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Abstract Ring-SIS based Σ-protocols require a challenge set C in some ring R, usually an order in a number field
!. These Σ-protocols impose various requirements on the subset C, and finding a good, or even optimal challenge
set is a non-trivial task.
In particular, (1) the set C should be ‘large’, (2) elements in C should be ‘small’, and (3) differences of distinct
elements in C should be invertible modulo a rational prime ?. Moreover, for efficiency purposes, it is desirable
that (4) the prime ? is small, and that (5) it splits in many factors in the number field !.
These requirements on C are subject to certain trade-offs, e.g., between the splitting behavior of the prime ? and
its size. Lyubashevsky and Seiler (Eurocrypt 2018) have studied these trade-offs for subrings of cyclotomic number
fields. Cyclotomic number fields possess convenient properties and as a result most Ring-SIS based protocols are
defined over these specific fields. However, recent attacks have shown that, in certain protocols, these convenient
properties can be exploited by adversaries, thereby weakening or even breaking the cryptographic protocols.
In this work, we revisit the results of Lyubashevsky and Seiler and show that they follow from standard Galois theory,
thereby simplifying their proofs. Subsequently, this approach leads to a natural generalization from cyclotomic to
arbitrary number fields. We apply the generalized results to construct challenge sets in trinomial number fields of
the form Q[-]/( 5 ) with 5 = -= + 0- : + 1 ∈ Z[-] irreducible. Along the way we prove a conjectured result on
the practical applicability for cyclotomic number fields and prove the optimality of certain constructions.
Finally, we find a new construction for challenge sets resulting in slightly smaller prime sizes.
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1 INTRODUCTION
Many cryptographic protocols, such as identification and digital-signature schemes, require one party (prover

P) to convince another party (verifier V) of knowing the pre-image of some element under a one-way function
without leaking information about this pre-image, i.e., in zero-knowledge. In the discrete-logarithm setting, Schnorr
suggested an elegant and efficient interactive protocol for producing these so-called zero-knowledge proofs [46].
Three-round interactive proofs, such as Schnorr’s protocol, are calledΣ-protocols. In turn, the Fiat-Shamir heuristic
transforms any Σ-protocol into a non-interactive proof [28]. Recently the Fiat-Shamir transformation has proven to
be secure against quantum adversaries [26, 35].

In contrast to discrete-log based Σ-protocols, lattice-based Σ-protocols require a proof that such a pre-image is
‘short’. Because of this additional requirement, a straightforward adaptation of Schnorr’s approach to the lattice
setting introduces some challenges.

First, in this setting knowledge extractors, which are used to prove soundness of Σ-protocols, are typically only
capable of extracting pre-images with norms larger than what is claimed by the prover. In other words, a prover that
knows a pre-image in some set ( is only capable of proving knowledge of a pre-image in some strictly larger set (′.
This discrepancy is called the soundness slack of the protocol. In contrast to the naive approach, Lyubashevsky’s
rejection sampling technique [36, 37] significantly reduces the soundness slack.

Second, in contrast to discrete-logarithm based protocols, many lattice-based Σ-protocols suffer from a large
soundness error, i.e., even dishonest provers succeed in convincing a verifier with large probability. Therefore, these
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protocols have to be repeated many times to reduce the soundness error and achieve the desired security level. The
number of repetitions is also called the overhead of the protocol. While it is challenging to reduce the overhead for
a single instance, the overhead can be amortized over many instances without increasing the soundness slack [17,
24, 4, 18, 3].

Another approach to limit the soundness slack and overhead of lattice-based Σ-protocols is by relaxing the
statement that is proven. Instead of proving knowledge of a short pre-image of a public element, P proves
knowledge of a pre-image of a related element. These relaxed protocols are called approximate Σ-protocols. For
some cryptographic primitives approximate proofs of knowledge are sufficient, but others require exact proofs of
knowledge [12, 53].

A key component in (approximate) Σ-protocols is the challenge set C. In this work we focus on the protocols
based on the Ring-SIS assumption. These protocols are defined over a ring R/?R where R is usually the ring of
integers of a number field ! and ? is a rational prime. The field ! is often chosen to be cyclotomic, i.e., ! = Q(Z<)
for some primitive <Cℎ-root of unity Z< with minimal polynomial Φ< (-).

The efficiency of these protocols critically depends on the choice of a good challenge set C ⊂ R/?R. The
Ring-SIS hardness condition requires elements in C to have small norm. The approximation factor is determined
by the norms of the challenges in C. To achieve a small soundness error, the set C should be large (|C| ≈ 2256).1
Moreover, an element of the ring R/?R has bit size = log2 (?) where = is the degree of the number field !. For this
reason, the communication complexity of the (approximate) Σ-protocols is Ω(= log(?)) and we aim to choose the
prime ? as small as possible.

Additional (computational) efficiency improvements can be obtained by using the Chinese Remainder Theorem
(CRT) orNumber Theoretic Transform (NTT) [7]. The advantage of this technique depends on the splitting behavior
of the rational prime ? in the ring R. More precisely, the more distinct prime factors ? has in R, the more efficient
elementary operations in R/?R can be implemented. Finally, when using these Σ-protocols as subroutines in other
cryptographic protocols (e.g., group signature schemes), the differences 2 − 2′ of elements in 2, 2′ ∈ C might be
required to be invertible in R/?R [6, 38, 5, 45].

Hence good challenge sets C ⊂ R/?R satisfy the following properties:

1. elements in C are ‘small’,
2. C is large,
3. the prime ? is small,
4. ? splits in many factors in R,
5. all non-zero elements in C − C = {2 − 2′ |2, 2′ ∈ C} are invertible.
When R = O! is the ring of integers of a number field !, a subset � ⊂ R for which all mutual differences are

invertible is called an exceptional set. The maximal cardinality of such a subset � is called the Lenstra constant
of ! [34] and finding number fields with large Lenstra constant has been of independent interest for many years.
Exceptional sets also appear in cryptographic primitives, such as black-box secret sharing [25, 22, 23]. However,
our situation is slightly different. First, we only require mutual differences to be invertible modulo a rational prime
? and, second, we additionally require elements to be of small norm.

The above requirements introduce compromises between, for example, the invertibility condition and the
splitting behavior of the prime ?. Lyubashevsky and Seiler [41] show that, when R is the ring of integers in a
cyclotomic number field !, there exist primes ? that split in more than two factors and for which good challenge
sets C ⊂ R/?R exist. Their main result is stated in Theorem 1. In this theorem, Φ< (-) is the <Cℎ-cyclotomic
polynomial, i.e., the minimal polynomial of an <Cℎ-primitive root of unity Z<, i is the Euler totient function and
the quantities B1 (<) and B1 (I) are the largest singular values of matrices that will be defined in Section 2.

Theorem 1 ([41]). Let < =
∏
?
48
8
for 48 ≥ 1 and I =

∏
?
58
8
for 1 ≤ 58 ≤ 48 . If ? is a prime such that ? ≡ 1 mod I

and ord< (?) = </I, then the polynomial Φ< (-) factors as

Φ< (-) ≡
i (I)∏
9=1
(-</I − A 9 ) mod ?,

for distinct A 9 ∈ Z∗? where -</I − A 9 are irreducible in the ring Z? [-]. Furthermore, any y ∈ Z? [-]/(Φ< (-))
that satisfies either

0 < | |y| |∞ <
1

B1 (I)
?1/i (I) or

1As mentioned earlier, an alternative approach is to reduce the soundness error by repeating the protocol multiple times at the cost of
introducing overhead and thereby increasing the communication and computation costs.
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0 < | |y| | <
√
i(<)
B1 (<)

?1/i (I)

has an inverse in Z? [-]/(Φ< (-)).

To prove this theorem, Lyubashevsky and Seiler construct a specific lattice L and show that an invertibility
condition follows from a lower bound on the length of the shortest vector of this lattice. In addition, they explicitly
express polynomials in the ring Z[-]/(Φ< (-)) in terms of a basis over some subring and relate the invertibility to
this subring.

As many other cryptographic constructions based on ideal lattices, the work of Lyubashevsky and Seiler focuses
on cyclotomic number fields. However, a number of recent attacks have exposed certain vulnerabilities of some of
these constructions. These vulnerabilities are due to additional structure of cyclotomic number fields. In general,
the attacks consist of two steps:

1. Given a principal ideal � in the ring R, find an arbitrary generator 6 ∈ R of �;
2. Given a principal ideal � and a generator 6 of this ideal, find a short generator ℎ of �.

The first step in this attack is also referred to as solving the Principal Ideal Problem (PIP). For cyclotomic
number fields ! with prime power conductor Biasse and Song [10] gave a quantum algorithm for solving this
problem in time polynomial in the degree of !/Q.

For the second step note that 6 and ℎ generate the same ideal and hence differ by a unit, i.e., 6 = ℎD for some
unit D ∈ R∗. For the number field !, with embeddings f8 : ! → R for 1 ≤ 8 ≤ A and f8 , f̄8 : ! → C for
A + 1 ≤ 8 ≤ A + B, we have the logarithmic embedding,

Log : !∗ → RA+B , U ↦→ (log( |f1 (U) |), . . . , log( |fA+B (U) |)) .

It was remarked that since ℎ is small it follows that Log(6) = Log(ℎD) lies close to the log-unit lattice Log(R∗) [8,
15]. Using this observation, a polynomial-time algorithm for cyclotomic number fieldswith power-of-two conductor
was found [15]. A generalization to prime-power cyclotomic number fields accompanied with a rigorous proof
was given in [19]. Moreover, strong evidence was found that these types of attacks are not restricted to principal
ideals [20, 21].

Fortunately, only a handful of cryptographic primitives [48, 30, 33, 15] rely directly on the hardness of the
Short Generator Principal Ideal Problem (SG-PIP) and are therefore broken by this type of attack.

In addition, Bernstein [8] warned against the possibility of exploiting subfields. Subfield lattice attacks were
originally proposed in [31] and generalized in [1]. The resulting attacks run in subexponential time and affect the
asymptotic security of some fully homomorphic encryption schemes.

The main conclusion that can be drawn from these attacks is that some lattices contain structure that can be
exploited by an attacker, thereby challenging the assumption that solving lattice problems for structured lattices is
as hard as solving them for unstructured ones.

One approach tomitigate these potential threats is to define cryptographic schemes over unstructured lattices [13,
49]. Another approach is to only use number fields that contain no non-trivial subfields [9, 2]. Bernstein [8] proposed
to define protocols over the trinomial number field ! = Q[-]/( 5 (-)) with 5 = -= − - − 1 (= prime) irreducible.
Because = is prime, ! has no proper subfields thereby ruling out subfield attacks. Moreover, the Galois group of ! is
the non-Abelian group of permutations (= [43], i.e., it is maximal. Hence, ! does not have a lot of automorphisms
and it is not contained in a cyclotomic number field. Additionally, [9] recommends the use of primes ? that are
inert in ! to avoid the existence of homomorphisms from O!/?O! to smaller rings. Such homomorphisms have
been used to break specific instances of Ring-LWE based cryptosystems [16]. In this work, we consider the more
general situation in which 5 (-) = -= + 0- : + 1 ∈ Z[-] (: < =) is an irreducible trinomial.

1.1 CONTRIBUTIONS
In this work we slightly reformulate Theorem 1 of [41] to obtain Theorem 2. The main difference is that we omit

the explicit factorization of cyclotomic polynomials. Given the adapted invertibility theorem, the contributions of
this work are summarized below.

1. The reformulation of Theorem 1 induces a simplified proof that follows from standard Galois theory. More
precisely, we recognize the implicit use of decomposition fields in [41]. This observation immediately relates
the invertibility of ring elements to their algebraic norms. From this observation the desired invertibility
result follows naturally. This approach obviates the need for expressing ring elements, and a related lattice,
explicitly. The reformulated theorem and its proof are given in Section 3.

2. In [41], it was additionally proven that there exist infinitely many primes satisfying the invertibility conditions
of Theorem 1 and Theorem 2. We strengthen this result in two ways. First, we relax the conditions making it
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more generally applicable. Second, instead of merely proving the existence of (infinitely many) primes, we
determine the density of primes satisfying certain conditions, thereby enhancing the practical applicability.
Our strengthened result is given in Lemma 3.

3. Theorem 2 induces a natural generalization from cyclotomic number fields to arbitrary number fields !. In
Section 4, we present the generalization of Theorem 2 together with the modifications required for its proof.
For readability the generalization is presented in two different theorems; Theorem 3 and Theorem 4.

4. The invertibility conditions of Section 3 and Section 4 are defined via the so-called coefficient embedding of
the number field !. However, the proofs of the corresponding theorems suggest an alternative approach that,
in some cases, results in better protocol parameters. More precisely, an alternative invertibility condition can
be obtained via the canonical embedding of the number field !. We generalize this invertibility condition to
norms ‖·‖: for arbitrary : ∈ N ∪ {∞}. The alternative invertibility conditions are presented in Section 5.

5. The coefficient and the canonical embedding of the number field ! both equip the number field ! with a
geometry. However, these geometries might differ. This difference is extremely important for the hardness of
the underlying lattice problems and it can be quantified by certain singular values. Moreover, the invertibility
results of Section 3 and Section 4 depend on the size of these singular values. For this reason, we study the
singular values associated to cyclotomic and trinomial number fields in Section 6. In particular, we prove an
upper-bound for certain cyclotomic singular values that was conjectured in [41].

6. Finally, in Section 7, we apply the invertibility result to construct challenge sets in a cyclotomic and a trinomial
number field. We show that using the canonical embedding and defining challenges via the ℓ1-norm allows
protocols to be instantiated with slightly smaller rational primes ?.

2 PRELIMINARIES
2.1 NUMBER FIELDS

Let !/Q be a number field of degree = with ring of integers O! and integral basis � = (V1, . . . , V=). The ring
of integers O! is the maximal order of !. In general, an order O of ! is a subring of O! that spans ! over Q, i.e.,
O contains a basis of !/Q.

The coefficient embedding

k� : ! → Q=,
=∑
8=1

H8V8 ↦→
©­­«
H1
...

H=

ª®®¬ , (1)

equips ! with a geometry, i.e., ‖W‖ := ‖k� (W)‖ for any norm ‖·‖ on R=. If not indicated otherwise, ‖·‖ is the
ℓ2-norm. Note that k� depends on the basis �.

The field !/Q has = complex embeddings f8 : ! → C. Given these complex embeddings, the canonical
embedding is defined as follows:

q! : ! → C=, W ↦→
©­­«
f1 (W)
...

f= (W)

ª®®¬ .
If f8 (!) ⊂ ! for all 8 we say !/Q is a Galois extension with a Galois group of automorphisms � = {f8 : ! → !}.

The image q! (!) ⊂ C= is an =-dimensional R-vector space denoted by !C. Moreover, q! (O!) is a full-rank
lattice in !C [42, Section 1.5]. The canonical embedding equips ! with another geometry that is independent of
the basis � of !/Q. The relation between the coefficient and canonical embedding is depicted in Figure 1, where
M� is the unique linear mapping that makes this diagram commute. Hence, the matrix M� is given by

M� =
(
f8 (V 9 )

)
1≤8, 9≤= ∈ !

=×=.

We let B1 (M�) denote the largest singular value of M�, i.e.,

B1 (�) = max
D∈C=\{0}

‖M� D‖
‖D‖ .

Further, for a tower Q ⊂  ⊂ ! of number fields we have the following usefull lemma.

Lemma 1. Let Q ⊂  ⊂ ! be a tower of number fields such that O! = V1O + · · · + VℓO for an integral basis
(V1, . . . , Vℓ) of !/ . For 1 ≤ 9 ≤ ℓ, let the projection c 9 be defined as follows

c 9 : ! →  , W =

ℓ∑
8=1

W8V8 ↦→ W 9 .
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!

Q= C=

k� q!

M�

Figure 1: Coefficient and canonical embedding of !/Q.

Let � be an ideal of O . Then, for any W ∈ !,

c 9 (W) ∈ � ∀ 9 ⇐⇒ W ∈ �O! .

Proof. First, let W ∈ O! such that c 9 (W) ∈ � for all 1 ≤ 9 ≤ ℓ. Then W =
∑ℓ
9=1 c 9 (W)V 9 with V 9 ∈ O! . Hence,

W ∈ �O! , which proves the first implication.
Now let W ∈ �O! , i.e., W =

∑:
8=1 0818 for some : ∈ N, 08 ∈ � and 18 ∈ O! . Since 18 ∈ O! , it follows that

18 =
∑ℓ
9=1 18, 9 V 9 for some 18, 9 ∈ O . Hence,

W =

:∑
8=1

08

ℓ∑
9=1

18, 9 V 9 =

ℓ∑
9=1

V 9

:∑
8=1

0818, 9 .

Therefore, for all 9 , c 9 (W) =
∑:
8=1 0818, 9 with 08 ∈ � and 18, 9 ∈ O . Hence, c 9 (W) ∈ �, which proves the second

implication and completes the proof. �

Remark 1. Lemma 1 assumes that the ring of integers O! is a free O -module, i.e., O! = V1O + · · · + VℓO 
for some V1, . . . , Vℓ ∈ O! . However, there exist towers of number fields Q ⊂  ⊂ ! for which O! is not a free
O -module.

2.2 CYCLOTOMIC NUMBER FIELDS
We are particularly interested in number fields ! = Q(Z<), where Z< is an <Cℎ-primitive root of unity. We say

! is a cyclotomic number field of conductor <. Without loss of generality we assume the primitive roots of unity
to satisfy Z: Z; = Z:; for all :, ; ∈ N that are relatively prime and that ZI = Z</I< for all I | <. The degree of !
over Q is = = i(<), where i is the Euler totient function. The field extension !/Q is Galois and it has integral
(power) basis �< =

(
1, . . . , Z i (<)−1

<

)
. We will typically fix this power basis. In this case, we write k< := k�< ,

M< := M�< and B1 (<) := B1 (�<).
Furthermore, for any I | <, we define �I< =

(
1, . . . , Z i (<)/i (I)−1

<

)
as an integral basis for ! over  = Q(ZI).

The basis �I< gives rise to natural projections

c 9 : ! →  ,

i (<)/i (I)−1∑
8=0

W8Z
8
< ↦→ W 9 (0 ≤ 9 ≤ i(<)/i(I) − 1) . (2)

By Lemma 1, for all ideals � of  and for all W ∈ ! it holds that

c 9 (W) = 0 mod � ∀ 9 ⇐⇒ W = 0 mod �O! .

Recall that the radical of an integer = is given by

rad(=) =
∏

? |=, ? prime
?.

The following lemma shows that, for conductors I | < with rad(<) = rad(I), the coefficient embedding k< factors
through  </I .

Lemma 2. Let <, I ∈ N, with I |< and rad(<) = rad(I), and let ! = Q(Z<) and  = Q(ZI). Then the canonical
embedding k< : ! → Qi (<) factors through  </I . More precisely,

k< =
©­­«

kI ◦ c0
...

kI ◦ c</I−1

ª®®¬ ,
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where k< : ! → Qi (<) and kI :  → Qi (I) are as defined in Equation 1 and c 9 : ! →  (0 ≤ 9 ≤ </I − 1) are
as defined in Equation 2.

Proof. Recall that �I , �I< and �< are integral bases of  /Q, !/ and !/Q, respectively, where

�I = (1, ZI , . . . , Z i (I)−1
I ),

�I< = (1, Z<, . . . , Z
i (<)/i (I)−1
< ),

�< = (1, Z<, . . . , Z i (<)−1
< ).

By assumption ZI = Z</I< and, since rad(<) = rad(I), </I = i(<)/i(I). Hence, it holds that �< = �I ⊗ �<I ,
where ⊗ denotes the Kronecker product, and

k< =
©­­«

kI ◦ c0
...

kI ◦ c</I−1

ª®®¬ : ! → Qi (<) ,

which proves the lemma. �

Lemma 2 immediately implies the following useful corollary.

Corollary 1. Let <, I ∈ N, with I |< and rad(<) = rad(I), and let ! = Q(Z<) and  = Q(ZI). Then, for any W ∈ !
and U ∈ R>0,

‖W‖∞ ≤ U =⇒


c 9 (W)

 < i(I)U ∀1 ≤ 9 ≤ </I, (3)

where the projections c 9 : ! →  are as defined in Equation 2.

Remark 2. Lemma 2 and Corollary 1 crucially depend on the condition that rad(<) = rad(I). In particular, if
rad(<) ≠ rad(I) the equality �< = �I ⊗ �<I and the implication of Equation 3 do not hold.

2.3 DECOMPOSITION FIELDS
Let !/Q be a Galois extension with Galois group � and let p be a prime ideal of O! . The decomposition

group �p is the subgroup of automorphisms in � that fix p, i.e., �p = {f ∈ � : f(p) = p}. Its fixed field !�p is
called the decomposition field of p and it is the largest subfield of ! in which the rational prime ideal (?) = p ∩ Q
completely splits. Decomposition fields allow us to represent a Galois extension !/Q as a tower of field extensions
with well-understood splitting behavior of the primes under p. For simplicity let us assume that ? is unramified in
!. Then we have the following tower of fields Q ⊂ !�p ⊂ !, where the rational prime (?) completely splits in
!�p and the prime p ∩ !�p of !�p is inert in !.

The subgroups �p and �q are conjugate in � for any two primes p, q ⊂ O! over the prime ? ∈ Q, i.e.,
p ∩ Q = (?) = q ∩ Q. Hence, if � is Abelian it holds that �p = �q and we can define � ? := �p for any p| (?).
In this case, we also speak of decomposition groups and fields of primes ? in Q rather than of primes p in !. For
more details on decomposition fields see [32, Chapter VII].

Let us now consider the cyclotomic case ! = Q(Z<). We aim to specify the rational primes ? with cyclotomic
decomposition fields in !. The extension !/Q is Galois with an Abelian Galois group � � (Z/<Z)∗. Let I |<
and let ? - < be a rational prime with ord< (?) = i(<)/i(I), i.e., i(<)/i(I) is the smallest positive integer
such that ?i (<)/i (I) = 1 mod <. Then ? splits into i(I) distinct primes in ! [52, Theorem 2.13]. Hence, the
decomposition field !�? is of degree i(I) overQ. However, this does not necessarily imply that !�? is cyclotomic.
If, in addition, ? = 1 mod I, we find that ? splits in i(I) distinct factors, hence completely, in Q(ZI) ⊂ !. Hence,
in this case Q(ZI) = !�? is the decomposition field of ?. Altogether, it follows that if ord< (?) = i(<)/i(I) and
? = 1 mod I then the decomposition field of ? in Q(Z<) is Q(ZI).

3 INVERTIBILITY IN CYCLOTOMIC NUMBER FIELDS
We are now ready to prove the following adaptation of Theorem 1 from [41].

Theorem 2 (Invertibility - Adaptation of Theorem 1). Let O! be the ring of integers in a cyclotomic number field
! = Q(Z<) of conductor <, let I | < with rad(I) = rad(<) and let ? be a rational prime with ? = 1 mod I and
ord< (?) = i(<)/i(I). Then any W ∈ O! that satisfies either

0 < ‖W‖ <
√
i(<)
B1 (<)

?1/i (I) (4)
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or

0 < ‖W‖∞ <
1

B1 (I)
?1/i (I) (5)

has a multiplicative inverse in O!/?O! .

Proof. We first prove that inequality 4 gives a sufficient condition for W ∈ O! to be invertible in O!/?O! . For any
W ∈ O! it follows, by the inequality of the arithmetic and the geometric mean, that��N!/Q (W)

��2/i (<) ≤ 1
i(<) ‖M< ·k< (W)‖2 .

Hence, by definition of B1 (<),��N!/Q (W)
��2/i (<) ≤ B1 (<)2

i(<) ‖k< (W)‖
2 =

B1 (<)2
i(<) ‖W‖

2 . (6)

Now suppose that Equation 4 holds. Substituting this equation in the inequality of Equation 6 and raising both
sides to the power i(<)/2 gives

0 <
��N!/Q (W)

�� < ?i (<)/i (I) .

Since ord< (?) = i(<)/i(I), it follows that the inertia degree of any prime p above ? equals i(<)/i(I) and thus
N!/Q (p) = ?i (<)/i (I) . So if W satisfies Equation 4, it holds that

0 <
��N!/Q (W)

�� < N!/Q (p) ,

for all primes p ⊂ O! above ?. Therefore W ∉ p and W ∈ (O!/p)∗ for all p | ?. Hence, W is invertible in O!/?O! ,
which proves the first claim.

We now prove that, if rad(<) = rad(I), then Equation 5 gives a sufficient condition for W to be invertible in
O!/?O! . First note that rad(<) = rad(I) implies that i(<)/i(I) = </I. Now let p ⊂ ! be a prime above ? and
let  = Q(ZI) ⊂ !. Since ? = 1 mod I and ord< (?) = </I, the decomposition field of p is  and the prime
P = p ∩  is inert in !, i.e., p = PO! . Note in particular that ? - <, hence ? is unramified in !.

Let c 9 :  → ! for 0 ≤ 9 ≤ i(<)/i(I) − 1 = </I − 1 be the projections associated to basis �I< of ! over  
and let W be such that it satisfies Equation 5. We will show that there exists a 9 such that c 9 (W) ∈ (O /P)∗ from
which it follows that W ∈ (O!/p)∗.

Since
0 < ‖W‖∞ <

1
B1 (I)

?1/i (I) ,

and by Corollary 1, for all 9 it holds that 

c 9 (W)

 < √
i(I)
B1 (I)

?1/i (I) .

Moreover, c 9 (W) ≠ 0 for at least one 9 . For this 9 we find, similar to the first part of this proof, that

0 <
��N /Q (

c 9 (W)
) �� < N /Q (P) ,

and therefore that c 9 (W) ∉ P. By Lemma 1, W ∉ PO! = p, and, hence, W ∈ (O!/p)∗. Since ? is unramified in !
and p | ? was arbitrary, it follows that W ∈ (O!/?O!)∗, which proves the second and final part of the theorem. �

Remark 3. The proof of Theorem 2 shows that the second invertibility condition can be replaced by a stronger
one. More precisely, if all the prerequisites of the theorem are satisfied, any W ∈ O! that satisfies

0 < c 9 (W) <
√
i(I)
B1 (I)

?1/i (I) (7)

for some 1 ≤ 9 ≤ </I−1, has a multiplicative inverse in O!/?O! . Here, c 9 : Q(Z<) → Q(ZI) are the projections
defined in Equation 2.

Remark 4. The first invertibility condition of Theorem 2 (Equation 5) does not require that rad(I) = rad(<) and
? = 1 mod I. The prerequisite rad(I) = rad(<) ensures that the coefficient embedding factors through Q(ZI)
(Lemma 2). Using this fact, the second invertibility condition can be obtained from bounds on the projections
c 9 : Q(Z<) → Q(ZI) of W ∈ O! . The prerequisite ? = 1 mod I ensures that the decomposition field of ? is Q(ZI),
allowing the invertibility condition to be expressed in terms of the largest singular value B1 (I) instead of B1 (<). The
theorem can therefore be slightly strengthened by requiring these two prerequisites only for the second invertibility
condition.
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The second invertibility condition of Theorem 2 crucially depends on the fact that ? has a cyclotomic de-
composition field Q(ZI). For this reason, we also refer to this invertibility condition as the decomposition field
approach.

Next, we prove the existence of primes ? satisfying the conditions in Theorem 2, i.e., primes that have cyclotomic
decomposition fieldQ(ZI) inQ(Z<). The following lemma gives sufficient conditions for the existence of infinitely
many primes ? satisfying the conditions of Theorem 2. A similar result was given in Theorem 2.5 of [41].
However, we strengthen their result in two ways. First, we relax the conditions on the conductors < and I. Second,
instead of merely proving the existence of primes, we give the density of primes satisfying certain conditions. The
experimental results of [41] indeed validate the exact densities given by the following lemma.

Lemma 3 (Density of Primes with Cyclotomic Decomposition Field). Let I | < be integers such that 2 | < implies
that 4 | I. Let X(<, I) be the density of primes ? such that ? = 1 mod I and ord< (?) = i(<)/i(I), i.e., the
primes ? with decomposition field Q(ZI) in Q(Z<). Then

X(<, I) =



i(</I)
i(<) , if rad(<) = rad(I),

i (i(<)/i(I))
i(<) , if

rad(<)
rad(I) = ? is prime, and gcd

(
? − 1,

<

I

)
= 1,

0, otherwise.

(8)

Proof. Let < =
∏6

8=1 ?
48
8
and I =

∏6

8=1 ?
58
8
with 0 ≤ 58 ≤ 48 and 48 > 0 be the prime factorizations of < and I.

Since I | <, we have the following well-defined exact sequence

0 −→ Ker −→ (Z/<Z)∗
k
−→ (Z/IZ)∗ −→ 1,

with k(G) = G mod I and Ker = ker(k) = {G ∈ (Z/<Z)∗ : G = 1 mod I}. The elements of Ker of order
i(<)/i(I) are precisely the elements we are interested in. So let us determine the number of elements with these
properties.

To this end, note that

Ker � (Z/<Z)∗ /(Z/IZ)∗ �
6∏
8=1

(
Z/?48

8
Z
)∗/(
Z/? 58

8
Z
)∗
.

Moreover, for all 8 with 58 ≥ 1,(
Z/?48

8
Z
)∗/(
Z/? 58

8
Z
)∗
�

{
Z/2Z × Z/248− 58−1Z, if ?8 = 2, 48 > 2 and 58 = 1,
Z/?48− 58

8
Z, otherwise.

Since 2 | < implies that 4 | I, it follows that if there exists an 8 with ?8 = 2, then 58 ≥ 2. Hence,

Ker �
∏
8: 58≥1

Z/?48− 58
8
Z

∏
8: 58=0

(
Z/?48

8
Z
)∗
,

where the factors in this decomposition are all cyclic. Therefore, Ker is cyclic if the orders of these factors are
coprime.

Let us now consider the cases for which Ker is cyclic. First, Ker is cyclic if ( := {?8 : 58 = 0} = ∅, or
equivalently if rad(<) = rad(I). Second, note that all factors of the product∏

8: 58=0

(
Z/?48

8
Z
)∗

have orders divisible by 2. Therefore, if ( ≠ ∅, Ker can only be cyclic if ( = {?} for some prime ?, or equivalently
if rad(<)/rad(I) = ?. Note that ? ≠ 2, because 2 | < implies that 4 | I. Hence, in this case Ker is cyclic if
gcd(? − 1, </I) = 1, i.e., if there are no common divisors in the orders of the cyclic factors of Ker. This proves
that Ker is cyclic only in the first two cases of Equation 8.

The order of Ker is i(<)/i(I), which equals </I if rad(<) = rad(I). Hence, if it is cyclic it contains exactly
i(i(<)/i(I)) generators. By Dirichlet’s theorem on arithmetic progressions the lemma now follows. �

Remark 5. The densities of Lemma 3 do not necessarily sum to 1. The reason is that this lemma only considers
the primes with a cyclotomic decomposition field Q(ZI) in Q(Z<). There may also exist primes for which the
decomposition field is not cyclotomic, i.e., primes with ord< (?) = i(<)/i(I) but ? ≠ 1 mod I.
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4 GENERALIZATION TO ARBITRARY NUMBER FIELDS
Our proof of Theorem 2 paves the road to a generalization from the ring of integers in a cyclotomic number

field to arbitrary orders O in arbitrary number fields !. In this section, we therefore prove a generalized invertibility
result.

To this end, we first introduce some (generalized) notation. For an integral basis �!/Q = (V1, . . . , V=) of !/Q,
let us define the matrix

M(�!/Q) :=
(
f8 (V 9 )

)
1≤8, 9≤= ∈ C

=×=, (9)

where f8 : ! → C are the complex embeddings of !. Moreover, we define B1 (�!/Q) to be the largest singular
value associated to this matrix, i.e.,

B1 (�!/Q) := B1 (M(�!/Q)).
In the cyclotomic case we inherited an Euclidean norm from the coefficient embedding that in turn was defined

by the choice of basis �< =
(
1, Z<, . . . , Z i (<)−1

<

)
. This cyclotomic basis has the useful property that for all I | <

with rad(<) = rad(I), there exists a basis �I< of Q(Z<)/Q(ZI) such that �< = �I< ⊗ �I . Recall that ⊗ denotes the
Kronecker product. For general number fields  ⊂ !, and arbitrary bases �!/Q, we can not expect the existence of
bases of  /Q and !/ with this convenient property. For this reason we make the dependence of the norm on the
basis �!/Q = (V1, . . . , V=) explicit and denote by | | · | |�!/Q the ℓ2-norm associated to the coefficient embedding

k�!/Q : ! → Q=,
=∑
8=1

H8V8 ↦→
©­­«
H1
...

H=

ª®®¬ .
For the ease of notation we present the generalization of Theorem 2 in two different theorems. Theorem 3

generalizes the first and Theorem 4 generalizes the second invertibility condition of Theorem 2. The proofs are
analogous to the proof of Section 3. However, we are required to handle a number of subtleties.

First, the extension !/Q is not necessarily a Galois extension. When !/Q is not Galois, the primes p above a
rational prime ? can have different inertia degrees and ramification indices.

Second, in contrast to the ring of integers O! , an order O might not be a unique factorization domain. For
this reason, we must be careful when considering factorizations of ideals in O. Fortunately, the following lemma
shows that invertibility in O!/?O! implies invertibility O/?O, i.e., we merely have to consider factorizations in
the unique factorization domain O! .

Lemma 4. Let O ⊂ O! be an order in a number field ! and let U, W ∈ O. Then W ∈ (O/UO)∗ if and only if
W ∈ (O!/UO!)∗.

Proof. First note that,

W ∈ O∗ ⇐⇒ |O/WO| = N!/Q (W) = 1 ⇐⇒ W ∈ O∗! .

From this it follows that

W ∈ (O!/UO!)∗ ⇐⇒ O! = WO! + UO! = (WO + UO)O! ,
⇐⇒ ∃G ∈ (WO + UO) ∩ O∗! = (WO + UO) ∩ O∗,
⇐⇒ WO + UO = O,
⇐⇒ W ∈ (O/UO)∗ ,

which proves the lemma. �

Remark 6. If the ideal UO is relatively prime to the conductor fO = {W ∈ O! : WO! ⊂ O} of O, it can be shown
that UO = UO ∩ O and O/UO � O!/UO! . However, in general this is not the case.

We are now ready to prove the following generalization of the first invertibility condition of Theorem 2.

Theorem 3 (Invertibility of Integral Elements). Let !/Q be a number field of degree = containing an order O ⊂ O!
with Z-basis �!/Q. Further, let ? be a rational prime such that ?O! =

∏6

8=1 p8 , where p8 is a prime ideal of O!
with inertia degree 58 for all 8. Then any W ∈ O that satisfies

0 < | |W | |�!/Q <
√
=

B1 (�!/Q)
?min1≤8≤6 58/=, (10)

has a multiplicative inverse in O/?O.

53



Attema, T., Cramer, R. & Xing, C.

Proof. We prove that inequality 10 gives a sufficient condition for W ∈ O/?O to be invertible. For any W ∈ O ⊂ O!
it follows, by the inequality of the arithmetic and the geometric mean, that��N!/Q (W)

��2/= ≤ 1
=



M(�!/Q) · k�!/Q (W)


2
.

Hence, by definition of B1 (�!/Q),��N!/Q (W)
��2/= ≤ B1 (�!/Q)2

=



k�!/Q (W)

2
=
B1 (�!/Q)2

=
‖W‖2�!/Q . (11)

Substituting Equation 10 in the inequality of Equation 11 and raising both sides to the power =/2 gives

0 <
��N!/Q (W)

�� < ?min1≤8≤6 58 = min
1≤8≤6

N!/Q (p8) .

Hence, W ∉ p8 and W ∈ (O!/p8)∗ for all 1 ≤ 8 ≤ 6. Therefore, W is invertible in O!/?O! . By Lemma 4 this
implies that W ∈ (O/?O)∗, which proves the theorem. �

To generalize the second invertibility condition of Theorem 2 we must restrict to Galois extensions. Moreover,
we assume that the Galois group is Abelian. In this case, primes p ⊂ O! above the rational prime ? all have the
same decomposition field and therefore the decomposition field of ? is well-defined. Furthermore, we assume that
the order O is free over O , i.e., O = V1O + · · · V 5 O for some basis (V1, . . . , V 5 ) of !/ . In general, such a
basis does not need to exist (see also Remark 1).

Theorem 4 (Decomposition Field Invertibility Condition). Let !/Q be an Abelian Galois extension of degree =
containing an order O ⊂ O! . Moreover, let ? be a rational prime that is unramified in ! and splits in 6 factors
of inertia degree 5 = =/6. Let  be the decomposition field of ? with integral basis � /Q, and assume that
O = V1O + · · · V 5 O with V 9 ∈ O! . Let c 9 denote the projections associated to basis (V1, . . . , V 5 ) of !/ , i.e.,
W =

∑ 5

9=1 c 9 (W)V 9 for all W ∈ !.
Then any W ∈ O that satisfies

0 <


c 9 (W)

� /Q < √

6

B1 (� /Q)
?1/6 (12)

for some 1 ≤ 9 ≤ 5 , has a multiplicative inverse in O/?O.

Proof. Let p ⊂ ! be a prime above ?. Because  is the decomposition field of ?, the prime idealP = p ∩  of  
is inert in !, i.e., p = PO! .

Let 9 be such that

0 <


c 9 (W)

� /Q < √

6

B1 (� /Q)
?1/6 .

Then by the inequality of the arithmetic and geometric mean, we find that

0 <
��N /Q (

c 9 (W)
) ��2/6 ≤ 1

6



M(� /Q) · k� /Q
(
c 9 (W)

)

2

≤
B1 (� /Q)2

6



c 9 (W)

2
� /Q

< ?2/6 .

Therefore,
0 <

��N!/Q
(
c 9 (W)

) �� < ? = N!/Q (P) ,

which implies that c 9 (W) ∉ P.
By Lemma 1, it follows that W ∉ PO! = p, and, hence, W ∈ (O!/p)∗. Since ? is unramified in ! and p | ? was

arbitrary, it holds that W ∈ (O!/?O!)∗, which proves theorem. �

The invertibility result of Theorem 3 requires that the rational prime ? factors as (?) = ∏6

8=1 p8 with, for all
8, p8 prime in ! with inertia degree 58 . We say that ? has decomposition type ( 51, . . . , 56) in !. Cyclotomic
number fields are Galois and for this reason all rational primes ? have decomposition type 51 = · · · = 56 = =/6
for some 6 | =. For cyclotomic number fields, the distribution over the different decomposition types follows from

54



A Note on Short Invertible Ring Elements and Applications to Cyclotomic and
Trinomial Number Fields

Table 1: Distribution of the decomposition types of rational primes ? in the cyclotomic number field Q(Z16) with
Galois group � � Z/2Z × Z/4Z

Number of prime Decomposition Frobenius’s Density of Primes with
factors (6) type Density (Thm. 5) Decomposition field Q(Z26) (Lem. 3)

1 (8) 0 0
2 (4, 4) 1/2 1/4
4 (2, 2, 2, 2) 3/8 1/8
8 (1, 1, 1, 1) 1/8 1/8

Dirichlet’s theorem on arithmetic progression. In Lemma 3, this distribution was described, while restricting to
rational primes that have a cyclotomic decomposition field Q(ZI) in Q(Z<).

For general number fields !/Q, the density of primes ?with a decomposition type ( 51, . . . , 56) in ! follows from
Frobenius’ density theorem [29]. The Galois group� of !/Q is a subgroup of the permutation group (=. Therefore,
every element f ∈ � has a well-defined cycle structure. Note that !/Q is not required to be Galois, in which case
the Galois group � of ! refers to the Galois group of the Galois closure of ! and satisfies |� | > =. Frobenius’
theorem shows that there is a relation between the cycle structures of elements f ∈ � and the decomposition types
of rational primes ?. More precisely, the density of primes with decomposition type ( 51, . . . , 56) in ! can derived
from the Galois group � of !/Q.

Theorem 5 (Frobenius’ Density Theorem [29]). Let !/Q be a number field of degree = with Galois group � ⊂ (=.
Let � be the number of elements f ∈ � with cycle structure ( 51, . . . , 56). Then, the density of rational primes ?
with decomposition type ( 51, . . . , 56) in ! equals �/|� |.

Chebotarev’s density theorem [51] is perhaps better known than its predecessor by Frobenius. It generalizes
both Dirichlet’s theorem on arithmetic progression and Frobenius’ density theorem. However, for our purposes,
Frobenius’ theorem suffices.

Let us now consider two concrete examples. First, let ! := Q(Z16) with Galois group � � Z/2Z × Z/4Z.
We compare the densities from Theorem 5 with those from Lemma 3. Note that Lemma 3 is only applicable
to cyclotomic number fields. Moreover, since Lemma 3 additionally requires the decomposition field of ? to be
cyclotomic, its densities are always smaller than or equal to the ones obtained by Theorem 5. Table 1 displays the
densities associated to !/Q. In particular, it follows that there exist infinitely many primes with decomposition
type (4, 4) or (2, 2, 2, 2) that do not have a cyclotomic decomposition field.

Second, we consider the trinomial number field ! = Q[-]/( 5 ) with 5 = -= − - − 1 ∈ Z[-]. The trinomials
of the form 5 = -= − - − 1 ∈ Z[-] are irreducible [47] and their Galois group is the full symmetry group
(= [43]. Therefore, for all partitions ( 51, . . . , 56) of = (i.e., 51 + · · · + 56 = =) there exist infinitely many primes
with a corresponding decomposition type. Moreover, the density of rational primes ? with decomposition type
(=/6, . . . , =/6) for 6 | = is equal to

66

6! · =6 .

In particular, the density of primes that completely split in ! is 1/=!.

5 INVERTIBILITY CONDITION VIA THE CANONICAL EMBEDDING
Thus far, the invertibility conditions have been stated in terms of ℓ2- and ℓ∞-norms obtained via the coefficient

embedding k� : ! → Q=. However, a crucial step in the proofs of these theorems is to derive a bound on the
ℓ2-norm of the canonical embedding q! (W) ∈ C= of W. In particular, both proofs use that for all W ∈ !

‖q! (W)‖ ≤ B1 (�) ‖k� (W)‖ = B1 (�) ‖W‖ ,

where � is a basis of !/Q. A more natural approach would therefore be to state the invertibility condition in terms
of the canonical embedding directly. This omits the need for the transformation "� from the coefficient to the
canonical embedding (Figure 1). Therefore, such an invertibility condition does not depend on a basis � and its
largest singular value B1 (�).

Actually, for some number fields !, the canonical embedding results inmuch tighter invertibility conditions. The
largest singular value B1 (�) namely represents theworst-case behavior of the transformation"� : k� (!) → q! (!).
More precisely, it shows howmuch the ℓ2-norm of a vector increases at most under the transformation"�. However,
this worst-case bound can be quite loose on average, i.e., there may exist W ∈ ! with

‖q! (W)‖ < B1 (�) ‖k� (W)‖ = B1 (�) ‖W‖ .
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Anevenmore important argument for using the canonical embedding q! directly is that the hardness assumptions
of ring-based lattice problems stem from the geometry derived from q! (!) ∈ C= [39]. Cryptographic protocols
using the coefficient embedding must account for the geometric differences with the canonical embedding. In
particular, if these embeddings induce very different geometries, cryptographic protocols using the coefficient
embedding may become quite inefficient when instantiated with appropriate (secure) parameters.

For these reasons, we present another invertibility condition, in terms of the canonical embedding, in Theorem 6.
Because the new invertibility condition is independent of the transformation "�, it is easily generalized to arbitrary
ℓ: -norms ‖·‖: .

Theorem 6 (Invertibility Condition via the Canonical Embedding). Let !/Q be a number field of degree = with
canonical embedding q! : ! → C=. Further, let : ∈ N∪{∞}, let O ⊂ O! be an order and let ? be a rational prime
such that ?O! =

∏6

8=1 p8 , where p8 is a prime ideal of O! with inertia degree 58 for all 8. Then any W ∈ O/?O that
satisfies

0 < ‖q! (W)‖: < :
√
= · ?min1≤8≤6 58/= (13)

has a multiplicative inverse in O/?O.

Proof. For any W ∈ O! it follows, by the inequality of the arithmetic and the geometric mean, that��N!/Q (W)
�� ≤ (

‖q! (W)‖:
:
√
=

)=
.

From Equation 13, it therefore follows that

0 <
��N!/Q (W)

�� < ?min1≤8≤6 58 = min
1≤8≤6

N!/Q (p8) .

Hence, W ∉ p8 and W ∈ (O!/p8)∗ for all 1 ≤ 8 ≤ 6. Therefore, W is invertible in O!/?O! . By Lemma 4 this
implies that W ∈ (O/?O)∗, which proves the theorem.

�

Similarly, we present an adaptation of the invertibility result from Theorem 4. This adaptation uses the
decomposition field techniques and is stated in terms of the canonical embedding directly.

Theorem 7 (Decomposition Field Invertibility Condition via Canonical Embedding). Let !/Q be an Abelian
Galois extension of degree = containing an order O ⊂ O! . Moreover, let ? be a rational prime that is unramified
in ! and splits in 6 factors of inertia degree 5 = =/6. Let  be the decomposition field of ? with integral basis
� /Q, and assume that O = V1O + · · · V 5 O with V 9 ∈ O! . Let c 9 denote the projections associated to basis
(V1, . . . , V 5 ) of !/ , i.e., W =

∑ 5

9=1 c 9 (W)V 9 for all W ∈ !.
Then any W ∈ O that satisfies

0 <


q (c 9 (W))

: < :

√
6 · ?1/6, (14)

for some 1 ≤ 9 ≤ 5 , has a multiplicative inverse in O/?O.

Proof. Let p ⊂ ! be a prime above ?. Because  is the decomposition field of ?, the prime idealP = p ∩  of  
is inert in !, i.e., p = PO! . Moreover, the extension  /Q is of degree 6.

Let 9 be such that
0 <



q (c 9 (W))

: < :
√
6 · ?,

Then by the inequality of the arithmetic and geometric mean, we find that

0 <
��N /Q (

c 9 (W)
) ��:/6 ≤ 1

6



q (c 9 (W))

:: < ?:/6 .

Therefore,
0 <

��N /Q (
c 9 (W)

) �� < ? = N /Q (P) ,

which implies that c 9 (W) ∉ P.
By Lemma 1, it follows that W ∉ PO! = p, and, therefore, W ∈ (O!/p)∗. Since ? is unramified in ! and p | ?

was arbitrary, it holds that W ∈ (O!/?O!)∗, which proves the theorem. �
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We have argued why the canonical embedding equips a number field with the ‘appropriate’ geometry. One
might therefore wonder why we would consider the coefficient embedding at all. The main reason is that if � is
an integral basis of !/Q, then k� (O!) = Z=, i.e., integral elements of ! can be represented by vectors in Z=.
By contrast, the coordinates of elements in the canonical embedding q! (O!) ∈ C= are, not necessarily integral,
complex numbers. This increases the practical complexity of sampling (short) ring elements [27]. For this reason
most lattice-based protocols use the coefficient embedding. To achieve strong security properties, they are typically
defined over number fields ! that have a basis equipping ! with a coefficient geometry very similar to the canonical
geometry.

Particularly popular are power-of-two cyclotomic number fields ! = Q(Z<) with power basis � =

(1, Z<, . . . , Z</2−1
< ). For power-of-two cyclotomic number fields the matrix "� is a scaled rotation and

‖q! (W)‖ = B1 (<) ‖W‖ for all W ∈ !, i.e, the coefficient and canonical geometry are equivalent.

6 LARGEST SINGULAR VALUES
The geometry induced by the coefficient embedding can be viewed as a distortion of the canonical geometry;

distorted by the matrix M�. Both geometries are equivalent if and only if the matrix M� defines a scaled rotation.
For number fields !/Q with basis �, M� is a scaled rotation if and only if all its singular values are equal, or
equivalently if

B1 (�) = det(M�)1/=.

This is the case for power-of-two cyclotomic number fields ! = Q(Z<) with power basis � = (1, Z<, . . . , Z</2−1
< ).

Note that if � is an integral basis of O! then det(M�) =
√
Δ!/Q, where Δ!/Q is the discriminant of !/Q. Moreover,

for all fields !/Q and bases �, it holds that B1 (�) ≥ det(M�)1/=. Hence, the value B1 (�) is a good indicator for
difference between the canonical and the coefficient geometry. Larger values B1 (�) indicate larger distortions. For
this reason, we aim to find fields and bases minimizing the largest singular value B1 (�). A secondary motivation
for studying the largest singular value B1 (�) is that they directly influence the applicability of the invertibility
conditions of Theorem 2 and Theorem 3. More precisely, smaller values B1 (�) result in stronger invertibility
conditions.

In this section, we derive upper bounds for largest singular values associated to cyclotomic and trinomial number
fields. For cyclotomic number fields Q(Z<) with power basis � = (1, Z<, . . . , Z i (<)−1

< ), we prove an upper bound
on B1 (<) that was conjectured to hold in [41] (Section 6.1). Subsequently, we prove a lower bound on B1 (�) that
holds for all bases � of Q(Z<)/Q, i.e., not necessarily the power basis (Section 6.2). Using this lower bound we
prove that, for prime-power conductors <, the power basis minimizes the largest singular value B1 (�) and is in that
sense optimal. Finally, we consider trinomial number fields of the form Q[-]/( 5 ) with 5 = -= + 0- : + 1 ∈ Z[-]
(: < =) an irreducible trinomial and provide an upper bound on the largest singular values associated to these fields
(Section 6.3).

6.1 CYCLOTOMIC NUMBER FIELDS
Let us consider the cyclotomic number field Q(Z<) of conductor < and degree = = i(<). Recall that B1 (<) is

the largest singular value of the matrix
M< =

(
f8 (Z 9−1

< )
)

1≤8, 9≤=
.

In [40] it was shown that for prime powers < = ?: ,

B1 (<) =
√
g(<), (15)

where

g : Z→ Z, g(<) =
{
<, if < is odd,
</2, if < is even.

In general Equation 15 does not hold, but Lyubashevsky and Seiler [41] conjectured the following inequality:

B1 (<) ≤
√
g(<), ∀< ∈ Z>0.

Our proof of this conjectured inequality uses techniques similar to the ones used in the proof of Equation 15 [40].
To this end, let us consider the = × < matrix

A< =
(
f8 (Z :<)

)
1≤8≤=, 0≤:≤<−1

. (16)
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Note that the matrix M< is an = × = submatrix of A<. Therefore, it holds that

B1 (<) ≤ B1 (A<), ∀< ∈ Z>0.

Moreover, let < = ?
41
1 . . . ?

46
6 be the prime factorization of <, then it is easily seen that, up to permutation of

rows and columns,
A< = A?

41
1
⊗ · · · ⊗ A

?
46
6
, (17)

where ⊗ denotes a Kronecker product. Recall that (w.l.o.g.) primitive roots of unity are chosen to satisfy Z:; = Z: Z;
for all :, ; ∈ Z>0 that are relatively prime.

Let us now consider the < × < matrix B< := A†<A<. Then the largest singular value B1 (A<) of A< is equal
to the square root of the largest eigenvalue of B<. We will find the largest singular value of A< by determining
the eigenvalues of B<. First, by the following lemma, we find the coefficients of B<.

Lemma 5. Let B< = A†<A<, then
B< =

(
Tr!/Q

(
Z ;−:<

))
1≤:,;≤<

. (18)

Moreover

Tr!/Q
(
Z :<

)
=

i(<)
i(</gcd(<, :)) `(</gcd(<, :)), (19)

where `(;) equals the sum of the primitive ;Cℎ-root of unities.

Proof. The (:, ;)Cℎ-entry of A†<A< equals∑
f∈�

f(Z :<)f(Z ;<) =
∑
f∈�

f(Z ;−:< ) = Tr /Q
(
Z ;−:<

)
,

proving Equation 18.
Moreover, Z :< is a primitive ;Cℎ-root of unity with ; = </gcd(<, :), and � = Gal (Q(Z<)/Q) acts transitively

on the set of primitive ;Cℎ-root of unities. Hence, the size of the orbit of this group action is i(;) and

Tr!/Q
(
Z :<

)
=
i(<)
i(;) `(;),

proving Equation 19 and completing the proof of Lemma 5. �

The function `(;) is called the Möbius function and it is given by

`(;) =


1, if ; is square-free with an even number of prime factors,
−1, if ; is square-free with an odd number of prime factors,
0, if ; is divisible by a square.

In particular, it follows from Lemma 5 that for prime powers < = ?4

Tr!/Q
(
Z :<

)
=


(? − 1)?4−1, if : = 0,
0, if ?4−1 - :,

−?4−1, otherwise.

Hence, for prime powers,
B< = B?4 = ?4−1B? ⊗ I?4−1 , (20)

and
B? = ?I? − 1?1)? , (21)

where I: is the : × : identity matrix and 1: ∈ Z: is the all-ones vector.
From this decomposition we can find the eigenvalues of B<. More precisely the following lemma shows that

the matrix B< only has two different eigenvalues.

Lemma 6. The matrix B< has eigenvalues 0 and <, with multiplicities < − i(<) and i(<), respectively.
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Proof. Let < = ?
41
1 . . . ?

46
6 be the prime factorization of <, then by Equation 17 it follows that

B< = B?41
1
⊗ · · · ⊗ B

?
46
6
.

Hence, the eigenvalues of B< are of the form _ = _1 · · · _6 with _8 an eigenvalue of B?48
8

for all 1 ≤ 8 ≤ 6.
Therefore, it suffices to prove the statement for prime powers. So let us assume < = ?4 for some prime ? and
positive integer 4.

We have already seen that in this case B< = ?4−1B? ⊗ I?4−1 and B? = ?I? − 1)?1? . The eigenvalues of B? can
easily be shown to be equal to 0 and ?, with multiplicities 1 and ? − 1, respectively. Hence the eigenvalues of B<
are 0 and ?4 with multiplicities ?4−1 and (? − 1)?4−1 respectively, which proves the lemma. �

We are now ready to prove an upper bound for the largest singular value B1 (<). This proves an inequality
conjectured in [41, Conjecture 2.6].

Proposition 1. For all positive integers <, B1 (<) ≤
√
g(<).

Proof. Let A< ∈ C=×< be as in Equation 16 and let B< = A†<A< ∈ C<×<. Then by Lemma 6 it follows that

B1 (<) ≤ B1 (A<) =
√
B1 (B<) =

√
<,

which proves the proposition for all odd <.
Now assume that < is even. Then, for some matrix � ∈ C=×</2 containing M< ∈ C=×= as a submatrix, it holds

that A< = (�,−�). Hence, B1 (A<) =
√

2 · B1 (�) and

B1 (<) ≤ B1 (�) = B1 (A<)/
√

2 =
√
</2 =

√
g(<),

which completes the proof of the proposition. �

Since all columns of the matrix M< have norm
√
i(<) we also obtain a lower bound for the largest singular

value B1 (<). In fact, we obtain √
i(<) ≤ B1 (<) ≤

√
g(<), (22)

with an equality on both sides of B1 (<) if and only if < is a power of 2.

6.2 OPTIMAL BASIS FOR CYCLOTOMIC NUMBER FIELDS
In Section 6.1, we have proven an upper and a lower bound for the largest singular value B1 (<) of the matrix

M<. The matrix M< is derived from the power basis 1, Z<, . . . , Z i (<)−1
< of ! = Q(Z<). A question that remains

is whether we can find another integral basis � =
{
U1, . . . , Ui (<)

}
with the same or even a smaller largest singular

value associated to it. In this section, we find a lower bound that holds for all integral bases of cyclotomic number
fields. Moreover, we show that, for prime power conductors, the power basis is indeed optimal.

Let us consider the matrix
M� =

(
f8 (U 9 )

)
1≤8, 9≤i (<) ∈ !

i (<)×i (<) ,

and define B1 (�) to be its largest singular value. From the following lemma it follows that the lower bound of
Equation 22 does not only hold for the power basis, but for all integral bases of !.

Lemma 7. Let � be an integral basis of Q(Z<), then for all U ∈ �, it holds that

(f8 (U))1≤8≤i (<)

 ≥ √
i(<).

Moreover, we have equality if and only if U< = ±1.

Proof. By the inequality of the arithmetic and geometric mean we have

1
=



(f8 (U))1≤8≤i (<)

2 ≥
��N!/Q (U)

��1/i (<) ,
with equality if and only if |f8 (U) | =

��f9 (U)�� for all 8, 9 . Moreover, since U is integral and non-zero it holds that
|N!/Q (U) | ≥ 1 and therefore that 

(f8 (U))1≤8≤i (<)

 ≥ √

i(<),

with equality if and only if |f8 (U) | = 1 for all 8 or equivalently U< = ±1, which proves the lemma.
�
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Corollary 2. Let � be an integral basis of Q(Z<)/Q, then B1 (�) ≥
√
i(<).

Proof. Let U ∈ �, then (f8 (U))1≤8≤i (<) is a column of M� and

B1 (�) ≥


(f8 (U))1≤8≤i (<)

 .

The corollary now follows from Lemma 7. �

The following theorem shows, for < a prime power, that any basis � with B1 (�) ≤
√
g(<) can only contain

roots of unity. Its proof uses the fact that, for prime powers <, all non-zero elements of the complex lattice

q! (O!) = {W ∈ C= : W = M< G for some G ∈ Z=}

with norm ≤
√
< have norm

√
i(<) and therefore correspond to roots of unity (up to sign).

Theorem 8. Let < = ?4 be a prime power and let � be a basis of Q(Z<)/Q with B1 (�) ≤
√
g(<), then for all

U ∈ � it holds that U< = ±1.

Proof. Let U ∈ � be one of the basis vectors. Then there exists a non-zero G ∈ Z= such that

M< G =
(
f1 (U), . . . , fi (<) (U)

))
.

Moreover, B1 (�) ≤
√
g(<) implies that

‖M< G‖ ≤
√
g(<).

If ‖M< G‖ =
√
i(<) the theorem follows from Lemma 7, so we are left to consider the case√

i(<) < ‖M< G‖ ≤
√
g(<). (23)

If ? = 2, then g(<) = i(<) = </2 and Equation 23 results in a contradiction. So let us assume that ? is an
odd prime and therefore g(<) = <.

Analogous to the deduction of Equations 20 and 21 it can be shown that

�< := M†< M< =

(
?4I?−1 − ?4−11?−11)?−1

)
⊗ I?4−1 .

Hence all entries of the Gram matrix �< are divisible by ?4−1 and, together with Equation 23, it follows that

G)�<G = 0 mod ?4−1 and (? − 1)?4−1 < G)�<G ≤ ?4,

which implies that
G)�<G = ?

4 .

If we let H8 =
(
G8 , G8+?4−1 , . . . , G8+(?−2) ?4−1

)
∈ Z?−1 for 1 ≤ 8 ≤ ?4−1, we can rewrite this equation as follows

G)�<G = ?
4−1

?4−1∑
8=1

H)8 � ?H8 = ?
4 .

Since for all non-zero H ∈ Z?−1 it holds that H)� ?H ≥ ? − 1 (Lemma 7), we see that there is exactly one 8 such
that H8 is non-zero (recall that ? is odd). Hence,

G)�<G = ?
4−1H)8 � ?H8 = ?

4 ‖H8 ‖2 − ?4−1 ©­«
?−1∑
9=1

H8 9
ª®¬

2

= ?4 . (24)

It now follows that
?−1∑
9=1

H8 9 = : ?, for some : ∈ Z.

Hence,

|: ? | ≤
?−1∑
9=1

��H8 9 �� = ‖H8 ‖1 ≤ √
? − 1 ‖H8 ‖ .
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Substituting in Equation 24 then gives

?4 = G)�<G ≥ ?4
:2?2

? − 1
− ?4−1:2?2 =

:2?

? − 1
?4,

which implies : = 0 and, again by Equation 24, ‖H8 ‖ = ‖G‖ = 1 contradicting the assumption that ‖M< G‖ >√
i(<). Hence, there does not exist an G ∈ Z= such that

√
i(<) < ‖M< G‖ ≤

√
g(<) which proves the theorem. �

Remark 7. The proof of Theorem 8 does not generalize to composite conductors <. As a counterexample take
< = 15, i.e., ! = Q(Z15). Then U = 1 + Z3

15 is not a root of unity and√
i(<) = 2

√
2 <



(f8 (U))1≤8≤i (15)


 = 2

√
3 <
√

15 =
√
g(<).

At this point we have shown that for prime powers< = ?4, any integral basis � ofQ(Z<)/Qwith B1 (�) ≤
√
g(<)

can only contain roots of unity. Next, we aim to differentiate between bases of this form and show that, for prime
powers <, all of them result in the same largest singular value B1 (�) =

√
g(<). The following theorem enumerates

all bases � of Q(Z<)/Q containing only roots of unity.

Theorem 9. Let < = ?4 be an odd prime power and let

'< :=
{
Z
?4−18+ 9
< : 0 ≤ 8 ≤ ? − 1, 0 ≤ 9 ≤ ?4−1 − 1

}
be the set of <Cℎ-roots of unity. Then a subset ( ⊂ '< of cardinality i(<) forms a basis of Q(Z<)/Q if and only
if, for all 0 ≤ 9 ≤ ?4−1 − 1, the following set forms a basis for Q(Z?)/Q,{

Z
?4−18
< : Z ?

4−18+ 9
< ∈ (

}
.

Proof. This theorem follows directly from Theorem 3.2 of [14]. �

Theorem9 shows that any basis containing only<Cℎ-roots of unity can be constructed by, for all 0 ≤ 9 ≤ ?4−1−1,
choosing a basis of Q(Z?)/Q containing only ?Cℎ-roots of unity. There are ? bases of Q(Z?)/Q of this form and,
therefore, Q(Z<)/Q has precisely ??4−1 bases containing only roots of unity.

Now that we have enumerated all bases � with B1 (�) ≤
√
g(<), let us consider their largest singular values

B1 (�). The following theorem shows that all these bases have a largest singular value B1 (�) =
√
g(<) and that

there does not exist an integral basis of Q(Z<)/Q with B1 (�) <
√
g(<).

Theorem 10. Let < = ?4 be a prime power and let � be a basis of Q(Z<)/Q containing only <Cℎ-roots of unity.
Then B1 (�) =

√
g(<).

Proof. Let us first consider the case ? = 2. Then the set of <Cℎ-roots of unity is given by{
±1,±Z1

<, . . . ,±Z
i (<)
<

}
.

Hence, any basis � of Q(Z<)/Q containing only <Cℎ-roots of unity can be obtained by taking the power basis and
changing the sign of some of its elements. From this it follows that B1 (�) =

√
g(<), which proves the theorem

for ? = 2.
Let us now now consider the case where ? is an odd prime, then g(<) = < and B1 (�)2 is the largest eigenvalue

of the Gram matrix �� = M†
�

M�. Since � only contains roots of unity, �� is submatrix of the matrix B< of
Lemma 5. Hence for all 1 ≤ 8, 9 ≤ i(<) the 8 9 Cℎ-entry of �� is equal to

Tr!/Q
(
Z
:8 9
<

)
=

i(<)
i(</gcd(<, :8 9 ))

`(</gcd(<, :8 9 )),

for some −< < :8 9 < <. For a different basis �̃ we obtain, by Theorem 9, that the Gram matrix � �̃ has its
8 9 Cℎ-entry equal to

Tr!/Q
(
Z
:8 9+?4−1;
<

)
,

for some ; ∈ Z. Hence, if 8 ≠ 9 then :8 9 ≠ 0 and gcd(<, :8 9 ) = gcd(<, :8 9 + ?4−1;) from which it follows that the
8 9 Cℎ-entries of the Grammatrices�� and� �̃ are equal. Moreover, the diagonal elements of the Grammatrices��
and � �̃ are all equal to i(<). Hence, �� = � �̃ and B1 (�) = B1 (�̃). By Equation 15 it follows that B1 (�) =

√
<

which proves the theorem. �
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Remark 8. Theorem 10 does not generalize to arbitrary conductors <, i.e., conductors that are not prime powers.
As a counterexample we can take < = 105 = 3 × 5 × 7 with largest singular value B1 (<) = 9, 95.. <

√
105. When

we take � to be the powerful basis [40], also containing only roots of unity, we obtain a largest singular value
B1 (�) =

√
105. Hence for < = 105, not all bases containing only roots of unity result in the same largest singular

value.

6.3 TRINOMIAL NUMBER FIELDS
Let us now consider trinomial number fields ! = Q/( 5 ) with 5 = -= + 0- : + 1 ∈ Z[-] (: < =) irreducible.

More precisely, we consider the order O = Z[-]/( 5 ) in ! and derive bounds on the largest singular values
associated to the order O. More precisely, for a root U ∈ O of 5 , we show that the largest singular value associated
to the power basis � 5 =

(
1, U, . . . , U=−1) of O only grows linearly in the degree = of 5 .

Let ! = Q(U) with complex embeddings f8 for 0 ≤ 8 ≤ = − 1. Then the matrix M(� 5 ) is defined as

M(� 5 ) =
(
f8 (U 9−1)

)
1≤8, 9≤=

∈ !̄=×=.

Note that for a different choice of root U, the rows of the matrix M(� 5 ) are permuted and its singular value
stays the same, which justifies our abuse of notation.

In the remainder of this section we prove an upper bound for the largest singular value B1 (� 5 ) = B1 (M(� 5 )).
To this end we state a theorem that was originally proven in 1908 by Bohl [11] and later reformulated in [50].

Theorem 11 ([11, 50]). Let 5 = -= + 0- : + 1 ∈ C[-]. Let V ∈ R>0 and # be the number of roots of 5 with
absolute value smaller than or equal to V. Then the following holds:

1. If |1 | ≥ V= + |0 |V: , then # = 0,
2. If V= ≥ |0 |V: + |1 |, then # = =,
3. If |0 |V: ≥ V= + |1 |, then # = : .
From this theorem the following result is obtained.

Corollary 3. Let 5 = -= + 0- : + 1 ∈ Z[-] with roots U0, . . . , U=−1. Then

max
8
( |U8 |) ≤ (|0 | + |1 |)

1
=−: .

Proof. If V = (|0 | + |1 |)
1
=−: ≥ 1 it follows that

V= = V: V=−: = V: ( |0 | + |1 |) ≥ |0 |V: + |1 |.

Hence, in this case, the corollary immediately follows from Theorem 11.
If V = 0 it follows that 0 = 1 = 0 and therefore that U8 = 0 for all 8, which completes the proof. �

We are now ready to give an upper bound for the largest singular value B1 (� 5 ).
Lemma 8. Let 5 = -= + 0- : + 1 ∈ Z[-] be an irreducible polynomial. Then

B1 (� 5 ) ≤ = ( |0 | + |1 |)
=−1
=−: .

Proof. Let U1, . . . , U= be the roots of 5 and define ®Uℓ :=
(
Uℓ1 , . . . , U

ℓ
=

)) . Then ®Uℓ , for 0 ≤ ℓ ≤ = − 1, are precisely
the columns of M(� 5 ). Moreover, by Corollary 3 it follows that for all 0 ≤ ℓ ≤ = − 1

| |Uℓ | |∞ ≤ (|0 | + |1 |)
ℓ
=−: ,

≤ (|0 | + |1 |)
=−1
=−: .

(25)

Hence for all 1 ≤ 8, 9 ≤ = ��M(� 5 )8 9 �� ≤ (|0 | + |1 |) =−1
=−: ,

and
B1 (� 5 ) ≤ ||M(� 5 ) | |�( ,

=

√√√ =∑
8, 9=1

��M(� 5 )8 9 ��2,
≤ = ( |0 | + |1 |)

=−1
=−: ,

(26)

where | | · | |�( denotes the Hilbert-Schmidt norm. This proves the lemma. �
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A similar upper bound is given in Lemma 5.5 of [44]. They consider a more general class of polynomials and
derive a slightly larger upper bound. The following lemma yields a minor improvement over Lemma 8.

Lemma 9. Let 5 = -= + 0- : + 1 ∈ Z[-] be an irreducible polynomial. Then

B1 (� 5 ) ≤ =

√√√√ (|0 | + |1 |)
2=
=−: − 1

=

(
( |0 | + |1 |)

2
=−: − 1

) ,
with for fixed :

lim
=→∞

( |0 | + |1 |)
2=
=−: − 1

=

(
(|0 | + |1 |)

2
=−: − 1

) = ( |0 | + |1 |)2 − 1
2 log( |0 | + |1 |)

Proof. The first part of the proof of this theorem is analogous to the proof of Lemma 8. We use the first inequality
of Equation 25 to obtain the following upper bound:

B1 (� 5 ) ≤ ||M(� 5 ) | |�( ,

=

√√√ =∑
8, 9=1

��M(� 5 )8 9 ��2,
≤

√√√
=

=−1∑
ℓ=0
( |0 | + |1 |)

2ℓ
=−: ,

from which the first claim of the theorem follows by the summation formula for geometric series.
Now we prove the second claim of the theorem. For the numerator in the limit we have

lim
=→∞
( |0 | + |1 |)

2=
=−: − 1 = lim

=→∞
( |0 | + |1 |)

2
1−:/= − 1

= ( |0 | + |1 |)2 − 1,

and for the denominator we have

lim
=→∞

= ( |0 | + |1 |)
2
=−: − = = lim

#→0

(|0 | + |1 |)
2#

1−:# − 1
#

,

= lim
#→0

3
3#

[
( |0 | + |1 |)

2#
1−:# − 1

]
3
3#
[#]

,

= lim
#→0

(|0 | + |1 |)
2#

1−:# log (|0 | + |1 |) 2
(1−:# )2

1
,

= 2 log( |0 | + |1 |),

where the second equality follows from L’Hôpital’s rule. This proves the second claim of the lemma and concludes
the proof. �

Hence, the largest singular value B1 (� 5 ) grows at most linearly in the degree = of 5 . For cyclotomic number
fields ! of conductor < an upper bound on the largest singular value B1 (<) could have been obtained by applying
the same proof technique. This would have resulted in the sub-optimal upper bound B1 (<) ≤ i(<). In comparison,
in Section 6.1 we proved the upper bound B1 (<) ≤

√
g(<). The main difference is that in the proofs of Lemmas 8

and 9 we merely considered the size of the entries of M(� 5 ) and not the orthogonality of its columns. This
observation suggests that there might be room for improving the upper bound of B1 (� 5 ) for trinomials 5 .

7 CONSTRUCTING CHALLENGE SETS
In this section, we apply the invertibility theorems to construct challenge sets C in the rings of integers of

either the cyclotomic number field Q(Z512) or the trinomial number field Q[-]/
(
-256 − - − 1

)
. These fields have

rings of integers Z[Z512] and Z[-]/
(
-256 − - − 1

)
, respectively. The challenge sets contain ring elements of

bounded norm. For post-quantum security a challenge set of size approximately 2256 is typically required. In [41],
a challenge set of cardinality 2237 is constructed. To be able to compare our challenge sets to the one from [41], we
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choose the norm bound such that our challenge sets are of size at least 2237. Subsequently, the invertibility theorems
give a lower bound on the size of primes ? for which non-zero challenge differences are guaranteed to be invertible.
This lower bound depends on the splitting behavior of ?. In particular, if ? splits into 6 factors with inertia degrees
5 the prime ? is required to be larger than if the prime splits into less factors (6′ < 6) with larger inertia degrees
( 5 ′ > 5 ). We consider this trade-off by displaying the prime sizes for different decomposition types.

We start by constructing challenge sets via the coefficient embedding in Section 7.1. This is the preferred
embedding because it allows challenges to be efficiently sampled. For a more detailed discussion see Section 5.
However, in some cases, constructing challenge sets via the canonical embedding directly results in a stronger
invertibility condition with smaller primes ?. For this reason, we construct challenge sets via the canonical
embedding in Section 7.2.

7.1 COEFFICIENT EMBEDDING
In this section, challenge sets are constructed via the coefficient embedding. The invertibility theorems suggest

that a challenge set C should simply contain all ring elements 2 of bounded norm ‖2‖ ≤ ' for some appropriately
chosen ' ∈ R≥0. However, we apply two adaptations to this approach. First, we additionally restrict challenge
sets to elements 2 with ‖2‖∞ = 1. Second, we only consider challenges 2 with norm exactly equal to ', i.e.,
‖2‖ = '. These adaptations were already applied in the ad-hoc example of [41]. Challenge sets of this form have
a convenient closed form expression for their cardinality. Moreover, in this case, a minor ad-hoc improvement
applies (see Lemma 10). Finally, since for appropriately chosen ' the vast majority of elements of norm at most '
have norm exactly equal to ', restricting the challenges 2 to ‖2‖ = ' does not significantly reduce the size of the
challenge set.

Altogether, for both the cyclotomic ring Z[Z512] = Z[-]/(-256 +1) and the trinomial ring Z[-]/(-256−- −1)
with power basis � = (1, -, . . . , -255), challenge sets of the following form are considered,

C(') =
{
W =

255∑
8=0

08-
8 : 0 ∈ Z256, ‖0‖ = ', ‖0‖∞ = 1

}
, with |C| =

(
256
'2

)
2'

2
, (27)

where ' is an appropriately chosen norm bound. More precisely, ' only depends on the required size of the
challenge set. In our case, we choose ' =

√
53 such that |C(') | ≥ 2237.

Any non-zero challenge difference 2̄ ∈ C(') − C(') = {2 − 2′ : 2, 2′ ∈ C('), 2 ≠ 2′} has norm ‖2̄‖ ≤ 2'.
Let ? ∈ N be a prime that splits in 6 factors in O that all have inertia degree 5 . By Theorem 2 and Theorem 3, it
follows that if

? >

(
B1 (�) · 2'√

=

)6
=

{
(2')6 , if ! = Q(Z512),
(3,91..')6 , if ! = Q[-]/(-256 − - − 1),

(28)

then any non-zero challenge difference 2̄ has a multiplicative inverse in O!/?O! . Here, we have used the fact that
B1 (�) =

√
256 = 16 in the cyclotomic case and B1 (�) = 31,33.. in the trinomial case.

The following lemma shows that a slightly smaller lower bound on the prime ? is also sufficient to guarantee
the invertibility of challenge differences. The applicability of this lemma crucially depends on the specific form of
our challenges sets, i.e., for all 2 ∈ C(') it holds that ‖2‖ = ' and ‖2‖∞ = 1.

Lemma 10 ([41]). Let = ∈ N, ' ∈ R>0 and let G, G ′ ∈ Z= such that ‖G‖ = ‖G ′‖ = ' and ‖G‖∞ = ‖G ′‖∞ = 1. Then
either ∃H with such that ‖H‖ = ' and G − G ′ = 2H or ‖G − G ′‖ ≤

√
4'2 − 2.

Proof. First note that ‖G − G ′‖ ≤ 2' with equality if and only if G = −G ′ = H for some H ∈ Z= with ‖H‖ = ', i.e.,
G − G ′ = 2H.

So let us assume that G ≠ −G ′. The existence of an G ∈ Z= with ‖G‖ = ' and ‖G‖∞ = 1 implies that = ≥ '2.
Moreover, it holds that ‖G − G ′‖∞ ≤ 2 and ‖G − G ′‖1 ≤ 2'2. Therefore, in this case, the norm of G − G ′ is maximal
when it has exactly '2 − 1 entries equal to ±2, one or two entries equal to ±1 (depending on the dimension =) and
all other entries equal to 0. Hence, ‖G − G ′‖ ≤

√
4'2 − 2, which proves the lemma. �

If ? is an odd prime, then 2 is invertible modulo ?. Hence, by Lemma 10, it follows that for any odd prime ?
with

? >


(√

4'2 − 2
)6
, if O = Z[Z512],(

1,95..
√

4'2 − 2
)6
, if O = Z[-]/(-256 − - − 1),

(29)

non-zero challenge differences are invertible in O!/?O! . This bound is a minor improvement of Equation 28.
For the cyclotomic number field we also consider the decomposition field approach, i.e., the second invertibility

condition of Theorem 2. In this approach we require the prime ? to have a cyclotomic decomposition field Q(ZI)

64



A Note on Short Invertible Ring Elements and Applications to Cyclotomic and
Trinomial Number Fields

in ! = Q(Z512). Note that in this case, the prime ? splits in 6 = i(I) = I/2 factors of the same inertia degree
5 = 256/6. Using the decomposition field approach, challenge sets D6 (') are defined as all elements W ∈ O!
with short projections c 9 : ! = Q(Z512) → Q(ZI) for all 1 ≤ 9 ≤ 256/6. Recall that these projections have been
defined in Equation 2. In particular, the challenge sets depend on the decomposition type of the prime ?, i.e.,

D6 (') =
{
W ∈ O! : ‖W‖∞ = 1,



c 9 (W)

 = ' ∀1 ≤ 9 ≤ 256/6
}
. (30)

These challenge sets can be viewed as an 256/6-foldCartesian product of challenge sets in the smaller cyclotomic
number ring Z[ZI] = Z[Z26]. For this reason, it follows that��D6 (')�� = (

6

'2

)256/6
2256'2/6 .

In contrast to the challenge sets C(') the cardinality of D6 (') depends on the decomposition type of ?. More
precisely, it depends on the number of prime factors 6 of the ideal ?O! . Hence, for different decomposition types
we choose different norm bounds ' such that

��D=,6 (')�� ≥ 2237. In Table 2, the required norm bounds ' are
displayed.

Table 2: Norm bounds ' to guarantee that challenge sets have cardinality at least 2237.
Number of Prime

Factors (6)
Inertia Degree

( 5 )
Decomposition

Type
Radius ' s.t.
|C(') | ≥ 2237

Radius ' s.t.
|D6 (') | ≥ 2237

1 256 (256)
√

53 1
2 128 (128, 128)

√
53 1

4 64 (64, 64, 64, 64)
√

53
√

2
8 32 (32, . . . , 32)

√
53

√
3

16 16 (16, . . . , 16)
√

53 2
32 8 (8, . . . , 8)

√
53 2

√
2

64 4 (4, . . . , 4)
√

53
√

14
128 2 (2, . . . , 2)

√
53 3

√
3

256 1 (1, . . . , 1)
√

53
√

53

From the invertibility condition of Equation 7, it follows that if

? >

(√
4'2 − 2

)6
,

then challenge differences are invertible in O!/?O! . This is exactly the same bound as we found in Equation 29.
However, as displayed in Table 2, the norm bounds ' can chosen much smaller for most decomposition types.

In the analysis above we have only considered rational primes ? that split in factors with the same inertia degree
5 = 256/6. The cyclotomic number field Q(Z512) is Galois with Galois group � � Z/2Z×Z/128Z. Hence, in this
case, the above analysis covers all primes ?. By contrast, the trinomial number field Q[-]/

(
-256 − - − 1

)
is not

Galois. In particular, the Galois group of its Galois closure is the entire group (256 containing 256! permutations
and not all primes ? split into factors with the same inertia degree. By Frobenius’ density theorem (Theorem 5),
the density of primes that have a particular decomposition type can be determined.

In Table 3 the resulting prime sizes for the cyclotomic number field ! = Q(Z512) are displayed. Both for the
standard approach, resulting in challenge set C(

√
53) ⊂ O! , and the decomposition field approach, resulting in

challenge sets D6 (') are treated. In the latter approach, the norm bound ' depends on the decomposition type
and can be found in Table 2. Moreover, this approach requires rational primes to have a cyclotomic decomposition
field. The density of primes with a cyclotomic decomposition field follows from Lemma 3.

For the decomposition field approach we have computed the smallest primes ?6 that split in 6 factors and are
larger than the associated prime bound %. In particular,

?2 = 5 = 22,32.., ?16 = 230,45.., ?128 = 2430,58..,

?4 = 41 = 25,35.., ?32 = 278,51.., ?128 = 2987,42..,

?8 = 10193 = 213,31.., ?64 = 2184,15.. .

Hence, only for small 6 the actual primes are slightly larger than their lower bounds %.
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Table 3: Minimal size of primes ? such that non-zero challenge differences are invertible in O!/?O! , where
! = Q(Z512). The logarithm of the prime bounds % are displayed. Challenge sets are either of the form
C(
√

53) ⊂ O! , or of the form D6 (') ⊂ O! in the decomposition field approach.
Number of
Prime

Factors (6)

Decomposition
Type

Frobenius’
Density

Prime Bound
% for C(

√
53)

(log2 (%))

Density of Primes
with Decomposition

Field Q(Z26)

Prime Bound %
for D256,6 (')
(log2 (%))

1 (256) 0 − 0 −
2 (128, 128) 1/2 7,71.. 1/4 1
4 (64, 64, 64, 64) 1/4 15,42.. 1/8 5,16..
8 (32, . . . , 32) 1/8 30,85.. 1/16 13,28..

16 (16, . . . , 16) 1/16 61,71.. 1/32 30,45..
32 (8, . . . , 8) 1/32 123,42.. 1/64 78,51..
64 (4, . . . , 4) 1/64 246,85.. 1/128 184,15..

128 (2, . . . , 2) 3/256 493,71.. 1/256 430E58..
256 (1, . . . , 1) 1/256 987,42.. 1/256 987,42..

Lyubashevsky and Seiler [41] introduced the decomposition field approach and gave an ad-hoc example of a
challenge set in Q(Z512) in which they considered primes with 6 = 5 = 16. They showed that in this case primes ?
larger than 230,5 achieve the desired invertibility. This result can also be retrieved from Table 3.

In Table 4 the resulting prime sizes for the trinomial challenge setC(
√

53) ⊂ O! with ! = Q[-]/
(
-256 − - − 1

)
are displayed. Since the trinomial field is not Galois we can not apply the decomposition field approach. Note that,
in this case, the sum of Frobenius’ densities is not equal to 1, because many other decomposition types are possible.
Moreover, the densities for some decomposition types are extremely small, making it hard to find primes of these
specific decomposition types. In particular, it is extremely unlikely that a rational prime ? completely splits in the
trinomial number field !. Additionally these small densities are likely to cause the actual primes to be larger than
the lower bounds given by Table 4.

Table 4: Minimal size of primes ? such that non-zero challenge differences are invertible inO!/?O! . The logarithm
of the prime bounds % are displayed. The challenge set is of the formC(

√
53) ⊂ O! with ! = Q[-]/

(
-256 − - − 1

)
.

Number of Prime
Factors (6)

Decomposition
Type

Frobenius’
Density

Prime Bound % for C(
√

53)
(log2 (%))

1 (256) 2−8 4,82..
2 (128, 128) 2−15 9,65..
4 (64, 64, 64, 64) 2−28,.. 19,30..
8 (32, . . . , 32) 2−55,.. 38,61..

16 (16, . . . , 16) 2−108,.. 77,22..
32 (8, . . . , 8) 2−213,.. 154,45..
64 (4, . . . , 4) 2−423,.. 308,91..
128 (2, . . . , 2) 2−844,.. 617,83..
256 (1, . . . , 1) 2−1683,.. 1235,67..

7.2 CANONICAL EMBEDDING
Thus far challenge sets have been defined via the coefficient embedding k� : ! → Q= of the number field

!. This embedding depends on the choice of (integral) basis � = (V1, . . . , V=) of !/Q. These challenge sets
correspond to sets of elements in the lattice Z= of bounded norm. The cardinality is easily computed and with some
additional restrictions we even find the closed-form expressions of Equation 27 and Equation 30. In this section
we describe another approach and define challenge sets directly in the canonical embedding q! : ! → C= and use
the canonical invertibility condition from Theorem 7. It turns out that, in some cases, this approach allows the
protocols to be instantiated with smaller primes ?.

We apply this approach to the cyclotomic example ! = Q(Z512) of Section 7.1 and we directly apply the
decomposition field approach. Challenge sets defined via this approach depend on the decomposition type of
the prime ?. We consider rational primes ? that are unramified in ! and have cyclotomic decomposition field
 6 = Q(Z26), where 6 is the number of prime factors of the ideal ?O! . As before we fix the integral basis
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(
1, . . . , Z256/6−1

512

)
of !/ 6 and, for 1 ≤ 9 ≤ 256/6, let c 9 : ! →  6 be the projections associated to this basis. The

canonical challenge sets are defined as follows

E6,: (') =
{
W ∈ O! :



q 6 (c 9 (W))

: ≤ ' ∀1 ≤ 9 ≤ 256/6
}
, (31)

where q 6 : ! → C6 is the canonical embedding of 6 and the radius ' ∈ R≥0 is chosen such that
��E6,: (')�� ≥ 2237.

Note that the invertibility result of Theorem 7 allows us to consider norms ‖·‖: for arbitrary : ∈ N ∪ {∞}. In
particular, we consider the ℓ1- and ℓ2-norm.

Table 5 shows the norm bounds ' that are required to guarantee that challenge sets are sufficiently large. Because
this cardinality lacks a closed-form expression, the norm bounds have been computed by a brute-force search. The
challenge set E6,: (') can be viewed as an 256/6 Cartesian product of challenge sets in the 6-dimensional lattice
q 6 (O 6 ). Hence, the computational complexity of the brute-force search depends on the number of prime factors
6. For this reason, we have restricted this brute-force search to 6 ∈ {1, 2, 4, 8, 16}. Note that for large ' the
cardinality of E6,: (') is easily approximated, for instance, by considering the volume of the fundamental domain
of the lattice q 6 (O 6 ). However, for small bounds ' these approximations are inaccurate.

For power-of-two-cyclotomic number fields ! = Q(Z<) with power basis � = (1, Z<, . . . , Z<</2−1), the
mapping M� : k� (!) → q! (!) from the canonical to the coefficient embedding is a scaled rotation, i.e., the
geometries induced from these different embeddings are the same. The scaling factor of this rotation equals
B1 (<) =

√
</2. For this reason, the norm bounds '2 of Table 5, associated to the ℓ2-challenge sets E6,2 ('2), are

exactly a factor √6 larger than the norm bounds ', associated to the challenge set D6 (') of Table 2.

Table 5: Norm bounds '1 and '2 to guarantee that challenge sets have cardinality at least 2237.
Number of Prime

Factors (6)
Inertia

Degree ( 5 )
Decomposition

Type
Radius '1 s.t.
|E6,1 ('1) | ≥ 2237

Radius '2 s.t.
|E6,2 ('2) | ≥ 2237

1 256 (256) 1 1
2 128 (128, 128) 2

√
2

4 64 (64, 64, 64, 64) 2
√

4 + 2
√

2 ≈ 5,22.. 2
√

2
8 32 (32, . . . , 32) 4 + 4

√
2 +
√

2 ≈ 11,39.. 2
√

6
16 16 (16, . . . , 16) 29,37.. 8

From the invertibility result of Theorem7 it follows that all non-zero challenge differences 2̄ ∈ E6,: (')−E6,: (')
are invertible in O!/?O! if

? >

(
2'
:
√
6

)6
.

Hence, this expression suggests that we want to choose : as small as possible, i.e., : = 1. However, Table 5 shows
that, for all 6 ∈ {1, 2, 4, 8, 16}, the norm bound ' is required to be larger for : = 1 than for : = 2. This causes
some instantiations to result in smaller prime bounds for : = 1 and others for : = 2.

The resulting prime sizes are displayed in Table 6. For reference, the prime size associated to challenge sets
D6 (') defined via the coefficient embedding are also included.

Table 6: Minimal size of primes ? such that non-zero challenge differences 2̄ ∈ E6,: (') − E6,: (') are invertible
in O!/?O! . The logarithm of the prime bounds % are displayed. The prime sizes associated to challenge sets
D6 (') defined via the coefficient embedding are also included.

Number of
Prime

Factors (6)

Decomposition
Type

Density of Primes
with Decomposition

Field Q(Z26)

Prime Bound
% for E6,1 ('1)

(log2 (%))

Prime Bound
% for E6,2 ('2)

(log2 (%))

Prime Bound
% for D6 (')
(log2 (%))

1 (256) 0 − − −
2 (128, 128) 1/4 2 2 1
4 (64, 64, 64, 64) 1/8 5, 54.. 6 5, 16..
8 (32, . . . , 32) 1/16 12, 07.. 14, 33.. 13, 28..

16 (16, . . . , 16) 1/32 30, 01.. 32 30, 45..

Table 6 shows that the prime sizes for canonical ℓ2-challenge set E6,2 ('2) are very similar to the ones for the
challenge setsD6 ('). This is because both the canonical and coefficient geometry are equivalent for power-of-two
cyclotomic number fields. However, there still is a difference between the two columns. This difference can be
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explained by the fact that the challenges sets D6 (') of Section 7.1 were defined slightly differently to make them
amenable for the ad-hoc improvement of Lemma 10. Further, Table 6 shows that for primes that split in at least
8 factors in !, we can indeed achieve slightly smaller prime sizes by considering the ℓ1-norm in the canonical
embedding.
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