ← ℎ
(0)
0 + ℎ

(0)
7 ; A (0)0 ← C mod 2[ ; carry← bC/2[c

5: for 8 ← 1 to 6 do
6: C ← ℎ

(0)
8
+ ℎ (0)

8+7 + carry; A (0)
8
← C mod 2[ ; carry← bC/2[c

7: end for
8: A

(0)
7 ← carry

9: B
(0)
0 ← A

(0)
0 ; B

(0)
1 ← A

(0)
1 ; B

(0)
2 ← A

(0)
2

10: C ← A
(0)
3 + 2

[/2bℎ (0)10 /2
[/2c; B (0)3 ← C mod 2[ ; carry← bC/2[c

11: for 8 ← 4 to 6 do
12: C ← A

(0)
8
+ ℎ (0)

8+7 + carry; B (0)
8
← C mod 2[ ; carry← bC/2[c

13: end for
14: B

(0)
7 ← A

(0)
7 + carry

15: for 8 ← 0 to 2 do
16: C

(0)
8
← 2[/2 (ℎ (0)

8+11 mod 2
[/2) + bℎ (0)

8+10/2
[/2c

17: end for
18: C

(0)
3 ← 2

[/2 (ℎ (0)7 mod 2[/2) + bℎ (0)13 /2
[/2c

19: for 8 ← 4 to 6 do
20: C

(0)
8
← 2[/2 (ℎ (0)

8+4 mod 2
[/2) + bℎ (0)

8+3/2
[/2c

21: end for
22: C ← B

(0)
0 + C

(0)
0 ; ℎ (1)0 ← C mod 2[ ; carry← bC/2[c

23: for 8 ← 1 to 6 do
24: C ← B

(0)
8
+ C (0)

8
+ carry; ℎ (1)

8
← C mod 2[ ; carry← bC/2[c

25: end for
26: ℎ

(1)
7 ← B

(0)
7 + carry

27: C ← ℎ
(1)
0 + ℎ

(1)
7 ; ℎ

(2)
0 ← C mod 2[ ; carry← bC/2[c

28: C ← ℎ
(1)
1 + carry; ℎ (2)1 ← C mod 2[ ; carry← bC/2[c

29: C ← ℎ
(1)
2 + carry; ℎ (2)2 ← C mod 2[ ; carry← bC/2[c

30: C ← ℎ
(1)
3 + 2

[/2ℎ (1)7 + carry; ℎ (2)3 ← C mod 2[ ; carry← bC/2[c
31: C ← ℎ

(1)
4 + carry; ℎ (2)4 ← C mod 2[ ; carry← bC/2[c

32: C ← ℎ
(1)
5 + carry; ℎ (2)5 ← C mod 2[ ; carry← bC/2[c

33: C ← ℎ
(1)
6 + carry; ℎ (2)6 ← C mod 2[ ; ℎ (2)7 ← bC/2

[c

34: C ← ℎ
(2)
0 + ℎ

(2)
7 ; ℎ

(3)
0 ← C mod 2[ ; carry← bC/2[c

35: C ← ℎ
(2)
1 + carry; ℎ (3)1 ← C mod 2[ ; carry← bC/2[c

36: C ← ℎ
(2)
2 + carry; ℎ (3)2 ← C mod 2[ ; carry← bC/2[c

37: ℎ
(3)
3 ← ℎ

(2)
3 + 2

[/2ℎ (2)7 + carry
38: ℎ

(3)
4 ← ℎ

(2)
4 ; ℎ (3)5 ← ℎ

(2)
5 ; ℎ (3)6 ← ℎ

(2)
6

39: return ℎ (3) (\) = ℎ (3)0 + ℎ
(3)
1 \ + · · · + ℎ (3)6 \6

40: end function.

where 0 ≤ A (0)0 , A
(0)
1 , . . . , A

(0)
6 < 2[ , and 0 ≤ A (0)7 < 2.

For 9 = 7, 8, . . . , 13, define

ℎ
(0)
9

= ℎ
(0)
9 ,0 + ℎ

(0)
9 ,12

[/2, where ℎ (0)
9 ,0 = ℎ

(0)
9

mod 2[/2, and ℎ (0)
9 ,1 = bℎ

(0)
9
/2[/2c . (5)

11



Nath K. & Sarkar P.

Using (5) for 9 = 10 we can write (4) as

ℎ (0) (\) ≡ (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) +

(ℎ (0)7 + ℎ
(0)
8 \ + ℎ (0)9 \2 + (ℎ (0)10,0 + ℎ

(0)
10,12

[/2)\3 + ℎ (0)11 \
4 + ℎ (0)12 \

5 + ℎ (0)13 \
6)\32[/2 mod ?,

which can be further written as

ℎ (0) (\) ≡ (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) + (ℎ (0)7 + ℎ

(0)
8 \ + ℎ (0)9 \2 + ℎ (0)10,0\

3)\32[/2 +

(ℎ (0)10,1 + ℎ
(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2)\7 mod ?,

≡ (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) + (ℎ (0)7 + ℎ

(0)
8 \ + ℎ (0)9 \2 + ℎ (0)10,0\

3)\32[/2 +

(ℎ (0)10,1 + ℎ
(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2) (\32[/2 + 1) mod ? [using (2)],

= (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) + (ℎ (0)10,1 + ℎ

(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2)\32[/2 +

(ℎ (0)10,1 + ℎ
(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2) + (ℎ (0)7 + ℎ
(0)
8 \ + ℎ (0)9 \2 + ℎ (0)10,0\

3)\32[/2,

= (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) + (2[/2ℎ (0)10,1\

3 + ℎ (0)11 \
4 + ℎ (0)12 \

5 + ℎ (0)13 \
6) +

(ℎ (0)10,1 + ℎ
(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2) + (ℎ (0)7 + ℎ
(0)
8 \ + ℎ (0)9 \2 + ℎ (0)10,0\

3)\32[/2. (6)

Steps 9-14 perform the addition of the polynomials (A (0)0 + A
(0)
1 \ + · · · + A (0)7 \7) and (2[/2ℎ (0)10,1\

3 + ℎ (0)11 \
4 + ℎ (0)12 \

5 +
ℎ
(0)
13 \

6) to produce the polynomial (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7). Hence, from (6) we write

ℎ (0) (\) ≡ (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7)︸                             ︷︷                             ︸

through Steps 9-14

+ (ℎ (0)10,1 + ℎ
(0)
11 2

[/2 + ℎ (0)12 \2
[/2 + ℎ (0)13 \

22[/2) +

(ℎ (0)7 + ℎ
(0)
8 \ + ℎ (0)9 \2 + ℎ (0)10,0\

3)\32[/2 mod ?, (7)

where 0 ≤ B (0)0 , B
(0)
1 , · · · , B (0)6 < 2[ , and 0 ≤ B (0)7 ≤ 2. Using the definitions of (5) we can further write (7) as

ℎ (0) (\) ≡ (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7) + ℎ (0)10,1 + (ℎ

(0)
11,0 + ℎ

(0)
11,12

[/2)2[/2 + (ℎ (0)12,0 + ℎ
(0)
12,12

[/2)\2[/2 +

(ℎ (0)13,0 + ℎ
(0)
13,12

[/2)\22[/2 + (ℎ (0)7,0 + ℎ
(0)
7,12

[/2)\32[/2 + (ℎ (0)8,0 + ℎ
(0)
8,12

[/2)\42[/2 +

(ℎ (0)9,0 + ℎ
(0)
9,12

[/2)\52[/2 + ℎ (0)10,0\
62[/2 mod ?,

= (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7) + (ℎ (0)10,1 + ℎ

(0)
11,02

[/2) + (ℎ (0)11,1 + ℎ
(0)
12,02

[/2)\ +

(ℎ (0)12,1 + ℎ
(0)
13,02

[/2)\2 + (ℎ (0)13,1 + ℎ
(0)
7,02

[/2)\3 + (ℎ (0)7,1 + (ℎ
(0)
8,02

[/2)\4 +

(ℎ (0)8,1 + ℎ
(0)
9,02

[/2)\5 + (ℎ (0)9,1 + ℎ
(0)
10,02

[/2)\6,

= (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7) + (C (0)0 + C

(0)
1 \ + · · · + C (0)6 \6)︸                            ︷︷                            ︸

through Steps 15-21

. (8)

Steps 22-26 add the two polynomials (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \7) and (C (0)0 + C

(0)
1 \ + · · · + C (0)6 \6) limb-wise by

forwarding the 1-bit carry, producing the polynomial (ℎ (1)0 + ℎ
(1)
1 \ + · · · + ℎ (1)7 \7). Hence, from (8) we can write

ℎ (0) (\) ≡ (B (0)0 + B
(0)
1 \ + · · · + B (0)7 \6) + (C (0)0 + C

(0)
1 \ + · · · + C (0)6 \6) mod ?,

= (ℎ (1)0 + ℎ
(1)
1 \ + · · · + ℎ (1)7 \7)︸                               ︷︷                               ︸

through Steps 22-26

= ℎ (1) (\), (9)

where 0 ≤ ℎ
(1)
0 , ℎ

(1)
1 , . . . , ℎ

(1)
6 < 2[ , and 0 ≤ ℎ

(1)
7 < 22. In the rest of the proof, we use the looser bound

ℎ
(1)
7 < 216 = 2[/4. This does not cause any problem. The advantage is that, later we can refer to the subsequent

part of the proof to argue about the correctness of the reduction of the quantity obtained after multiplying by the
16-bit curve constant.

12



Reduction Modulo 2448 − 2224 − 1

Reduction from ℎ (1) (\) to ℎ (2) (\). Polynomial ℎ (1) (\) can further be written as

ℎ (1) (\) ≡ ℎ
(1)
0 + ℎ

(1)
1 \ + · · · + ℎ (1)6 \6 + ℎ (1)7 (2

[/2\3 + 1) mod ? [using (2)],

= (ℎ (1)0 + ℎ
(1)
1 \ + · · · + ℎ (1)6 \6) + (ℎ (1)7 + 2

[/2ℎ (1)7 \3). (10)

Steps 27-33 add the polynomial (2[/2\3+1)ℎ (1)7 = (ℎ (1)7 +2
[/2ℎ (1)7 \3) to the polynomial (ℎ (1)0 +ℎ

(1)
1 \+· · ·+ℎ (1)6 \6),

which produces (ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)7 \7), where 0 ≤ ℎ (2)0 , ℎ

(2)
1 , · · · , ℎ (2)6 < 2[ , and 0 ≤ ℎ (2)7 < 2. Hence, from

(10) we write

ℎ (1) (\) ≡ (ℎ (1)0 + ℎ
(1)
1 \ + · · · + ℎ (1)6 \6) + (ℎ (1)7 + 2

[/2ℎ (1)7 \3) mod ?,

= (ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)7 \7)︸                               ︷︷                               ︸

through Steps 27-33

= ℎ (2) (\), (11)

where 0 ≤ ℎ (2)0 , ℎ
(2)
1 , · · · , ℎ (2)6 < 2[ , and 0 ≤ ℎ (2)7 < 2. Note that in Steps 27-33, the value of carry is at most 1.

In Step 33, ℎ (2)7 = 1 if and only if ℎ (1)6 = 2[ − 1 and carry = 1 which implies ℎ (2)6 = C mod 2[ = 2[ mod 2[ = 0.
Moving one step backward, in Step 32 the output carry is 1 if and only if the conditions ℎ (1)5 = 2[ − 1 and the input
carry = 1 hold, which results in setting ℎ (2)5 to 0. Moving another step backward, in Step 31, the output carry is 1
if and only if the conditions ℎ (1)4 = 2[ − 1 and the input carry = 1 hold, which results in setting ℎ (2)4 to 0. Moving
one more step backward, in Step 30, the output carry is 1 if and only if the conditions ℎ (1)4 = 2[ − 1 and the input
carry = 1 hold, and so the value of ℎ (2)3 is bounded above by (2[ − 1 + 2[/4 · 2[/2 + 1) mod 2[ = 23[/4. Hence, if
ℎ
(2)
7 = 1, the conditions

ℎ
(2)
3 < 23[/4, ℎ (2)4 = ℎ

(2)
5 = ℎ

(2)
6 = 0. (12)

have to hold.

Reduction from ℎ (2) (\) to ℎ (3) (\). Polynomial ℎ (3) (\) can further be written as

ℎ (2) (\) ≡ ℎ
(2)
0 + ℎ

(2)
1 \ + · · · + ℎ (2)6 \6 + ℎ (2)7 (2

[/2\3 + 1) mod ? [using (2)],

= (ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)6 \6) + (ℎ (2)7 + 2

[/2ℎ (2)7 \3). (13)

If ℎ (2)7 = 0, then after Steps 34-38 we get ℎ (3)
9

= ℎ
(2)
9
, 9 = 0, 1, . . . , 6; else, if ℎ (2)7 = 1, then using (12) we can

say that the reduction surely terminates by the addition in Step 37. Using the bound of ℎ (2)3 < 23[/4 from (12)
the maximum possible value of ℎ (3)3 through Step 37 is 23[/4 + 2[/2 + 1 < 2[ . This implies after Steps 34-38
0 ≤ ℎ (3)

9
< 2[ , 9 = 0, 1, 2, 3, and ℎ (3)4 = ℎ

(3)
5 = ℎ

(3)
6 = 0. Hence, in any case from (13) it follows that

ℎ (2) (\) ≡ (ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)6 \6) + (ℎ (2)7 + 2

[/2ℎ (2)7 \3) mod ?,

= (ℎ (3)0 + ℎ
(3)
1 \ + · · · + ℎ (3)6 \6)︸                               ︷︷                               ︸

through Steps 34-38

= ℎ (3) (\), (14)

where 0 ≤ ℎ (3)0 , ℎ
(3)
1 , · · · , ℎ (3)6 < 2[ . Also, by combining (9), (11) and (14) we have ℎ (3) (\) ≡ ℎ (0) (\) mod ?,

which proves the theorem. �

Remark. Note that for a non-negative integer G and a positive integer `, the operation G mod 2` extracts the least
significant ` bits of G, while the operation bG/2`c returns an integer obtained by dropping the least significant
` bits of G. There are efficient ways to implement these operations using assembly instructions. In particular,
the operations involved in Steps 15-21 of Algorithm 1 concatenate the least significant 32 bits of a limb with the
leading 32 bits of the predecessor limb to create a block of 64 bits. In the assembly implementation, this is fulfilled
using the shrd instruction. For a detailed understanding of how this is done, we refer to the last two paragraphs of
Appendix A.

13



Nath K. & Sarkar P.

3.2 REDUCTION FROM 8-LIMB TO 7-LIMB
Integer addition of two field elements in F? will produce an 8-limb quantity, the eighth limb of which has a size

of at most 1 bit. Multiplying a field element by a field constant will also produce an 8-limb quantity. Considering
Curve448, the field constant [9] with which a multiplication of a field element arises in the Montgomery ladder
is (� + 2)/4 = (156326 + 2)/4 = 39082 < 216 = 2[/4. Hence, given an 8-limb quantity, the reduction to 7-limb
can be performed as follows. Consider the 8-limb quantity to be ℎ (1) (\) and apply the part of reduce448 which
reduces ℎ (1) (\) to ℎ (3) (\). The correctness of the reduction is guaranteed by the part of the proof of Theorem 1
which argues the correctness of the reduction from ℎ (1) (\) to ℎ (2) (\) and from ℎ (2) (\) to ℎ (3) (\).

3.3 SUBTRACTION
Let 5 (\) and 6(\) be 7-limb quantities representing elements of F? . The requirement is to compute ( 5 (\) −

6(\)) mod ?. Function sub448 of Algorithm 2 performs this computation. The description of sub448 uses the
instruction sub which is defined as follows. Let G and H be 64-bit quantities and b0 be a bit. The instruction
sub(G, H, b0) produces as output the pair (I, b1) where I is a 64-bit quantity and b1 is a bit. The definitions of I and
b1 are as follows.

I =

{
G − (H + b0) if G ≥ H + b0,
264 + G − (H + b0) if G < H + b0;

(15)

b1 =

{
0 if G ≥ H + b0,
1 if G < H + b0.

(16)

The assembly instruction sub can be used to implement sub(G, H, 0) while the assembly instruction sbb can be
used to implement the more general sub(G, H, b0).

Algorithm 2 Subtraction in F? .
1: function sub448(( 5 (\), 6(\)))
2: input: 7-limb quantities 5 (\) and 6(\) such that 0 ≤ 58 , 6 9 < 264 for 8, 9 = 0, 1, . . . , 6.
3: output: ℎ (2) (\) = ℎ

(2)
0 + ℎ

(2)
1 \ + · · · + ℎ (2)1 \6 such that 0 ≤ ℎ

(2)
8

< 264 for 8 = 0, 1, . . . , 6 and ℎ (2) (\) ≡
( 5 (\) − 6(\)) mod ?.

4: b← 0
5: for 8 ← 0 to 6 do
6: (ℎ (0)

8
, b) ← sub( 58 , 68 , b)

7: end for

8: d← b; d′← d � 32
9: b← 0
10: (ℎ (1)0 , b) ← sub(ℎ (0)0 , d, b)
11: (ℎ (1)1 , b) ← sub(ℎ (0)1 , 0, b)
12: (ℎ (1)2 , b) ← sub(ℎ (0)2 , 0, b)
13: (ℎ (1)3 , b) ← sub(ℎ (0)3 , d′, b)
14: (ℎ (1)4 , b) ← sub(ℎ (0)4 , 0, b)
15: (ℎ (1)5 , b) ← sub(ℎ (0)5 , 0, b)
16: (ℎ (1)6 , b) ← sub(ℎ (0)6 , 0, b)

17: d← b; d′← d � 32
18: b← 0
19: (ℎ (2)0 , b) ← sub(ℎ (1)0 , d, b)
20: (ℎ (2)1 , b) ← sub(ℎ (1)1 , 0, b)
21: (ℎ (2)2 , b) ← sub(ℎ (1)2 , 0, b)
22: (ℎ (2)3 , b) ← sub(ℎ (1)3 , d′, b)
23: ℎ

(2)
4 ← ℎ

(1)
4 ; ℎ (2)5 ← ℎ

(1)
5 ; ℎ (2)6 ← ℎ

(1)
6

24: return ℎ (2) (\) = ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)6 \6

25: end function.

14



Reduction Modulo 2448 − 2224 − 1

The correctness of sub448 is stated in the following theorem.

Theorem 2. The output ℎ (2) (\) = ℎ (2)0 + ℎ
(2)
1 \ + · · · + ℎ (2)6 \6 of sub448 satisfies 0 ≤ ℎ (2)

8
< 264 for 8 = 0, 1, . . . , 6

and ℎ (2) (\) ≡ ( 5 (\) − 6(\)) mod ?.

Proof. The limbs ℎ (2)
8

, 8 = 0, 1, . . . , 6 are obtained as the first components of the outputs of some invocations of
the sub instruction. Consequently, it follows that all of these are 64-bit quantities. This settles the point about the
bounds on these limbs. So, we have to argue two things. First, ℎ (2) (\) = ( 5 (\) − 6(\)) mod ? and second that the
procedure terminates without any overflow. The congruency argument is obtained from the following observations.

1. Let X = 2224 + 1. Steps 8-16 of sub448 correspond to the subtraction of X from the integer represented by
ℎ (0) (\). Similarly, Steps 17-22 correspond to the subtraction of X from the integer represented by ℎ (1) (\).

2. Suppose 5 (\) ≥ 6(\) (as integers). Then, after Step 7, we have ℎ (0) (\) = 5 (\) − 6(\) and b = 0. As a
consequence of b = 0 at Step 7, it follows that ℎ (0) (\) = ℎ (1) (\) = ℎ (2) (\) establishing the result for this
particular case.

3. In view of the previous point, assume 5 (\) < 6(\). In this case, after Step 7, we have that ℎ (0) represents
the integer 2448 + 5 (\) − 6(\) and b = 1. Steps 10-16 subtract X from ℎ (0) (\) = 2448 + 5 (\) − 6(\).

(a) If ℎ (0) (\) ≥ X, then after Step 16, ℎ (1) (\) represents the integer ℎ (0) (\) − X = 2448 + 5 (\) − 6(\) − X =
? + 5 (\) − 6(\) ≡ ( 5 (\) − 6(\)) mod ? and b = 0. As a consequence of b = 0 at Step 16, it follows
that ℎ (2) (\) = ℎ (1) (\) establishing the result for this case.

(b) If ℎ (0) (\) < X, then after Step 16, ℎ (1) (\) represents the integer 2448 + ℎ (0) (\) − X = 2448 +2448 + 5 (\) −
6(\) −X = 2448+ ?+ 5 (\) −6(\) and b = 1. Steps 19-22 subtract X from ℎ (1) (\) = 2448+ ?+ 5 (\) −6(\)
to obtain ℎ (2) (\) = ℎ (1) (\) − X = 2448 + ?+ 5 (\) −6(\) − X = 2?+ 5 (\) −6(\) ≡ ( 5 (\) −6(\)) mod ?.

It only remains to argue that b produced by the sub instruction in Step 22 is necessarily 0. If the value of b in the
input of sub in Step 22 is 0, then of course, the value of b produced by this sub call is also 0. So, suppose that
the value of b in the input of sub in Step 22 (which is the output value of b in Step 21) is 1. This implies that the
value of d′ in Step 22 is 232, since otherwise if, d′ = 0 then output of b in Step 21 has to be 0, which contradicts the
assumption that the output value of b in Step 21 is 1. Then the value of b produced by the sub call is Step 22 is 0, if
and only if ℎ (1)3 ≥ 2

32 + 1. The value of b in the input of sub in Step 22 is 1, only if the value of b produced by the
sub call in Step 16 is 1. Arguing backwards, the value of b produced by the sub call in Step 13 must be 1. The input
to the sub call in Step 13 is (ℎ (0)3 , d′, b) and so the value of b produced by this sub call is 1 if and only if the value
of b in the input to this sub call is 1 and 0 ≤ ℎ (0)3 < 232 + 1. This implies 264 − 232 − 1 ≤ 264 + ℎ (0)3 − 2

32 − 1 < 264,
or, 264 − 1 − 232 ≤ ℎ (1)3 < 264, from which it follows that ℎ (1)3 ≥ 2

32 + 1, as required. �

Remark. All 64-bit operations used to implement Algorithms 1 and 2 on standard processors take time which
is independent of the actual values of the operand. The different assembly instructions of the target architecture
corresponding to the basic arithmetic operations ∗, /, +, −, mod which are involved in the implementations of
the Montgomery ladders are atomic in nature and hence constant-time by default.

4 IMPLEMENTATIONS AND TIMINGS
We present two 7-limb 64-bit implementations for shared secret computation phase of the X448 function.

We term these implementations as mxaa- and maax-type implementations. The implementations based on the
instructions mulx, add, adc are collectively termed as mxaa, and the implementations based on the instructions
mulx, adcx, adox are collectively termed as maax. All the implementations are based on 64-bit assembly
instructions targeting the Intel architectures. The mxaa type implementations are supported across a wide range of
Intel processors. The maax type implementations are supported on modern Intel processors such as Skylake, but
are not supported on previous generation processors such as Haswell.

Implementation of X448 requires implementation of field arithmetic over F? . Field multiplication and squaring
are done in two steps. The first step multiplies two 7-limb field elements (considered as integers) to obtain a
14-limb integer. The second step reduces the 14-limb integer to a 7-limb integer. For the reduction, we have used
Function reduce448while for the integer multiplication we have used the algorithms given in [17]. Implementations
of field addition, subtraction and multiplication by the curve constant are as described in Sections 3.2 and 3.3.
Overall, the implementation of X448 requires an implementation of the Montgomery ladder. The shared secret
was computed using the left-to-right Montgomery ladder given in Algorithm 7 of [15] and the key generation
was computed using the right-to-left Montgomery ladder given in Algorithm 5 of [18]. We have made a careful

15



Nath K. & Sarkar P.

constant-time assembly implementations of the Montgomery ladder. A major goal of the implementations have
been to make efficient use of the available registers so that a minimal number of load/store instructions are required.
Below, we provide timing results for the new implementations. The timing experiments were carried out on single
cores of the Haswell and Skylake processors. The TurboBoost© and Hyper-Threading© features were turned off
while measuring the CPU-cycles.

Platform specifications. The specifications of the hardware and software tools used in our software implemen-
tations are given below.
Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the source

code was compiled using GCC version 7.3.0.
Skylake: Intel®CoreTM i7-6500U 2-core CPU@ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and the source

code was compiled using GCC version 7.3.0.

Operation Haswell Skylake Implementation Implementation Type

Shared secret

732013 587389 [18] mxaa, inline assembly
- 530984 [18] maax, inline assembly

719217 461379 this work mxaa, assembly
- 434831 this work maax, assembly

Key generation

423703 356113 [18] mxaa, inline assembly
- 315890 [18] maax, inline assembly

420453 278743 this work mxaa, assembly
- 261683 this work maax, assembly

Table 1: CPU-cycle counts on Haswell and Skylake processors for shared secret computation and key
generation on Curve448. Computation of key generation has been done using Algorithm 5 of [18].

Timings in the form of CPU-cycles are provided in Table 1. For comparison we have considered the timings of
the most efficient (to the best of our knowledge) publicly available 64-bit implementation of Curve448, which is the
software implementation corresponding to the work [18]1. We downloaded the mentioned software and measured
the CPU-cycles on the same platforms on which we have measured the CPU-cycles of our implementations. This
has been done to keep the comparisons consistent. We summarize the following observations from the timings of
Table 1.

• On Skylake, the new implementations are substantially better than the the previous implementations. For
shared secret computation a speed-up of about 18% and 22% are obtained for the maax-type and mxaa-
type implementations respectively. For key generation a speed-up of 17% is obtained for the maax-type
implementation, and a speed-up of about 22% is obtained for the implementation of the mxaa-type.

• On Haswell the new mxaa-type implementation for computing the shared secret is better than the previous
implementation by about 13KCPU-cycles; for key generation the new mxaa-type implementation is nominally
better. While this are improvements, they are not as substantial the improvements as has been achieved on
Skylake.

While the reduction algorithms that we have described avoid certain redundant operations performed by the code
corresponding to [18], and consequently, do contribute to the speed improvement, it is not the only reason for the
speed-up. A major reason for the speed improvement is a very careful assembly implementation making judicious
use of the available registers so that the number of load/store operations is minimal.

5 CONCLUSION
In this work we have presented reduction algorithms and their proofs of correctness required for computation in

the field F? where ? = 2448 − 2224 − 1. Based on these algorithms and other previously known techniques, we have
made efficient 64-bit assembly implementations of the X448 function of Curve448 leading to new speed records
for 64-bit implementations. While our work has concentrated entirely on the prime 2448 − 2224 − 1, we note that
the ideas involved can be applied to other primes having a similar form such as the prime 2480 − 2240 − 1.

Acknowledgements. We thank the reviewers for their kind comments which have helped in improving the paper.

1Program code from https://github.com/armfazh/rfc7748_precomputed was accessed on June 25, 2020.

16

https://github.com/armfazh/rfc7748_precomputed


Reduction Modulo 2448 − 2224 − 1

REFERENCES
[1] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: Public Key Cryptography -

PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, New York,
NY, USA, April 24-26, 2006, Proceedings. 2006, pp. 207–228. doi: 10.1007/11745853_14. url: https:
//doi.org/10.1007/11745853_14.

[2] Daniel J. Bernstein and Tanja Lange. “Montgomery Curves and the Montgomery Ladder”. In: Topics in
Computational Number Theory inspired by Peter L. Montgomery. Ed. by Joppe W. Bos and Arjen K.
Lenstra. Cambridge University Press, 2017, pp. 82–115.

[3] Joppe W. Bos and Peter L. Montgomery. “Montgomery Arithmetic from a Software Perspective”. In: IACR
Cryptology ePrint Archive 2017 (2017), p. 1057. url: http://eprint.iacr.org/2017/1057.

[4] Tung Chou. “Sandy2x: New Curve25519 Speed Records”. In: Selected Areas in Cryptography - SAC 2015 -
22nd International Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers. Code
available at https://tungchou.github.io/sandy2x/. 2015, pp. 145–160. doi: 10.1007/978-3-
319-31301-6_8. url: https://doi.org/10.1007/978-3-319-31301-6_8.

[5] Craig Costello and Benjamin Smith. “Montgomery curves and their arithmetic - The case of large characteris-
tic fields”. In: J. Cryptographic Engineering 8.3 (2018), pp. 227–240. doi: 10.1007/s13389-017-0157-6.
url: https://doi.org/10.1007/s13389-017-0157-6.

[6] Michael Düll et al. “High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers”. In: Designs
Codes and Cryptography 77.2-3 (2015), pp. 493–514.

[7] Armando Faz-Hernández and Julio López. “Fast Implementation of Curve25519 Using AVX2”. In: LATIN-
CRYPT. Vol. 9230. Lecture Notes in Computer Science. Springer, 2015, pp. 329–345.

[8] Shay Gueron and Vlad Krasnov. “Fast prime field elliptic-curve cryptography with 256-bit primes”. In: J.
Cryptogr. Eng. 5.2 (2015), pp. 141–151. doi: 10.1007/s13389-014-0090-x. url: https://doi.org/
10.1007/s13389-014-0090-x.

[9] Mike Hamburg. “Ed448-Goldilocks, a new elliptic curve”. In: IACR Cryptology ePrint Archive 2015 (2015),
p. 625. url: http://eprint.iacr.org/2015/625.

[10] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography. Springer,
2003.

[11] Adam Langley and Mike Hamburg. Elliptic Curves for Security. Internet Research Task Force (IRTF),
Request for Comments: 7748, https://tools.ietf.org/html/rfc7748. 2016.

[12] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[13] Peter L. Montgomery. “Modular multiplication without trial division”. In: Mathematics of Computation
44(170) (April 1985), pp. 519–521.

[14] Kaushik Nath and Palash Sarkar. “Security and Efficiency Trade-offs for Elliptic Curve Diffie-Hellman at
the 128-bit and 224-bit Security Levels”. In: IACR Cryptology ePrint Archive 2019 (2019), p. 1259. url:
https://eprint.iacr.org/2019/1259.

[15] Kaushik Nath and Palash Sarkar. “Constant TimeMontgomery Ladder”. In: IACR Cryptology ePrint Archive
2020 (2020), p. 956. url: https://eprint.iacr.org/2020/956.

[16] Kaushik Nath and Palash Sarkar. “Efficient 4-way Vectorizations of the Montgomery Ladder”. In: IACR
Cryptology ePrint Archive 2020 (2020), p. 378. url: https://eprint.iacr.org/2020/378.

[17] KaushikNath andPalash Sarkar. “Efficient arithmetic in (pseudo-)Mersenne prime order fields”. In:Advances
in Mathematics of Communications (2020). url: https://www.aimsciences.org/article/doi/10.
3934/amc.2020113.

[18] Thomaz Oliveira et al. “How to (Pre-)Compute a Ladder - Improving the Performance of X25519 and X448”.
In: Selected Areas in Cryptography - SAC 2017 - 24th International Conference, Ottawa, ON, Canada, August
16-18, 2017, Revised Selected Papers. 2017, pp. 172–191. doi: 10.1007/978-3-319-72565-9_9. url:
https://doi.org/10.1007/978-3-319-72565-9_9.

[19] E.Ozturk, J.Guilford, andV.Gopal.Large integer squaring on Intel architecture processors, Intelwhite paper.
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-
integer-squaring-ia-paper.pdf. 2013.

17

https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/11745853_14
http://eprint.iacr.org/2017/1057
https://tungchou.github.io/sandy2x/
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/978-3-319-31301-6_8
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-017-0157-6
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
https://doi.org/10.1007/s13389-014-0090-x
http://eprint.iacr.org/2015/625
https://tools.ietf.org/html/rfc7748
https://eprint.iacr.org/2019/1259
https://eprint.iacr.org/2020/956
https://eprint.iacr.org/2020/378
https://www.aimsciences.org/article/doi/10.3934/amc.2020113
https://www.aimsciences.org/article/doi/10.3934/amc.2020113
https://doi.org/10.1007/978-3-319-72565-9_9
https://doi.org/10.1007/978-3-319-72565-9_9
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf


Nath K. & Sarkar P.

[20] E. Ozturk et al. New instructions supporting large integer arithmetic on Intel architecture processors, Intel
white paper. https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ia-large-integer-arithmetic-paper.pdf. 2012.

[21] Version 1.3 TLS Protocol. RFC 8446. https://datatracker.ietf.org/doc/rfc8446/?include_
text=1. 2018.

A COMPARISON TO THE REDUCTION OF OLIVEIRA ET AL.
Page 17 of [18], provides an abstraction of the reduction strategy used to convert the integer I represented by

the 14-limb polynomial ℎ (0) (\) to a reduced integer in F? , which are given as below.

I ← (I mod 2672) + (2448 + 2224) bI/2672c, (17)
I ← (I mod 2448) + (2224 + 1) bI/2448c, (18)
I ← (I mod 2448) + (2224 + 1) bI/2448c . (19)

The first two steps (17) and (18) convert the 14-limb input quantity ℎ (0) (\) to the 8-limb quantity ℎ (1) (\), such that
the size of the eighth limb of ℎ (1) (\) is at most 2 bits long. Step (17) reduces ℎ (0) (\) to an 11-limb polynomial, say
5 (\) = 50 + 51\ + · · · + 510\10 and Step (18) reduces 5 (\) to ℎ (1) (\). Step (19) further reduces ℎ (1) (\) to ℎ (2) (\)
which is also an 8-limb quantity whose final limb is at most 1 bit long. The final reduction round that converts
ℎ (2) (\) to ℎ (3) (\), which is a 7-limb quantity is missing. As a result, the reduction strategy suggested in [18] is
incomplete.

Reduction algorithms used in the code accompanying [18]. We have studied the latest version2 of the imple-
mentation corresponding to [18]. The reduction algorithm used in this code is different from the strategy outlined
in the paper. While the strategy suggested in the paper is incomplete, the algorithms implemented in the code are
indeed complete. They, however, perform some redundant operations. Recall that in the final round which reduces
ℎ (2) (\) to ℎ (3) (\), Algorithm 1 proceeds only up to the fourth limb. Theorem 1 shows that this is sufficient. The
present version of the code corresponding to [18] performs the additions till the last limb. The three extra additions
in the final round are redundant. Similar redundancies are also present in addition, subtraction and multiplication
by the field constant.

An efficiency issue while reducing ℎ (0) (\) to ℎ (1) (\). Define q = \32[/2 = 2224, which implies q2 ≡ q + 1
using (2). We can also view ℎ (0) (\) as an equivalent polynomial h(0) in base q defined as h(0) (q) = 0+1q+2q2+3q3,
where 0, 1, 2, 3 < q. Under such a consideration, the reduction from ℎ (0) (\) to ℎ (1) (\) of Algorithm 1 can be
described as a reduction from h(0) (q) to h(1) (q) through the following steps.

h(0) (q) = 0 + 1q + 2q2 + 3q3

= (0 + 1q) + (2 + 3q)q2

≡ (0 + 1q) + (2 + 3q) (q + 1) mod ?
= (0 + 1q) + (2 + 3q) + 2q + 3q2 mod ?
≡ (0 + 1q) + (2 + 3q) + 2q + 3q + 3 mod ?
= (0 + 1q) + (2 + 3q) + 3q + (3 + 2q) mod ?
= h(1) (q) mod ?.

Algorithm 1 computes h(1) (q) from h(0) (q) by first adding (2 + 3q) to (0 + 1q) through Steps 4-8. Then it adds
3q to the result through Steps 9-14. Finally, (3 + 2q) is computed through Steps 15-21 and added to the previous
result through Steps 22-26 to produce h(1) (q). The x86 architecture has 15 64-bit registers (keeping aside the stack
pointer register rsp) to work with. To store the value of the product h(0) (q) = (0 + 1q + 2q2 + 3q3) we need 14
64-bit registers. So, the polynomial (0 + 1q) is stored in 7 registers and (2 + 3q) is stored in another 7. We need 3
to compute (3 + 2q), so it is better to keep 3 undisturbed until we compute the value of (3 + 2q). We first add the
register values of (2 + 3q) to the registers of (0 + 1q). The register values of (0 + 1q) gets updated to produce the
temporary sum and the register values of (2 + 3q) remain unchanged. After that, we only copy the middle limb of
(2 + 3q) to a temporary register and mask off its lower 32 bits to achieve the first 32 bits of 3. The remaining 192
bits are easily obtained from the last three register values of (2 + 3q) without any extra operations. Now, we have

2Program code from https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.cwas accessed on June
25, 2020.

18

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
https://datatracker.ietf.org/doc/rfc8446/?include_text=1
https://datatracker.ietf.org/doc/rfc8446/?include_text=1
https://github.com/armfazh/rfc7748_precomputed/blob/master/src/fp448_x64.c


Reduction Modulo 2448 − 2224 − 1

3 and add it to the previous sum to get a modified sum. Finally, we compute (3 + 2q) from (2 + 3q) through shrd
instructions which works in a circular manner and add the obtained value to the previous sum to get the final value.

An alternative way to compute h(1) (q) would be to first add (2 + 23q) to (0 + 1q) and then add (3 + 2q) to the
result. The code corresponding to [18] uses this method. However, depending on the number of available 64-bit
registers in the x86 architectures, this is going to be less efficient. This is because, computing 23 from 3 will
necessitate extra operations to back up 3 for computing (3 + 2q) later on. As a result, the number of load/stores
will increase.

Inline assembly code of reduction from [18]. We produce below the inline assembly code of reduction after
integer multiplication/squaring from the implementation of [18].

1 void red_EltFp448_1w_x64(uint64_t *c, uint64_t *a) {
2

3 __asm__ __volatile__(
4

5 /**
6 * ( ,2C13,2C12,2C11,2C10|C10,C9,C8, C7) + (C6,...,C0)
7 * (r14, r13, r12, r11, r10,r9,r8,r15)
8 */
9 "movq 80(%1),%%rax; movq %%rax,%%r10;"

10 "movq $0xffffffff00000000, %%r8;"
11 "andq %%r8,%%r10;"
12

13 "movq $0,%%r14;"
14 "movq 104(%1),%%r13; shldq $1,%%r13,%%r14;"
15 "movq 96(%1),%%r12; shldq $1,%%r12,%%r13;"
16 "movq 88(%1),%%r11; shldq $1,%%r11,%%r12;"
17 "movq 72(%1), %%r9; shldq $1,%%r10,%%r11;"
18 "movq 64(%1), %%r8; shlq $1,%%r10;"
19 "movq $0xffffffff,%%r15; andq %%r15,%%rax; orq %%rax,%%r10;"
20 "movq 56(%1),%%r15;"
21

22 "addq 0(%1),%%r15; movq %%r15, 0(%0); movq 56(%1),%%r15;"
23 "adcq 8(%1), %%r8; movq %%r8, 8(%0); movq 64(%1), %%r8;"
24 "adcq 16(%1), %%r9; movq %%r9,16(%0); movq 72(%1), %%r9;"
25 "adcq 24(%1),%%r10; movq %%r10,24(%0); movq 80(%1),%%r10;"
26 "adcq 32(%1),%%r11; movq %%r11,32(%0); movq 88(%1),%%r11;"
27 "adcq 40(%1),%%r12; movq %%r12,40(%0); movq 96(%1),%%r12;"
28 "adcq 48(%1),%%r13; movq %%r13,48(%0); movq 104(%1),%%r13;"
29 "adcq $0,%%r14;"
30

31 /**
32 * (c10c9,c9c8,c8c7,c7c13,c13c12,c12c11,c11c10) + (c6,...,c0)
33 * ( r9, r8, r15, r13, r12, r11, r10)
34 */
35 "movq %%r10, %%rax;"
36 "shrdq $32,%%r11,%%r10;"
37 "shrdq $32,%%r12,%%r11;"
38 "shrdq $32,%%r13,%%r12;"
39 "shrdq $32,%%r15,%%r13;"
40 "shrdq $32, %%r8,%%r15;"
41 "shrdq $32, %%r9, %%r8;"
42 "shrdq $32,%%rax, %%r9;"
43

44 "addq 0(%0),%%r10;"
45 "adcq 8(%0),%%r11;"
46 "adcq 16(%0),%%r12;"
47 "adcq 24(%0),%%r13;"
48 "adcq 32(%0),%%r15;"
49 "adcq 40(%0), %%r8;"
50 "adcq 48(%0), %%r9;"
51 "adcq $0,%%r14;"
52

19



Nath K. & Sarkar P.

53 /**
54 * ( c7) + (c6,...,c0)
55 * (r14)
56 */
57 "movq %%r14,%%rax; shlq $32,%%rax;"
58 "addq %%r14,%%r10; movq $0,%%r14;"
59 "adcq $0,%%r11;"
60 "adcq $0,%%r12;"
61 "adcq %%rax,%%r13;"
62 "adcq $0,%%r15;"
63 "adcq $0, %%r8;"
64 "adcq $0, %%r9;"
65 "adcq $0,%%r14;"
66

67 "movq %%r14,%%rax; shlq $32,%%rax;"
68 "addq %%r14,%%r10; movq %%r10, 0(%0);"
69 "adcq $0,%%r11; movq %%r11, 8(%0);"
70 "adcq $0,%%r12; movq %%r12,16(%0);"
71 "adcq %%rax,%%r13; movq %%r13,24(%0);"
72 "adcq $0,%%r15; movq %%r15,32(%0);"
73 "adcq $0, %%r8; movq %%r8,40(%0);"
74 "adcq $0, %%r9; movq %%r9,48(%0);"
75 :
76 : "r"(c), "r"(a)
77 : "memory", "cc", "%rax", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13",
78 "%r14", "%r15");
79 }

In the inline assembly code given above, the input operand 0 refers to the 14-limb input polynomial, and 2 refers
to the 7-limb reduced output polynomial. Within the code the limbs of the input operand 2 are accessed through
the notation %1 and the limbs of the output operand are accessed though the notation %0.

Steps 9-20 of the code computes (2 + 23q) and it uses the more costly shld instructions for the purpose.
Through Step 11 the least significant 32 bits of the middle limb held in %%r10 is masked off to produce the first
32 bits of 3 in the leading 32 bits of %%r10. Then through the instructions shld and shl of Steps 14-18, 23 is
computed in the registers %%r10, %%r11, %%r12, %%r13, %%r14. After that in Step 19, the leading 32 bits
of the middle limb of (2 + 3q) is concatenated just before 23. The first 3 limbs of 2 are simply read through
the mov instructions of Steps 17,18 and 20 and we finally have (2 + 23q) in the registers %%r15, %%r8, %%r9,
%%r10, %%r11, %%r12, %%r13, %%r14. Steps 22-29 adds (2 + 23q) to (0 + 1q) to produce a temporary sum.
Steps 35-42 generates (3 + 2q) from (2 + 3q) through the shrd instructions. The polynomial (3 + 2q) is then
added to the previous sum through Steps 44-51 to produce an 8-limb polynomial in the registers %%r10, %%r11,
%%r12, %%r13, %%r15, %%r8, %%r9, %%r14. The eighth limb of this 8-limb polynomial is at most 1 bit long
and is stored in the register %%r14. Steps 57-74 further reduce the polynomial through the method discussed in
Section 3.2. However, the operations in Steps 72, 73 and 74 in the code are redundant according to Theorem 1.

Assembly code of reduction from the implementations of this work. We now provide the assembly code from
our implementation which performs the reduction following the steps of Algorithm 1. Please note that here a
64-bit register r is accessed using the notation %r instead of the notation %%r used while writing codes using inline
assembly.

The code given below performs the reduction on the 14-limb product polynomial which is held by the 14
registers%rax, %rbx, %rcx, %rdx, %rbp, %rsi, %r8, %r9, %r10, %r11, %r12, %r13, %r14, %r15
and is part of a larger assembly function that performs field multiplication/squaring. Steps 1-9 adds the polynomial
(2 + 3q) to (0 + 1q) to produce a temporary sum to which 3 is further added through Steps 16-20 which produces
the next temporary sum. The assembly constant mask32h holds the 64 bit value 0xffffffff00000000 which is
used to mask off the lower 32 bits of the middle limb of (2 + 3q) held by the register %rax as a temporary. Steps
22-29 generates (3 + 2q) from (2 + 3q) through the shrd instructions. The polynomial (3 + 2q) is then added to
the the previous sum through Steps 30-37 to produce the 8-limb polynomial in the registers %r12, %rbx, %rcx,
%rdx, %rbp, %rsi, %r8, %rdi. After this Steps 39-58 further reduces the polynomial to produce the final
7-limb output polynomial in the registers %r12, %rbx, %rcx, %rdx, %rbp, %rsi, %r8.

Our code has only one memory-store operation in Step 11 which is indispensable in the context. We did not
find a more efficient way to implement Algorithm 1 using the available 15 registers in assembly. By comparing the

20



Reduction Modulo 2448 − 2224 − 1

two codes of reduction it is easy to see that the number of instructions in our assembly is much lesser than the code
of [18].

1 xorq %rdi,%rdi
2 addq %r9, %rax
3 adcq %r10, %rbx
4 adcq %r11, %rcx
5 adcq %r12, %rdx
6 adcq %r13, %rbp
7 adcq %r14, %rsi
8 adcq %r15, %r8
9 adcq $0, %rdi
10

11 movq %rax, 536(%rsp)
12

13 movq %r12, %rax
14 andq mask32h, %rax
15

16 addq %rax, %rdx
17 adcq %r13, %rbp
18 adcq %r14, %rsi
19 adcq %r15, %r8
20 adcq $0, %rdi
21

22 movq %r12, %rax
23 shrd $32, %r13, %r12
24 shrd $32, %r14, %r13
25 shrd $32, %r15, %r14
26 shrd $32, %r9, %r15
27 shrd $32, %r10, %r9
28 shrd $32, %r11, %r10
29 shrd $32, %rax, %r11

30 addq 536(%rsp), %r12
31 adcq %r13, %rbx
32 adcq %r14, %rcx
33 adcq %r15, %rdx
34 adcq %r9, %rbp
35 adcq %r10, %rsi
36 adcq %r11, %r8
37 adcq $0, %rdi
38

39 movq %rdi, %r13
40 shlq $32, %r13
41

42 xorq %r14, %r14
43 addq %rdi, %r12
44 adcq $0, %rbx
45 adcq $0, %rcx
46 adcq %r13, %rdx
47 adcq $0, %rbp
48 adcq $0, %rsi
49 adcq $0, %r8
50 adcq $0, %r14
51

52 movq %r14, %r13
53 shlq $32, %r13
54

55 addq %r14, %r12
56 adcq $0, %rbx
57 adcq $0, %rcx
58 adcq %r13, %rdx

21


	Introduction
	Related Work

	Arithmetic in Fp
	Reduction in Fp
	Reduction from 14-Limb to 7-Limb
	Reduction from 8-Limb to 7-Limb
	Subtraction

	Implementations and Timings
	Conclusion
	Comparison to the Reduction of Oliveira et al.

